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Background: Blood pressure (BP) is a key factor for the clinical outcomes of acute 
ischemic stroke (AIS) receiving endovascular thrombectomy (EVT). However, the 
effect of the circadian pattern of BP on functional outcome is unclear.

Methods: This multicenter, retrospective, observational study was conducted 
from 2016 to 2023 at three hospitals in China (ChiCTR2300077202). A total of 
407 patients who underwent endovascular thrombectomy (EVT) and continuous 
24-h BP monitoring were included. Two hundred forty-one cases from Beijing 
Hospital were allocated to the development group, while 166 cases from Peking 
University Shenzhen Hospital and Hainan General Hospital were used for external 
validation. Postoperative systolic BP (SBP) included daytime SBP, nighttime SBP, 
and 24-h average SBP. Least absolute shrinkage and selection operator (LASSO), 
support vector machine-recursive feature elimination (SVM-RFE), Boruta were 
used to screen for potential features associated with functional dependence 
defined as 3-month modified Rankin scale (mRS) score  ≥  3. Nine algorithms 
were applied for model construction and evaluated using area under the receiver 
operating characteristic curve (AUC), sensitivity, specificity, and accuracy.

Results: Three hundred twenty-eight of 407 (80.6%) patients achieved 
successful recanalization and 182 patients (44.7%) were functional independent. 
NIHSS at onset, modified cerebral infarction thrombolysis grade, atrial 
fibrillation, coronary atherosclerotic heart disease, hypertension were identified 
as prognostic factors by the intersection of three algorithms to construct the 
baseline model. Compared to daytime SBP and 24-h SBP models, the AUC of 
baseline + nighttime SBP showed the highest AUC in all algorithms. The XGboost 
model performed the best among all the algorithms. ROC results showed an 
AUC of 0.841 in the development set and an AUC of 0.752 in the validation set 
for the baseline plus nighttime SBP model, with a brier score of 0.198.
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Conclusion: This study firstly explored the association between circadian BP 
patterns with functional outcome for AIS. Nighttime SBP may provide more 
clinical information regarding the prognosis of patients with AIS after EVT.

KEYWORDS

acute ischemic stroke, endovascular thrombectomy, blood pressure, circadian 
pattern, machine learning

Introduction

Acute ischemic stroke (AIS) remains a leading cause of morbidity 
and mortality worldwide (1), endovascular thrombectomy (EVT) has 
become one of the standard therapeutic treatments for AIS patients 
with large vessel occlusion stroke (LVOS) (2, 3). The relationship 
between blood pressure (BP) and prognosis in patients with AIS is 
complex with the available evidence suggests that both insufficient and 
excessive BP are detrimental to the prognosis of patients with 
AIS (4, 5).

Post-stroke BP fluctuations represent a multifactorial and intricate 
physiological process (6). Numerous studies have revealed the 
correlation between preoperative, intraoperative, and postoperative 
BP levels and clinical outcomes as an crucial clinical factor (7, 8). 
While prior studies have emphasized the importance of BP in the 
prognosis of AIS (9), the optimal BP target for AIS patients remains 
uncertain. Recent investigations suggested that different BP 
parameters may provide different clinical information for all-cause 
death and cardiovascular outcomes when considering the BP circadian 
patterns. Staplin et al. (10) and Yang et al. (11) have found in large-
scale population-based cohorts that higher nighttime BP was 
significantly associated with greater risk of mortality and composite 
cardiovascular outcomes even after adjustment for other office-based 
or ambulatory BP measurements.

In recent years, machine learning (ML) has increasingly become 
a powerful tool in medical research (12, 13), and ML has also shown 
excellent performance in predicting the prognosis of AIS (14). The 
aim of this study was to investigate the association between different 
circadian SBP parameters and prognosis after EVT in AIS patients. 
The study may provide a unique perspective for a precise 
understanding of the association between circadian SBP patterns and 
the prognosis of AIS patients.

Methods

Study design and participants

This retrospective, multicenter study was conducted across 
three hospitals in China (ChiCTR2300077202). The study flowchart 
was depicted in Figure 1. Patients eligible for inclusion in this study 
were diagnosed with AIS through either CT or MRI within 24 h of 
symptom onset and subsequently underwent EVT. Exclusion 
criteria comprised prestroke modified Rankin Scale (mRS) scores 
exceeding 2 and documented BP measurements exceeding more 
than 20% per hour within the initial 24 h. Finally, enrollment was 
carried out consecutively at 3 medical institutions in China: Beijing 

Hospital (277 cases from January 2016 to March 2023), Peking 
University Shenzhen Hospital (92 cases from January 2020 to 
March 2024), Hainan general hospital (82 cases from January 2021 
to January 2023). The study was approved by Beijing Hospital Ethics 
Committee (2023BJYYEC-364-01).

Data collection

A comprehensive collection of baseline clinical data was obtained 
from the hospital medical records system. The information collected 
includes basic demographic details, (age and sex), medical histories 
[diabetes, dyslipidemia, hypertension, atrial fibrillation (AF), coronary 
atherosclerotic heart disease (CHD)], and present use of 
antithrombotic drugs, NIHSS score at onset, occlusion site, and 
intravenous tissue-type plasminogen activator (IV-tPA) therapy. 
Recanalization status was assessed using a modified cerebral infarction 
thrombolysis (mTICI) grading system, where an mTICI score of 2b or 
3 defined successful recanalization. The primary outcome variable that 
determined the patient’s 90-day functional status using the modified 
Rankin Scale (mRS). Good functional outcomes were defined by mRS 
Scores on a scale of 0 to 2, while poor outcomes were scored on a scale 
of 3 or higher. The mRS Scores were assessed by experienced 
neurologists, mainly during scheduled outpatient consultations. In 
cases where direct assessment was impractical, scores were obtained 
by telephone with the patient’s relative or caregiver.

Blood pressure parameters

The threshold for SBP follows guidelines, the specific target is 
determined by the physician performing EVT. The BP monitoring was 
measured hourly in the ward after endovascular thrombectomy (EVT) 
and recorded for at least the first 24 h after surgery. BP readings were 
systematically recorded using Philips equipment and 
sphygmomanometer cuffs and transmitted to the nurse station 
terminal via a manual/bedside non-invasive BP monitor. BP 
assessments at all three participating centers used a combination of 
manual and automated methods to ensure comprehensive and 
accurate readings. As SBP was the predominant risk factor in the 
elderly (15–17), the study mainly focused on SBP.

To further investigate the circadian rhythm of BP, nighttime and 
daytime BP recordings were distinguished. Nighttime BP was 
recorded between 10 pm and 4 am, while daytime BP was measured 
between 8 am and 6 pm. These indicators provide a comprehensive 
understanding of the key dynamic BP fluctuations during the first 24 h 
after EVT.
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Model development and validation

To reduce model complexity and the risk of overfitting, as well as 
optimize training speed, we performed least absolute shrinkage and 
selection operator (LASSO), support vector machine-recursive feature 
elimination (SVM-RFE), and Boruta to select potential features. 
SVM-RFE aims to find an optimal subset of features by iteratively 
removing the least important features based on their weights or rankings 
obtained from the SVM model, ensuring a global optimal solution (18). 
The Boruta algorithm provides an importance score for each feature, 
which helps to understand the relative importance between features 
(19). The intersection of the selected features from these methods was 
utilized as the model variables. We selected 15 features, including age, 
sex, BMI, hypertension, CHD, diabetes, dyslipidemia, AF, stroke history, 
smoking history, present antithrombotic therapy, IV-tPA, NIHSS on 
admission, mTICI grade and occluded site. In this study, cases from 
Beijing hospital (BJH) cohort were utilized for model development, 
while the Peking University Shenzhen hospital- Hainan general hospital 
(PKUSZ-HN) cohorts served as an external validation set. The aim of 
external validation was further assessed the generalizability and 
predictive efficacy of the selected models. In order to evaluate the 
optimal predictive performance and predictive effectiveness of different 
SBP parameters, we  constructed nine learning models, including 
eXtreme Gradient Boosting (XGboost), Logistic regression (LR), 
Decision Tree (DT), Adaptive boost (AdaBoost), GaussianNB (GNB), 
Gradient Boosting Decision Tree (GBDT), Multi-layer Perceptron 
(MLP), Support Vector Machine (SVM), and K-Nearest Neighbor 
Machine (KNN). In addition, we report several parameters related to 
model performance in this study, including area under subject operating 
characteristic curve (AUC), sensitivity, specificity, and accuracy. After 
comparing the performance of nine different ML models, the final 
model was determined based on the highest AUC value.

Statistics analysis

To assess the normality of the data distribution, a Kolmogorov–
Smirnov test was first conducted. Patients with missing SBP data 
exceeding four time points were excluded, while for other cases with 
missing SBP data, imputation was performed using the average of the 
24-h SBP values. Descriptive statistics were used to summarize 
baseline characteristics and outcomes. Categorical variables were 
expressed in numbers and percentages, and chi-square tests were used 
to identify significant differences between risk factors and clinical 
outcomes. The normally distributed continuous variables were 
expressed as mean ± standard deviation (SD), and the comparison was 
performed using a T-test. All statistical analyses were performed using 
SPSS v25 (IBM Corporation, NY), and an α-level of 0.05 was adopted 
as the threshold for significance.

Results

Patients characteristics

A total of 451 AIS patients aged above 18 underwent EVT 
treatment. Forty-four patients were excluded due to missing BP data or 
loss to follow-up, with 36 excluded from the development group and 8 
from the external cohort. Ultimately, 407 patients were included in the 
analysis (Figure 1), comprising 241  in the development group and 
166 in the validation group. Baseline characteristics of the patients were 
shown in Table 1. The median age of these patients was 70 years, with 
253 males (62.2%). The median baseline NIHSS score was 14 (range: 
9–19), with 129 (31.7%) receiving IV-tPA treatment before EVT. One 
hundred ninety-six patients (81.3%) and 132 patients (79.5%) achieved 
successful recanalization in the two cohorts, respectively. Finally, 182 

FIGURE 1

Study flow.
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patients (44.7%) had favorable outcomes. Missing values were imputed 
for BP readings (n = 27), BMI (n = 43), atrial fibrillation (n = 1), diabetes 
(n = 1), hypertension (n = 1), dyslipidemia (n = 1), smoking history 
(n = 1), IV-tPA (n = 1), coronary heart disease (n = 1), antithrombotic 
therapy (n = 18), and stroke history (n = 1). The average daytime and 
nighttime SBP values for the population before and after imputation 
were both 131 mmHg (SD: 14.5) and 127 mmHg (SD: 14.5), respectively. 
In the development group, the postoperative daytime, nighttime, and 
24-h BPs were mm 133, 129, and 131 mmHg, respectively, while in the 
validation group, they were 128, 125, and 127 mmHg, respectively.

Feature selection

Three machine learning algorithms, LASSO, SVM-RFE, and 
Boruta, were performed to identify and select potential variables 
associated with the 3-month functional outcome (Figure  2). The 
LASSO analysis identified potential prognostics factors as NIHSS, 
mTICI grade, CHD, diabetes, hypertension, AF, IV-tPA, age and BMI, 
while SVM-RFE determined gender, IV-tPA, AF, hypertension, 
dyslipidemia, diabetes, stroke, CHD, antithrombotic therapy, occluded 
site, mTICI grade, NIHSS, and Boruta established NIHSS, mTICI, 
CHD, AF, hypertension. By selecting the variables overlapped among 
the three algorithms, the final variables for modeling were determined 
as NIHSS, mTICI, CHD, AF, hypertension as potential factors.

Model validation

After determining the final 5 variables, we applied 9 machine learning 
algorithms to establish model and evaluated performance (Figure 3). The 

specific parameters of different machine learning methods were shown 
in Supplementary Table S1. The AUC of all algorithms increased to 
varying degrees after the addition of SBP-related parameters. The AUC 
of LR algorithm in the baseline model was 0.772, and after adding 
daytime BP, nighttime BP, and 24-h BP, the AUCs were 0.776, 0.795, and 
0.785, respectively. The AUC of XGboost algorithm in the baseline model 
was 0.800, and AUC were 0.841, 0.840 and 0.838 after adding daytime BP, 
night BP and 24-h BP, respectively. The evaluation indicators of models 
were shown in Table 2. Among all algorithms, XGBoost with baseline plus 
nighttime SBP demonstrated the best performance in terms of AUC, with 
accuracy of 0.751, specificity of 0.863, and sensitivity of 0.751. Other 
evaluation metrics for the models are presented in Table 2.

To provide a better understanding of the effects of different models, 
further validation was conducted in the external validation set (Table 3). 
Similarly, after adding different BP parameters, the performance of all 
models improved in the validation set. The AUC of XGboost algorithm 
in baseline model is 0.742, 0.728, 0.752, 0.734, respectively, after 
increasing daytime BP, night BP and 24-h BP, respectively. For Adaboost 
and KNN algorithms in the baseline plus nighttime SBP model, the 
AUCs were 0.745 and 0.704, with accuracy, sensitivity, and specificity of 
0.695, 0.500, 0.917, and 0.634, 0.870, 0.444, respectively. In summary, 
adding SBP levels in the predictive model established by 9 algorithms 
can improve AUC, with nighttime SBP showing the most significant 
improvement. XGBoost emerged as the best-performing algorithm.

Model construction and performance

To assessed the bias and clinical benefit of the different models, 
we applied the DCA curve and calibration curve to evaluate the models 

TABLE 1 Baseline characteristics of patients in BJH and PKUSZ-HN cohorts.

BJH cohort (development set) PKUSZ-HN cohort (validation set)

Variable Favorable Unfavorable Total Favorable Unfavorable Total

Sex, male (%) 77 (63.6) 69 (57.5) 146 (60.6) 40 (65.6) 67 (63.8) 107 (64.5)

Age, median (IQR) 71 (61–80) 76.5 (66–83) 73 (62–82) 65 (52–72) 67 (60.5–74.5) 66 (58–74)

BMI, mean (SD) 24.6 (4.8) 24.6 (5.6) 24.6 (5.2) 23.8 (4.5) 24.2 (4.1) 24.1 (4.2)

Hypertension (%) 82 (67.8) 101 (84.2) 183 (75.9) 42 (68.9) 70 (66.7) 112 (67.5)

Stroke (%) 35 (28.9) 44 (36.7) 79 (32.8) 16 (26.2) 18 (17.1) 34 (20.5)

Atrial fibrillation (%) 36 (29.8) 52 (43.3) 88 (36.5) 18 (29.5) 41 (39.0) 59 (35.5)

CHD (%) 26 (21.5) 53 (44.2) 79 (32.8) 9 (14.8) 22 (21.0) 31 (18.7)

Diabetes (%) 44 (36.4) 50 (41.7) 94 (39.0) 13 (21.3) 27 (25.7) 40 (24.1)

Antithrombotic drug use (%) 35 (28.9) 36 (30.0) 71 (29.5) 18 (29.5) 34 (32.4) 52 (31.3)

Anterior circulation (%) 103 (85.1) 94 (78.3) 197 (81.7) 55 (90.2) 82 (78.1) 137 (82.5)

Smoke (%) 47 (38.8) 37 (30.8) 84 (34.9) 15 (24.6) 34 (32.4) 49 (29.5)

Dyslipidemia (%) 44 (36.4) 49 (40.8) 93 (38.6) 6 (9.8) 11 (10.5) 17 (10.2)

IV-tPA (%) 25 (20.7) 38 (31.7) 63 (26.1) 31 (50.8) 35 (33.3) 66 (39.8)

NIHSS, median (IQR) 9 (6–15) 14.5 (10.5–20) 13 (8–18) 13 (9–18) 19.5 (12–27.5) 16 (11–23)

Successful recanalization (%) 107 (88.4) 89 (74.2) 196 (81.3) 59 (96.7) 73 (69.5) 132 (79.5)

BP (SD)

Daytime SBP 131 (13.8) 134 (16.0) 133 (15.0) 124 (12.5) 130 (14.2) 128 (13.9)

Nighttime SBP 126 (14.4) 132 (16.1) 129 (15.6) 120 (10.5) 129 (13.0) 125 (12.9)

24-h SBP 129 (12.8) 133 (14.6) 131 (13.9) 123 (10.4) 130 (11.6) 127 (11.7)

BMI, body mass index; CHD, coronary atherosclerotic heart disease; SBP, systolic blood pressure.
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FIGURE 2

Machine learning identified crucial variable for 3-month functional outcome in AIS. Five genes that 146 were most suitable for diagnosis in the LASSO 
model were identified (A,B). The SVM-RFE algorithm screened 12 variables (C). The Boruta algorithm identified 5 variables. The green, yellow and red 
box plots are significant, tentative and rejected variables. The variables here include significant and tentative variables which may improve consensus 
identification of key variables (D). Venn diagram showing the intersection of the three algorithms (E).

FIGURE 3

Receiver-operating characteristic curves for nine machine learning models. LR, logistics regression; XGBoost, eXtreme Gradient Boosting; Adaboost, 
Adaptive Boosting; DT, decision tree; GBDT, Gradient Boosting Decision Tree; GNB, Gaussian Naïve Bayes; MLP, multi-layer perceptron neural network; 
SVM, support vector machine; KNN, K-Nearest Neighbor Machine.
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TABLE 2 Model performance in development cohort.

Algorithm Model AUC Cutoff Accuracy Sensitivity Specificity PPV NPV F1-
Score

LR Baseline 0.772 (0.722–0.822) 0.439 0.714 0.827 0.582 0.707 0.726 0.762

Baseline + Nighttime SBP 0.795 (0.747–0.842) 0.561 0.720 0.698 0.753 0.775 0.667 0.735

Baseline + Daytime SBP 0.776 (0.726–0.826) 0.499 0.705 0.743 0.664 0.729 0.674 0.736

Baseline + 24 h SBP 0.785 (0.736–0.833) 0.620 0.711 0.615 0.836 0.820 0.635 0.702

XGBoost Baseline 0.800 (0.753–0.847) 0.530 0.717 0.721 0.733 0.767 0.667 0.743

Baseline + Nighttime SBP 0.841 (0.799–0.883) 0.657 0.751 0.665 0.863 0.855 0.674 0.748

Baseline + Daytime SBP 0.840 (0.798–0.882) 0.657 0.754 0.637 0.904 0.890 0.667 0.742

Baseline + 24 h SBP 0.838 (0.796–0.881) 0.610 0.757 0.687 0.849 0.847 0.685 0.759

AdaBoost Baseline 0.780 (0.730–0.829) 0.522 0.695 0.598 0.822 0.808 0.621 0.687

Baseline + Nighttime SBP 0.807 (0.760–0.853) 0.525 0.717 0.642 0.836 0.843 0.636 0.729

Baseline + Daytime SBP 0.794 (0.746–0.841) 0.508 0.711 0.648 0.801 0.797 0.643 0.715

Baseline + 24 h SBP 0.798 (0.751–0.845) 0.513 0.726 0.676 0.801 0.808 0.659 0.736

DT Baseline 0.719 (0.666–0.773) 0.566 0.637 0.603 0.726 0.821 0.561 0.696

Baseline + Nighttime SBP 0.748 (0.697–0.799) 0.615 0.637 0.704 0.678 0.821 0.561 0.758

Baseline + Daytime SBP 0.735 (0.682–0.787) 0.647 0.637 0.682 0.719 0.821 0.561 0.745

Baseline + 24 h SBP 0.736 (0.683–0.788) 0.685 0.637 0.642 0.767 0.821 0.561 0.721

GBDT Baseline 0.719 (0.666–0.773) 0.581 0.637 0.603 0.726 0.821 0.561 0.696

Baseline + Nighttime SBP 0.748 (0.697–0.799) 0.674 0.637 0.704 0.678 0.821 0.561 0.758

Baseline + Daytime SBP 0.735 (0.682–0.787) 0.728 0.637 0.682 0.719 0.821 0.561 0.745

Baseline + 24 h SBP 0.736 (0.683–0.788) 0.784 0.637 0.642 0.767 0.821 0.561 0.721

GNB Baseline 0.755 (0.703–0.807) 0.380 0.708 0.804 0.596 0.708 0.707 0.753

Baseline + Nighttime SBP 0.773 (0.723–0.823) 0.529 0.695 0.603 0.815 0.799 0.623 0.687

Baseline + Daytime SBP 0.756 (0.704–0.808) 0.384 0.702 0.771 0.623 0.714 0.684 0.741

Baseline + 24 h SBP 0.761 (0.710–0.812) 0.474 0.692 0.637 0.767 0.769 0.629 0.697

MLP Baseline 0.780 (0.730–0.829) 0.451 0.723 0.844 0.582 0.711 0.746 0.772

Baseline + Nighttime SBP 0.784 (0.735–0.833) 0.523 0.717 0.726 0.712 0.754 0.675 0.740

Baseline + Daytime SBP 0.777 (0.727–0.827) 0.481 0.714 0.760 0.664 0.734 0.688 0.747

Baseline + 24 h SBP 0.768 (0.717–0.819) 0.523 0.723 0.760 0.685 0.746 0.694 0.753

SVM Baseline 0.732 (0.678–0.786) 0.546 0.665 0.704 0.637 0.701 0.623 0.703

Baseline + Nighttime SBP 0.757 (0.705–0.809) 0.500 0.695 0.777 0.603 0.706 0.679 0.740

Baseline + Daytime SBP 0.737 (0.683–0.791) 0.517 0.689 0.732 0.644 0.714 0.657 0.723

Baseline + 24 h SBP 0.744 (0.691–0.797) 0.488 0.692 0.771 0.603 0.703 0.677 0.735

KNN Baseline 0.756 (0.704–0.808) 0.444 0.689 0.849 0.534 0.695 0.680 0.764

Baseline + Nighttime SBP 0.790 (0.741–0.838) 0.556 0.677 0.654 0.781 0.798 0.602 0.719

Baseline + Daytime SBP 0.761 (0.710–0.812) 0.500 0.680 0.715 0.678 0.770 0.613 0.741

Baseline + 24 h SBP 0.759 (0.707–0.811) 0.500 0.702 0.721 0.705 0.793 0.632 0.755

LR, logistics regression; XGBoost, eXtreme Gradient Boosting; Adaboost, Adaptive Boosting; DT, decision tree; GBDT, Gradient Boosting Decision Tree; GNB, Gaussian Naïve Bayes; MLP, 
multi-layer perceptron neural network; SVM, support vector machine; KNN, K-Nearest Neighbor Machine.

generated by nine algorithms (Figure 4). In the models of baseline and 
baseline + nighttime SBP, XGboost showed the lowest brier score of 
0.203 and 0.198, respectively, demonstrating the robustness compared 
to the other algorithmic models. The logistic algorithm exhibited the 
highest robustness in the baseline + daytime SBP and baseline +24-h 
SBP models, with scores of 0.203 and 0.202, respectively, followed by 
the XGboost algorithm, with scores of 0.216 and 0.206, respectively.

Discussion

The blood pressure levels post-AIS are strongly correlated with 
functional outcome, however there were no studies on the 
association between circadian BP patterns and clinical outcome after 
EVT. This study firstly investigated the association between the 
circadian BP patterns in the first consecutive 24 h post-EVT and 
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functional outcomes, and to evaluate risk prognosis using different 
BP parameters. Compared with daytime SBP and 24-h SBP, 
nighttime SBP provided more predictive information regarding 
functional outcome in different machine learning algorithms. The 
XGBoost model outperformed all other ML methods in 
discrimination and accuracy, with AUC values of 0.841  in the 
development set and 0.752 in the validation set. Therefore, nighttime 

SBP may offer a better approach to utilizing BP assessment for 
predicting AIS outcomes.

Previous population and clinical studies have demonstrated a 
correlation between BP levels and the prognosis of ischemic stroke 
(20, 21). Several observational studies have elucidated the 
association of higher BP with poorer clinical outcomes (22). For 
instance, Matusevicius et al. (23) reported a correlation between 

TABLE 3 Model performance in validation cohort.

Algorithm Model AUC Cutoff Accuracy Sensitivity Specificity PPV NPV F1-
Score

LR Baseline 0.716 (0.603–0.829) 0.439 0.610 0.543 0.861 0.635 0.567 0.586

Baseline + Nighttime SBP 0.751 (0.640–0.861) 0.561 0.744 0.696 0.806 0.821 0.674 0.753

Baseline + Daytime SBP 0.748 (0.639–0.856) 0.499 0.695 0.674 0.778 0.744 0.641 0.707

Baseline + 24 h SBP 0.752 (0.644–0.861) 0.620 0.671 0.696 0.778 0.806 0.588 0.747

XGBoost Baseline 0.742 (0.636–0.849) 0.530 0.683 0.565 0.861 0.750 0.619 0.645

Baseline + Nighttime SBP 0.752 (0.644–0.859) 0.657 0.72 0.652 0.806 0.811 0.644 0.723

Baseline + Daytime SBP 0.728 (0.620–0.836) 0.657 0.659 0.696 0.722 0.750 0.587 0.722

Baseline + 24 h SBP 0.734 (0.626–0.842) 0.610 0.671 0.783 0.639 0.744 0.605 0.763

AdaBoost Baseline 0.730 (0.621–0.840) 0.522 0.659 0.587 0.806 0.781 0.580 0.670

Baseline + Nighttime SBP 0.745 (0.637–0.853) 0.525 0.695 0.500 0.917 0.800 0.617 0.615

Baseline + Daytime SBP 0.747 (0.640–0.854) 0.508 0.683 0.587 0.806 0.778 0.609 0.669

Baseline + 24 h SBP 0.736 (0.626–0.847) 0.513 0.659 0.478 0.917 0.725 0.595 0.576

DT Baseline 0.634 (0.519–0.749) 0.566 0.598 0.370 0.889 0.810 0.525 0.507

Baseline + Nighttime SBP 0.652 (0.537–0.767) 0.615 0.598 0.370 0.889 0.810 0.525 0.507

Baseline + Daytime SBP 0.653 (0.539–0.768) 0.647 0.598 0.565 0.694 0.810 0.525 0.666

Baseline + 24 h SBP 0.659 (0.545–0.774) 0.685 0.598 0.565 0.722 0.810 0.525 0.666

GBDT Baseline 0.634 (0.519–0.749) 0.581 0.598 0.370 0.889 0.810 0.525 0.507

Baseline + Nighttime SBP 0.652 (0.537–0.767) 0.674 0.598 0.370 0.889 0.810 0.525 0.507

Baseline + Daytime SBP 0.653 (0.539–0.768) 0.728 0.598 0.565 0.694 0.810 0.525 0.666

Baseline + 24 h SBP 0.659 (0.545–0.774) 0.784 0.598 0.565 0.722 0.810 0.525 0.666

GNB Baseline 0.680 (0.563–0.798) 0.380 0.646 0.370 0.917 0.667 0.613 0.476

Baseline + Nighttime SBP 0.721 (0.608–0.834) 0.529 0.598 0.696 0.694 0.741 0.527 0.717

Baseline + Daytime SBP 0.709 (0.594–0.823) 0.384 0.683 0.717 0.639 0.708 0.647 0.713

Baseline + 24 h SBP 0.719 (0.607–0.832) 0.474 0.610 0.761 0.583 0.706 0.542 0.732

MLP Baseline 0.707 (0.592–0.821) 0.451 0.646 0.543 0.889 0.667 0.613 0.599

Baseline + Nighttime SBP 0.724 (0.612–0.836) 0.523 0.646 0.587 0.861 0.707 0.585 0.642

Baseline + Daytime SBP 0.706 (0.591–0.821) 0.481 0.634 0.609 0.806 0.674 0.583 0.640

Baseline + 24 h SBP 0.681 (0.564–0.798) 0.523 0.610 0.500 0.889 0.659 0.553 0.569

SVM Baseline 0.654 (0.537–0.772) 0.546 0.585 0.326 0.972 0.636 0.526 0.431

Baseline + Nighttime SBP 0.679 (0.562–0.795) 0.500 0.659 0.739 0.583 0.673 0.633 0.705

Baseline + Daytime SBP 0.673 (0.557–0.789) 0.517 0.634 0.326 1.000 0.660 0.594 0.437

Baseline + 24 h SBP 0.674 (0.557–0.790) 0.488 0.622 0.348 0.944 0.642 0.586 0.451

KNN Baseline 0.681 (0.565–0.798) 0.444 0.634 0.674 0.667 0.674 0.583 0.674

Baseline + Nighttime SBP 0.704 (0.589–0.819) 0.556 0.634 0.870 0.444 0.750 0.560 0.805

Baseline + Daytime SBP 0.706 (0.591–0.820) 0.500 0.659 0.696 0.667 0.765 0.583 0.729

Baseline + 24 h SBP 0.708 (0.595–0.821) 0.500 0.646 0.522 0.861 0.758 0.571 0.618

LR, logistics regression; XGBoost, eXtreme Gradient Boosting; Adaboost, Adaptive Boosting; DT, decision tree; GBDT, Gradient Boosting Decision Tree; GNB, Gaussian Naïve Bayes; MLP, 
multi-layer perceptron neural network; SVM, support vector machine; KNN, K-Nearest Neighbor Machine.
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BP and the incidence of symptomatic intracerebral hemorrhage. 
Recent randomized controlled trials (RCTs) have suggested 
adverse effects of intensive blood pressure lowering (24, 25). One 
possible explanation for this was that blood pressure was 
considered a comprehensive reflection of stroke rather than a 
direct cause of prognosis. Post-EVT BP control after AIS needs to 
be tailored according to individual patient conditions, although 
there is currently no consensus on the optimal goals of post-stroke 
blood pressure. In our study, the postoperative BP of patients was 
not strictly uniformly after across different centers, but all with 
successful recanalization maintained BP levels below <140 mmHg. 
The BP levels in both cohorts showed a strong correlation with 
functional prognosis.

Recent studies suggest that nighttime BP may be  a more 
relevant predictor of all-cause mortality and composite 
cardiovascular outcome (10, 11), and associated with a higher 
incidence of stroke, but the relationship between nighttime BP and 
AIS prognosis is currently unknown. Normally, BP fluctuates 
throughout the day with a circadian rhythm, typically peaking in 
the morning and afternoon. Therefore, the relationship between 
circadian BP patterns and prognosis may be  a question worth 
exploring. Previous studies identified SBP before reperfusion 
therapy as a key prognostic factor in AIS patients undergoing 
intravenous thrombolysis or EVT treatment. They utilized logistic 
regression algorithm to construct a predictive model for 3-month 
functional outcomes, achieving an AUC of 0.865 in development 
cohort and an AUC of 0.779 in external cohort (26). In this study, 
predictive models of functional outcome were constructed based 
on BP rhythm during different time periods, primarily comparing 
the relationships between daytime BP, nighttime BP, and 24-h 
average BP and prognosis. We performed nine machine learning 
models to ensure coverage of various modeling principles and 

strategies in machine learning, including decision trees, ensemble 
learning, probabilistic models, neural networks, and distance-
based methods. By comparing the performance of these methods, 
we can objectively evaluate the performance of various algorithms, 
avoiding biases associated with a single method and providing a 
more robust basis for selection. Our findings indicated that among 
all models constructed, including LR and other machine learning 
algorithms, nighttime BP demonstrates the highest predictive 
power compared to daytime BP and 24-h average BP. This suggests 
that nighttime blood pressure levels more accurately reflect the 
potential functional prognosis of patients after EVT in 
AIS. Although increasing evidence suggests that blood pressure 
variability (BPV) is a more meaningful indicator than absolute 
blood pressure values (27–29), unfortunately, most BP variability 
parameters are not available in a timely manner, thereby affecting 
their practical applicability. Therefore, nighttime SBP may provide 
more clinical information for the prognosis of AIS patients after 
EVT. Possible explanation of superiority of the nighttime SBP 
compared to other SBP parameters may be  attribute to more 
standardized measurement methods and increased activity during 
daytime. Nighttime BP is a more standardized measurement, 
Clinical practice should focus on nighttime SBP readings in AIS 
patients after EVT with its readings reflecting the true basal blood 
pressure levels of patients.

There were some limitations in this study. Firstly, it was a 
retrospective non-randomized observational cohort study, and 
potential biases may exist across different centers in patient 
selection, clinical practices, and procedural techniques. Secondly, 
some key variable in this study, such as baseline Aspects score, 
onset time, and collateral status, were not included. Thirdly, 
information regarding antihypertensive medications was 
not documented.

FIGURE 4

Calibration curves and Validation decision curves for nine machine learning models. LR, logistics regression; XGBoost, eXtreme Gradient Boosting; 
Adaboost, Adaptive Boosting; DT, decision tree; GBDT, Gradient Boosting Decision Tree; GNB, Gaussian Naïve Bayes; MLP, multi-layer perceptron 
neural network; SVM, support vector machine; KNN, K-Nearest Neighbor Machine.
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Conclusion

In conclusion, compared to daytime SBP and 24-h SBP, 
nighttime SBP provided more prognostic information following 
AIS EVT treatment. Therefore, nighttime SBP should be considered 
as the optimal measurement for assessing the prognosis of 
AIS patients.
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