
Frontiers in Neurology 01 frontiersin.org

Enhancing intracranial efficacy 
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Introduction: Osimertinib, a third-generation EGFR-TKI, is known for its high 
efficacy against brain metastases (BM) in non-small cell lung cancer (NSCLC) due 
to its ability to penetrate the blood–brain barrier. This study aims to evaluate the 
use of brain MRI radiomics in predicting the intracranial efficacy to osimertinib 
in NSCLC patients with BM.

Materials and methods: This study analyzed 115 brain metastases from NSCLC 
patients with the EGFR-T790M mutation treated with second-line osimertinib. 
The primary endpoint was intracranial response, and the secondary endpoint was 
intracranial progression-free survival (iPFS). We performed tumor delineation, 
image preprocessing, and radiomics feature extraction. Using a 5-fold cross-
validation strategy, we built radiomic models with eight feature selectors and 
eight machine learning classifiers. The models’ performance was evaluated by 
the area under the receiver operating characteristic curve (AUC), calibration 
curves, and decision curve analysis.

Results: The dataset of 115 brain metastases was divided into training and 
validation sets in a 7:3 ratio. The radiomic model utilizing the mRMR feature 
selector and stepwise logistic regression classifier showed the highest predictive 
accuracy, with AUCs of 0.879 for the training cohort and 0.786 for the validation 
cohort. This model outperformed a clinical-MRI morphological model, which 
included age, ring enhancement, and peritumoral edema (AUC: 0.794 for the 
training cohort and 0.697 for the validation cohort). The radiomic model also 
showed strong performance in calibration and decision curve analyses. Using a 
radiomic-score threshold of 199, patients were classified into two groups with 
significantly different median iPFS (3.0  months vs. 15.4  months, p <  0.001).

Conclusion: This study demonstrates that MRI radiomics can effectively predict 
the intracranial efficacy of osimertinib in NSCLC patients with brain metastases. 
This approach holds promise for assisting clinicians in personalizing treatment 
strategies.
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Introduction

Lung cancer remains the leading cause of cancer-related deaths 
globally (1). Among the various types, non-small cell lung cancer 
(NSCLC) is the most prevalent, accounting for approximately 85% of 
all lung cancer cases (2). The incidence of brain metastasis in NSCLC 
is 20–30% (3, 4). Notably, the risk of brain metastases in NSCLC 
patients with mutant epidermal growth factor receptor (EGFR) is 
significantly higher than that in those with wild-type EGFR (5, 6). 
Brain metastasis can cause severe neurological and cognitive 
dysfunction, which remarkably threatens patients’ quality of life and 
shortens survival time (7).

First-and second-generation EGFR-tyrosine kinase inhibitors 
(EGFR-TKIs, e.g., gefitinib, erlotinib, and afatinib) are standard 
treatments for NSCLC patients with sensitive EGFR mutations. 
Nevertheless, due to the high affinity of these agents to efflux 
transporters, they have a low blood–brain barrier penetrating rate 
(8–10). As a result, brain metastasis is one of the most common 
metastatic sites of NSCLC patients after progression on first-line 
EGFR-TKI therapy. EGFR-T790M mutation is the main cause of 
treatment failure of the first-line EGFR-TKI. Approximately 
50–60% of NSCLC patients developed EGFR-T790M mutation after 
resistance to the first-line EGFR-TKI (11–13). Osimertinib, as a 
third-generation EGFR-TKI, can not only inhibit the EGFR-T790M 
mutation but also exert high antitumor activity for the central 
nervous system (CNS) (10). The previous studies demonstrated that 
for patients with brain metastasis, osimertinib showed an 
intracranial efficacy superior to that of chemotherapy (14, 15) and 
first−/s-generation EGFR-TKIs (16), with an intracranial objective 
response rate (ORR) being 54–71% (14, 15, 17, 18). In 2018, the 
FLAURA trial demonstrated that osimertinib could be effectively 
used as a first-line therapy, and it is gradually becoming the 
standard of care for initial treatment (19). However, it cannot 
be neglected that a substantial proportion of brain metastases still 
could not benefit from osimertinib therapy. Accurate screening of 
candidates sensitive to osimertinib treatment is the key to guiding 
individualized treatment for brain metastatic NSCLC patients.

Radiomics is an emerging research field that converts medical 
images into quantitative data by extracting radiomic features, such as 
pixel intensity, shape, texture, etc., from tumor regions (20). Compared 
with the qualitative morphological features of traditional images, high-
throughput radiomic features can more comprehensively and objectively 
reflect tumor heterogeneity invisible to the naked eye. In addition, since 
radiomics is the additional processing of acquired medical images, it 
does not increase the financial and physical burden on patients. Recently, 
with the support of continuously optimized machine learning 
algorithms, radiomics-related research has developed rapidly. It has been 
reported that brain MRI radiomics has a strong ability to predict the 
intracranial efficacy of treatments, including radiotherapy, ALK-TKI 
targeted therapy, and immunotherapy in lung cancer patients with brain 
metastases (21–26). Additionally, some studies have attempted to analyze 
the predictive value of MRI radiomics for the efficacy of first-and second-
generation EGFR-TKIs in treating brain metastases (27). Another study 
reported on the effectiveness of MRI radiomics in predicting treatment 
outcomes for brain metastases using first-and second-line Osimertinib, 
either alone or in combination with chemotherapy and anti-angiogenic 
therapy (28). However, the conclusions of this study were limited by the 
heterogeneous patient population.

Therefore, the purpose of this study was to explore the predictive 
effect of brain MRI radiomics on the intracranial efficacy of 
osimertinib treatment in advanced NSCLC patients with brain 
metastases after the failure of the first-line EGFR-TKI.

Methods

Patients

This study included 60 EGFR-T790M-positive NSCLC patients 
with brain metastases (115 brain metastases in total) who received 
second-line osimertinib treatment from West China Hospital. The 
overall study design is detailed in Figure 1. This retrospective study 
was approved by the Biomedical Research Ethics Committee of West 
China Hospital, Sichuan University, and patients’ written informed 
consent was waived.

The main inclusion criteria included: (1) patients with advanced 
NSCLC diagnosed by histopathology and imaging examinations, 
classified as stage IV according to the American Joint Committee on 
Cancer (AJCC) 8th edition TNM staging system; (2) patients 
previously treated with first-line EGFR-TKI therapy (first/s-
generation EGFR-TKI) who had progressive disease (RECIST 1.1 
criteria); (3) patients with EGFR-T790M mutation after first-line 
EGFR-TKI therapy and received sequential second-line osimertinib 
treatment; (4) patients had contrast-enhanced brain MRI images 
within 1 month before osimertinib treatment; (5) patients had ≥1 
measurable brain metastases before osimertinib treatment (RECIST 
1.1 criteria). Main exclusion criteria of cohort 1: (1) patients with 
missing or poor-quality brain MRI images; (2) patients with 
leptomeningeal metastases or brain metastases with unclear margins; 
(3) patients with incomplete clinical data; (4) patients who received 
other anti-tumor treatments such as radiotherapy and chemotherapy 
during osimertinib treatment. Data collection was from September 
2015 to November 2021. The last follow-up was in December 2021.

Scanning parameters of brain MRI

Patients included in the study were scanned with one of the following 
5 MRI machines: Siemens Avanto (1.5 T), UIH UMR588 (1.5 T), 
TOSHIBA MRT200SP5 (1.5 T), GE discovery MR750W (3.0 T) and 
Philips achieva (3.0 T). All patients had brain MRI contrast-enhanced 
T1-weighted (T1CE) images. In line with previous studies, MRI 
radiomics features were extracted based on T1CE images in the current 
study (24, 29, 30). The acquisition parameters of T1CE images are as 
follows: Siemens: repetition time/echo time (TR/TE) = 2040/3.94 ms, flip 
angle = 15°, matrix = 256 × 224, slice thickness = 1 mm, pixel size = 1 × 
1 mm2; UIH: TR/TE = 13.83/5.9 ms, flip angle = 10°, matrix = 256 × 232, 
slice thickness = 1 mm, pixel size = 1 × 1 mm2; GE: TR/TE = 2383/20.78 
ms, flip angle = 142°, matrix = 320 × 256, slice thickness = 5 mm, pixel 
size = 0.4688 × 0.4688 mm2; TOSHIBA: TR/TE = 580/8.0 ms, flip angle 
= 90°, matrix = 320 × 160, slice thickness = 6 mm, pixel size = 0.6875 × 
0.6875 to 0.75 × 0.75 mm2; Philips: TR/TE = 130/2.3 ms, flip angle = 80°, 
matrix = 256 × 205, slice thickness = 6 mm, pixel size = 0.4492 × 0.4492 
mm2. After rapid intravenous injection of gadolinium-DTPA contrast 
agent (dose 0.1 mmol/kg, flow rate 2–3 mL/s), enhanced brain MRI 
scans were performed, and T1CE images were obtained.
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MRI morphological manifestations

Two radiologists evaluated the MRI morphological 
manifestations of brain metastases, and disagreements were solved 
through discussion. Both radiologists were blinded to patients’ 
treatment responses to osimertinib. MRI morphological 

manifestations include: (1) the number and largest diameter of brain 
metastases; (2) the location of brain metastases (frontal lobe, parietal 
lobe, occipital lobe, temporal lobe, cerebellum, and others); (3) the 
presence or absence of edema around brain metastases (peritumor 
edema); (4) enhancement pattern (with or without 
ring enhancement).

FIGURE 1

Analysis workflow of this study. The upper panel shows the process of tumor segmentation, image preprocessing, and radiomics extraction. The lower 
panel exhibits the details of model development and validation. NSCLC, non-small cell lung cancer; VOI, volume of interest; ICC, interclass correlation 
coefficients; ROC, receiver operator characteristic curve; DCA, decision curve analysis.
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Clinical factors of patients

This study retrospectively collected clinical data of all patients, 
including age, gender, smoking history, Eastern Cooperative Oncology 
Group performance status (ECOG-PS) score, clinical TNM stage, 
initial EGFR mutation, first-line EGFR-TKI agent, and patients’ 
progression-free survival (PFS) in first-line EGFR-TKI therapy. The 
clinical stage was assessed according to the AJCC 8th edition TNM 
staging system. PFS of first-line EGFR-TKI therapy was defined as the 
interval from initiation of treatment to radiographic progression 
(RECIST 1.1 criteria).

Study endpoints

Intracranial efficacy of osimertinib on each individual brain 
metastatic lesion was assessed according to RECIST 1.1 criteria. 
Intracranial objective response (favorable intracranial treatment 
responses) included complete response (CR) and partial response 
(PR), while poor intracranial treatment responses were stable disease 
(SD) and progressive disease (PD). To determine if radiomics features 
can predict unfavorable therapeutic responses in patients undergoing 
Osimertinib treatment, we selected SD/PD as the endpoints, and the 
secondary endpoint was intracranial progression-free survival (iPFS) 
which refers to the interval from the start of osimertinib to intracranial 
tumor progression.

Delineation of the volume of interest

The brain MRI images obtained by the Picture Archiving and 
Communication System (PACS) were uploaded to the open-source 
software 3D slicer in DICOM format (Version 4.10.2).1 Two 
radiologists independently and manually outlined the VOI of brain 
metastases on the axial T1CE images. Up to five brain metastases were 
selected as target lesions in patients with multiple brain metastases 
(31). If the number exceeds five, the largest five brain metastases were 
selected for delineation (32).

Image preprocessing and radiomic feature 
extraction

The image preprocessing and radiomics feature extraction 
methods applied in this study are in line with the recommendations 
of the Image Biomarkers Standardization Initiative (IBSI).2 To 
minimize differences in image acquisition parameters between 
different MRI scanning machines and improve reproducibility, 
we  performed image preprocessing before radiomic feature 
extraction, mainly including five steps: (1) Use the “Swiss Skull 
Stripper” module in the 3D slicer software to perform the skull 
stripping of the T1CE image. (2) Use the “N4ITK MRI Bias 
correction” module to perform bias field correction on the image to 

1 https://www.slicer.Org/

2 https://arxiv.org/abs/1612.07003

eliminate the inhomogeneity of low-frequency intensity. (3) To 
standardize the voxel spacing, the sitkBSpline interpolation algorithm 
is used to resample all MRI voxels (1 × 1 × 1 mm3). (4) The image 
signal intensity is normalized by grayscale discretization (bin 
width = 25HU) uniform processing. (5) Apply Wavelet and Laplacian 
of Gaussian (LoG) filter transformation (sigma: 1.0–2.5) to remove 
interference signals.

After image preprocessing, the Python package “PyRadiomics” 
(33)3 embedded in the 3D-slicer software was used to extract radiomic 
features from the VOI of each delineated brain metastatic lesion. 
Totally, 1,223 radiomic features were automatically extracted, 
including 107 original features, 744 Wavelet features, and 372 LoG 
filtered transformation features. These radiomic features were grouped 
into three categories: 14 shape features, 234 first-order features, and 
975 texture features. Texture features included gray-level cooccurrence 
matrix (GLCM, N = 312), gray-level run length matrix (GLRLM, 
N = 208), gray-level difference matrix (GLDM, N = 182), gray-level size 
zone matrix (GLSZM, N = 208), and neighborhood gray tone 
difference matrix (NGTDM, N = 65).

After extracting the radiomic features, to minimize the multi-
machines effect, we performed the ComBat harmonization (34),4 a 
widely used algorithm to correct the batch effect of radiomics 
extracted by different scanners (35). We  also applied Z-score 
transformation to normalize the radiomic features.

Preliminary selection of predictive radiomic 
features

To evaluate the consistency of the radiomic features extracted by 
the two researchers, we  calculated the inter-observer interclass 
correlation coefficients (ICC) for each radiomic feature. An ICC 
value>0.9 was considered as the criterion of high reproducibility. The 
preliminary selection of predictive radiomics features consisted of two 
steps: (1) univariate logistic analysis was used to initially screen out 
potential predictors; (2) considering the high degree of collinearity 
within radiomic features, which may lead to overfitting of the radiomic 
model, we performed a correlation analysis on the radiomic features 
and excluded redundant features through the findCorrelation function 
in the “caret” R package.

Construction of radiomic model

A total of 115 measurable brain metastases were randomly split 
into the training (n = 80) and validation (n = 35) groups (ratio: 7:3). To 
reduce the bias from cluster correlation, we assigned the multiple 
brain metastases from the same patient simultaneously to either the 
training or the validation group as the previous study did (24, 36).

Eight feature selectors and eight classifier machine learning 
algorithms were used to construct radiomic models for predicting the 
intracranial efficacy of second-line osimertinib therapy. A nested 
5-fold cross-validation strategy was applied. Eventually, a total of 64 

3 https://pyradiomics.readthedocs.io/en/latest/

4 https://github.com/Jfortin1/ComBatHarmonization
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(8 × 8) combinations of radiomic feature selectors and classifiers 
were generated.

In selecting the feature selectors, Boruta was chosen for its 
comprehensive approach to identifying all relevant features, ensuring 
that no potential predictive feature is overlooked. Minimum 
Redundancy Maximum Relevance (mRMR) was included due to its 
balanced approach in selecting features that provide the most 
information while minimizing redundancy, which is crucial for 
enhancing model performance. LASSO was selected for its dual 
functionality in variable selection and regularization, which helps in 
managing overfitting and improving the model’s generalizability. 
Relief was chosen for its ability to capture feature dependencies and 
interactions, which is often beneficial in complex datasets. InfGain 
and GainRatio were utilized for their effectiveness in measuring the 
importance of features based on information gain, which is essential 
for building robust models. Gini was included for its simplicity and 
proven effectiveness in feature selection tasks. DistEuclid was chosen 
for its straightforward approach in selecting features based on 
Euclidean distance, aiding in identifying the most relevant features for 
classification tasks.

Regarding the classifiers, the artificial neural network (ANN) was 
chosen for its powerful ability to model complex nonlinear 
relationships in data, making it suitable for the intricate patterns found 
in radiomic data. Adaptive boosting (Adaboost) was selected for its 
capability to improve the performance of weak classifiers, thereby 
enhancing the overall predictive accuracy of the model. Fast nearest 
neighbor (FNN) was included for its efficiency and effectiveness in 
classification tasks, particularly when dealing with high-dimensional 
data. Gradient boosting decision tree (GBDT) was chosen for its 
strong performance in handling structured data and its ability to 
produce high-accuracy models through iterative boosting. Naive 
bayes was selected for its simplicity and effectiveness in probabilistic 
classification, making it a robust choice for many classification tasks. 
Support vector machine (SVM) was included for its effectiveness in 
high-dimensional spaces and its ability to construct hyperplanes for 
classification tasks. Random forest (RF) was chosen for its robustness 
in handling large datasets with high dimensionality and its ability to 
prevent overfitting through ensemble learning. Stepwise logistic 
regression (SLR) was included for its simplicity, interpretability, and 
effectiveness in linear classification tasks.

The main R packages involved were as follows: “Boruta,” 
“mRMRe,” “e1071,” “naivebayes,” “CORElearn,” “ANN2,” 
“fastAdaboost,” “FNN,” “gbm,” and “glmnet.” The predictive accuracy 
of the machine learning model was assessed by the area under the 
receiver operator characteristic curve (AUC of the ROC). The 
combination of feature selector and classifier with the highest AUC 
was used to construct the optimal radiomics model. An MRI radiomic 
score (Rad-score) was constructed based on the final model.

Evaluation of radiomic model

This study evaluated the performance of the predictive model 
from three different aspects: (1) AUC of ROC was used to reflect the 
predictive accuracy or discrimination power of the model. Delong 
test was used to compare the AUC of distinct ROCs; (2) Calibration 
curves were used to assess the consistency (goodness of fit) between 
the predictive and actual probability of poor intracranial response 

(SD/PD). (3) Decision curve analysis (DCA) was used to visualize 
the clinical utility of predictive models by quantifying the net 
benefit at different threshold probabilities. iPFS is an important 
long-term indicator reflecting the efficacy of intracranial treatment. 
To further explore whether a radiomic model can predict iPFS in 
patients treated with osimertinib, we used the X-tile software to 
determine the optimal cut-off point for the model’s prediction 
of iPFS.

Statistical software

SPSS 25.0 software and R software (version: 4.0.5) were used for 
statistical analysis. All statistical tests were two-sided. In the stepwise 
logistic regression analysis, a p < 0.1 was used as the standard for 
variable exclusion. A p < 0.05 was considered statistically significant in 
all the other tests.

Results

Patients and brain metastases

Among the 60 EGFR-T790M-positive NSCLC patients who 
received second-line osimertinib therapy, 40 (66.7%) had multiple 
brain metastases. Totally, 115 brain metastases were included in 
the analysis. We randomly split the 115 brain metastases into the 
training (N = 80) and the validation (N = 35) cohort with a ratio of 
7:3 (Table  1; Supplementary Table S1). To reduce bias due to 
cluster correlation, brain metastases from the same patient were 
assigned to the same group, as recommended by previous studies 
(24, 36). The baseline characteristics of the two groups were 
well balanced.

The overall intracranial efficacy of the second-line osimertinib is 
shown in Supplementary Figure S1. In aggregated, 9 (7.8%), 72 
(62.6%), 30 (26.1%), and 4 (3.5%) brain metastases achieved the best 
therapeutic response of CR, PR, SD, and PD, respectively. The 
objective response rate (CR + PR) of brain metastases was 81/115 
(70.4%). At the end of follow-up, the median iPFS was 15.4 months 
(95% CI: 14.4–23.9 months) for the total cases.

Predictive value of clinical factors and MRI 
morphological features

Univariate logistic regression was performed to explore the 
predictive value of clinical factors and MRI morphological features on 
the intracranial efficacy of the second-line osimertinib (Table 2A). 
Among clinical factors, only age > 60 years (OR: 4.06, 95%CI: 1.64–
10.05, p = 0.002) was associated with an unfavorable intracranial 
response (SD/PD). In MRI morphological features, ring enhancement 
(OR: 2.53, 95%CI: 1.12–5.75, p = 0.026) and peritumoral edema (OR: 
4.72, 95%CI: 1.95–11.45, p = 0.001) predicted high risk of SD/
PD. Other parameters were not related to the intracranial efficacy of 
osimertinib. Multivariate analysis further revealed that age, ring 
enhancement, and peritumoral edema were independent 
prognosticators (Table  2B). The AUC of the predictive model 
established based on these three factors was 0.773 for the total patients.
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TABLE 1 Baseline characteristics of NSCLC patients receiving second-line osimertinib therapy in the training and validation cohort.

Total cohort Training cohort Validation cohort P-value

N % N % N %

Total number of BM 115 100.0% 80 69.6% 35 30.4% –

Number of BM

  1 20 33.3% 13 35.1% 7 30.4% 0.707

  ≥2 40 66.7% 24 64.9% 16 69.6%

Age

  ≤60 Y 27 45.0% 16 43.2% 11 47.8% 0.936

  >60 Y 33 55.0% 21 56.8% 12 52.2%

Sex

  Female 35 58.3% 22 59.5% 13 56.5% 1.000

  Male 25 41.7% 15 40.5% 10 43.5%

Smoking history

  No 54 90.0% 33 89.2% 21 91.3% 1.000

  Yes 6 10.0% 4 10.8% 2 8.7%

ECOG-PS score

  0 30 50.0% 19 51.4% 11 47.8% 1.000

  ≥1 30 50.0% 18 48.6% 12 52.2%

Initial EGFR mutation

  L858R 24 40.0% 14 37.8% 10 43.5% 0.900

  19Del 30 50.0% 19 51.4% 11 47.8%

  Others 6 10.0% 4 10.8% 2 8.7%

First-line EGFR-TKI drug

  Gefitinib 33 55.0% 20 54.1% 13 56.5% 0.979

  Erlotinib 11 18.3% 7 18.9% 4 17.4%

  Icotinib 14 23.3% 9 24.3% 5 21.7%

  Afatinib 2 3.3% 1 2.7% 1 4.3%

First-line EGFR-TKI PFS

  <12 Mo 23 38.3% 14 37.8% 9 39.1% 1.000

  ≥12 Mo 37 61.7% 23 62.2% 14 60.9%

T stage

  T1 10 16.7% 6 16.2% 4 17.4% 0.887

  T2 13 21.7% 8 21.6% 5 21.7%

  T3 5 8.3% 3 8.1% 2 8.7%

  T4 32 53.3% 20 54.1% 12 52.2%

N stage

  N0 12 20.0% 9 24.3% 3 13.0% 0.472

  N1 7 11.7% 4 10.8% 3 13.0%

  N2 24 40.0% 14 37.8% 10 43.5%

  N3 17 28.3% 10 27.0% 7 30.4%

M stage

  M1b 8 13.3% 4 10.8% 4 17.4% 0.735

  M1c 52 86.7% 33 89.2% 19 82.6%

Stage

  IVa 8 13.3% 4 10.8% 4 17.4% 0.735

  IVb 52 86.7% 33 89.2% 19 82.6%

NSCLC, Non-Small Cell Lung Cancer; BM, brain metastases; PFS, Progression-free survival; EGFR, Epidermal Growth Factor Receptor; TKI, Tyrosine Kinase Inhibitor; ECOG-PS, Eastern 
Cooperative Oncology Group performance score.
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Development of the MRI radiomic model

We then investigated the predictive significance of MRI radiomic 
features in predicting the intracranial efficacy of the second-line 
osimertinib. After preprocessing of MRI images, 1,223 T1CE MRI 
radiomic features were extracted. These radiomic features were 
subsequently standardized by Combat harmonization and Z-score 
transformation. After ICC analysis, 1,191 (97.4%) features with 
ICC > 0.9 were retained for further analysis (Figure 2A). Univariate 
analysis indicated that 192 radiomic features were predictors of 
intracranial efficacy of the second-line osimertinib (Figure  2B), 
including 109 (56.8%) risk factors and 83 (43.2%) protective factors. 
We then applied the findCorrelation function in R package “caret” to 
filter out redundant radiomic features (Figure 2C). Initially, 25.65 and 
16.67% of radiomic features shared a correlation coefficient (R) > 0.7 
and R > 0.8, respectively, which dropped to 6.7 and 3.1% after 
we removed the high-correlated features. Eventually, 42 MRI radiomic 
features remained and subsequently subjected to the modeling analysis.

We then used the data of the training cohort to develop the 
machine learning model for predicting the intracranial efficacy of the 
second-line osimertinib. During this, we built a total of 64 machine 
learning models based on eight feature selectors and eight classifier 
algorithms. Ultimately, the model constructed using the mRMR feature 
selector and the stepwise logistic regression classifier achieved the 
highest average AUC in the 5-fold cross-validation, thereby establishing 
it as the final modeling approach (Supplementary Figure S2). The 
highest AUC from a single fold in the 5-fold cross-validation were 
0.879 for the training cohort and 0.786 for the validation cohort. 
Consequently, this model was confirmed as the final model (Figure 3A). 
A nomogram was used to visualize the predictive model (Figure 3B). 
Each radiomic feature is assigned a score on its respective scale in the 
nomogram. To use it, find the patient’s value for each radiomic feature 
and draw a vertical line to the “Score” scale to get the individual score. 
Add up the scores for all features to obtain the “Total score.” Finally, use 
the “Total score” to draw a vertical line down to the “SD/PD Risk” scale 
to determine the probability of SD/PD.

TABLE 2 The value of various clinical factors and MRI morphologic features in predicting the intracranial therapeutic efficacy of the second-line 
osimertinib treatment.

A. Univariate logistic regression OR 95% CI OR p-value

Age: >60 vs. ≤60 Y 4.06 1.64–10.05 0.002

Sex: Male vs. Female 0.77 0.34–1.75 0.539

Smoking history: Yes vs. No 0.85 0.25–2.88 0.792

ECOG-PS score: ≥1 vs. 0 0.86 0.40–1.83 0.692

Initial EGFR mutation: 19Del vs. L858R 0.74 0.32–1.70 0.473

Initial EGFR mutation: Others vs. L858R 0.43 0.08–2.21 0.314

First-line EGFR-TKI: Erlotinib vs. Gefitinib 0.48 0.14–1.64 0.245

First-line EGFR-TKI: Icotinib vs. Gefitinib 0.53 0.20–1.43 0.209

First-line EGFR-TKI: Afatinib vs. Gefitinib 0.91 0.08–10.6 0.939

First-line EGFR-TKI PFS: ≥12 Mo vs. <12 Mo 1.83 0.81–4.14 0.148

T stage: T3-4 vs. T1-2 0.90 0.39–2.06 0.805

N stage: N0-1 vs. N2-3 1.17 0.48–2.87 0.733

M stage: M1c vs. M1b 0.38 0.10–1.42 0.150

Stage: IVb vs. IVa 0.38 0.10–1.42 0.150

Maximum diameter of BM: >2 cm vs. ≤2 cm 1.57 0.48–5.21 0.465

Ring enhancement: Yes vs. No 2.53 1.12–5.75 0.026

Peritumor edema: Yes vs. No 4.72 1.95–11.45 0.001

Location of BM: Frontal lobe vs. Parietal lobe 4.67 0.89–24.35 0.068

Location of BM: Occipital lobe vs. Parietal lobe 2.40 0.41–14.11 0.333

Location of BM: Temporal lobe vs. Parietal lobe 4.67 0.78–28.05 0.092

Location of BM: Cerebellum vs. Parietal lobe 0.40 0.03–4.96 0.476

Location of BM: Others vs. Parietal lobe 2.00 0.31–13.06 0.469

B. Multivariate logistic regression OR 95% CI OR p-value

Age: >60 vs. ≤60 Y 4.23 1.61–11.25 0.003

Ring enhancement: Yes vs. No 2.337 0.92–5.94 0.074

Peritumor edema: Yes vs. No 3.80 1.48–9.77 0.006

*Stepwise regression method, exclusion criteria for variables: p < 0.1.
NSCLC, Non-Small Cell Lung Cancer; ECOG-PS, Eastern Cooperative Oncology Group performance score; EGFR, Epidermal Growth Factor Receptor; TKI, Tyrosine Kinase Inhibitor; PFS, 
Progression-free survival; BM, brain metastases.
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FIGURE 2

The detailed process of radiomic features before models’ construction. (A) ICC analysis. Radiomic features with ICC  >  0.9 were included in further 
analysis. (B) Univariate logistic analysis evaluating the value of each radiomic feature in predicting the intracranial SD/PD of NSCLC patients receiving 
the second-line osimertinib therapy. (C) Correlation analysis of radiomic features before and after the removal of highly-correlated radiomics. NSCLC, 
non-small cell lung cancer; ICC, interclass correlation coefficients; SD, stable disease; PD, progressive disease.

Multivariate logistic regression analysis indicated that after the 
inclusion of the MRI radiomic model, clinical factors and MRI 
morphological features were no longer predictors of intracranial 
efficacy of the second-line osimertinib. In contrast, MRI radiomic 
model remained a robust independent predictor 
(Supplementary Table S2).

Validation of the MRI radiomic model

We further validated the MRI radiomic model in different aspects 
(Figures 3C–K). The AUCs of the ROC curves of the MRI radiomic 
model were 0.879, 0.786, and 0.832 in the training, validation, and 
total cohort, respectively, which were remarkably higher than those of 
the clinical-MRI morphological model (Figures  3C,F,I). In the 
validation cohort, the model had 84.0% specificity and 73.5% 
sensitivity at the optimal threshold value. Besides, decision curve 
analysis showed that the MRI radiomic model had a higher net benefit 
than the clinical-MRI morphological model at various threshold 
probabilities, revealing the good clinical utility of the MRI radiomic 
model (Figures 3D,G,J). Furthermore, calibration curves also revealed 
satisfactory agreement between predictive and observational 
probabilities of poor intracranial efficacy (SD/PD) in the second-line 
osimertinib treatment (Figures  3E,H,K). However, incorporating 

clinical factors and MRI morphological features into the MRI 
radiomic model leaded to few improvements of the MRI 
radiomic model.

As shown in Figure 4A, the MRI radiomic model could clearly 
distinguish NSCLC patients with favorable and poor intracranial 
efficacy in the second-line osimertinib treatment. Patients with a 
higher MRI radiomic score (Rad-score) are more prone to have a poor 
intracranial response (SD/PD). Brain MRI images of NSCLC patients 
with distinct Rad-score who achieved different intracranial response 
to osimertinib are shown in Supplementary Figure S3.

We further explored the relationship between MRI Rad-score and 
patients’ iPFS in the second-line osimertinib treatment. The X-tile 
analysis suggested that the optimal MRI Rad-score cutoff value for 
predicting iPFS was 199. The median iPFS of patients with MRI 
Rad-score > 199 and ≤ 199 were 3.0-Mo and 15.4-Mo, respectively 
(p < 0.001) (Figure 4B).

Discussion

The brain is one of the most common metastatic organs of 
NSCLC. Approximately 25–30% of NSCLC patients develop brain 
metastases (3). Due to the limited blood–brain barrier permeability 
of first/s-generation EGFR-TKI agents, 34.2–52.9% of advanced 
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NSCLC patients develop brain metastases during these treatments 
(37). As a third-generation EGFR-TKI agent, osimertinib targets and 
inhibits EGFR-sensitive and EGFR-T790M mutations with high 

selectivity. Notably, osimertinib has a high CNS activity (10) and 
crosses the blood–brain barrier more easily than the first/second-
generation EGFR-TKIs (9, 10). In the current study, the intracranial 

FIGURE 3

The development and validation of radiomic models predicting the intracranial efficacy of the second-line osimertinib. (A) Eight feature selectors and 
eight classifier machine learning algorithms were used to construct radiomic models. A nested 5-fold cross-validation strategy was applied. Eventually, 
64 (8  ×  8) combinations of radiomic feature selectors and classifiers were generated. The matrix displays the highest AUCs of ROC for the 5-fold 
validation. (B) Visualization of the optimal model constructed by the mRMR feature selector combined with the stepwise logistic regression classifier. 
(C–K) Model validation of the training (C–E), validation (F–H), and total cohort (I–K) using ROC curves, DCA, and calibration curves. ROC, receiver 
operator characteristic curve; DCA, decision curve analysis; AUC, area under the curve.
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FIGURE 4

MRI Rad-score of each patient and model validation. (A) MRI Rad-score of each patient receiving second-line osimertinib therapy. (B) Kaplan–Meier 
curve exhibiting the iPFS of patients with MRI Rad-score  >  and  ≤  199. iPFS, intracranial progression-free survival.

ORR of second-line osimertinib treatment was 70.4%, which was 
similar to the results reported in the AURA, APOLLO, and OCEAN 
clinical trials (CNS-ORR: 54–71%) (14, 15, 17, 18, 38). The median 
iPFS in this study was 15.4 months, similar to the 11.7 months in the 
AURA3 trial (15). Collectively, it can be seen that in the real-world 
practice of the Chinese population, osimertinib still has a satisfactory 
effect on intracranial metastases of NSCLC patients. In this study, 
we firstly constructed and validated a brain MRI radiomic model that 
predicted the intracranial response of advanced NSCLC patients 
receiving second-line osimertinib.

Multiple brain metastases were present in 66.7% of cases in our 
study. Therefore, the objects of this study were brain metastases 
instead of individual patients. Currently, only very few studies 
investigated the ability of MRI radiomics to predict the intracranial 
efficacy of targeted therapy in lung cancer. Zhao et al. (24) performed 
a radiomic analysis of 87 brain metastases from 24 ALK-positive 
NSCLC patients treated with the ALK inhibitor ensatinib and 
established a model based on nine enhanced T1-weighted MRI 
radiological features that predicted the intracranial progression within 
51 weeks (AUC = 0.85). The study of Chen et al. (25) found that the 
gradient boosting classifier models based on MRI radiomics and 
clinical factors had a tremendous predictive effect on the survival of 
brain metastatic NSCLC patients with EGFR, ALK, and/or KRAS 
mutation (AUC: 0.977, 0.905, and 0.947, respectively). Several 
researchers also reported that preoperative MRI radiomics of brain 
metastases from NSCLC patients could distinguish EGFR mutation 
status (29, 39). Besides, there were relatively many studies on MRI 
radiomics predicting the efficacy of gamma knife (21, 22) and 
stereotactic radiotherapy (23) for brain metastases of lung cancer. 
These studies, together with ours, demonstrated the ability of MRI 
radiomics to reflect the heterogeneity and biological characteristics of 
brain metastases and the feasibility of using MRI radiomics to predict 
the intracranial efficacy of various therapies such as targeted therapy, 
immunotherapy, and radiotherapy.

The MRI radiomic model constructed in this study consisted of 
four radiomic features, including two textural features (original glszm 
LowGrayLevelZoneEmphasis and wavelet-LLH glrlm RunVariance) 
and two histogram features (wavelet-LLH firstorder Median and 
wavelet-HLH firstorder Skewness). The histogram feature represented 

the overall distribution of grayscale and brightness information in the 
lesion area. On the other hand, GLCM and GLSZM were texture 
parameters that described the complexity, degree of variation, and 
texture thickness. Our study implied that differences in the biological 
behavior and response to osimertinib treatment of distinct brain 
metastases might be underlying the histogram and texture radiomic 
features. In a previous study, Wang et al. explored the use of MRI 
radiomics to predict the intracranial efficacy of first-and second-
generation EGFR TKIs (27). Compared to our study, which utilized 
1,223 radiomic features, their study used only 593 features. This 
difference is due to our use of a more comprehensive set of image 
preprocessing techniques and advanced feature extraction algorithms. 
This approach was designed to capture a wider range of image 
characteristics, providing a richer and potentially more informative 
dataset for model training and validation.

In terms of MRI morphological features, we found that peritumoral 
edema was a predictor of poor intracranial response to osimertinib 
treatment in patients with T790M-positive NSCLC, which is consistent 
with published literature (25, 40–42). Tini et al. (40) analyzed data of 
42 NSCLC patients with 50 brain metastases and found that edema 
around the brain metastatic lesions was associated with unfavorable 
therapeutic response of radiosurgery. Patients with major edema had 
a poorer response to radiosurgery than cases with minor edema. 
Similar findings were reported by another research group (41). A 
recent study also showed that peritumoral edema predicted intracranial 
response to chemotherapy in NSCLC patients with multiple brain 
metastases (42). In addition, Chen et al. (25) reported that a lower 
edema/tumor ratio was related to a longer survival time in patients 
with brain metastatic NSCLC. The weakened response to 
chemoradiotherapy or targeted therapy in lesions with peritumoral 
edema may be related to the reduced blood–brain barrier permeability 
of drugs. Furthermore, interstitial fluid pressure from edema can 
hinder drug diffusion and weaken radiation beams. On the other hand, 
our study found that brain metastases with ring enhancement were less 
responsive to osimertinib than those without, which is also in line with 
previous reports (43). Lin et al. (43) showed that tumor necrosis, ring 
enhancement, and tumor anatomical location in brain MRI imaging 
are unfavorable prognosticators for cases treated with EGFR-TKI. They 
believed that neuroimaging features of tumor necrosis and ring 
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enhancement implied rapid tumor growth, insufficient blood supply, 
and tissue hypoxia, which ultimately led to impaired drug penetration. 
Based on previously published reports and our findings, it can be seen 
that edema and ring enhancement around brain metastases have 
essential prognostic significance for NSCLC patients with 
brain metastasis.

This study had several limitations. Firstly, it is a retrospective 
study with a moderate sample size. Resultingly, shortcomings 
associated with its retrospective design could not be  ruled out. 
Secondly, though internal validation was performed in this study, 
external validation using data from another medical center is lacking. 
Finally, since almost all patients in our center were of Asian race, the 
applicability of our novel radiomic model in other ethnic needs 
further exploration.

Conclusion

The current study comprehensively explored the potential of MRI 
morphological features and MRI radiomics in predicting the 
intracranial efficacy of osimertinib treatment. The MRI radiomic 
model constructed in this study had a satisfactory predictive 
capability. This novel radiomic tool could help clinicians make 
personalized treatment strategies for brain metastatic 
NSCLC patients.
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