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Background: The effectiveness of Tuina therapy has been confirmed in 
treating pain of patients with cervical spondylosis (CS), however, its therapeutic 
mechanism is still unclear. This study aimed to observe the changes of regional 
brain activity following Tuina therapy in patients with painful CS based on 
resting-state functional magnetic resonance imaging (rs-fMRI) data.

Methods: A total of 27 patients with CS and 27 healthy subjects (HCs) were 
enrolled in this study. All patients received Tuina therapy every 2  days for 
2  weeks. The clinical manifestations of patients were evaluated by the Visual 
Analog Scale (VAS) and Neck Disability Index (NDI) before and after treatment. 
In addition, rs-fMRI data were collected and preprocessed in all patients 
before and after treatment, as well as HCs. HCs underwent a 1-time rs-fMRI 
scan, whereas CS patients underwent 2-times of rs-fMRI scan. The measure of 
regional homogeneity (ReHo) was calculated and compared between groups. 
Finally, relationships between altered brain regions and clinical characteristics 
were evaluated by Pearson’s correlation analysis.

Results: After Tuina therapy, VAS and NDI scores of patients decreased. Before 
treatment, CS patients showed higher ReHo values in the left middle temporal 
gyrus, left thalamus, right anterior and posterior cingulate gyrus, left inferior 
parietal gyrus and lower ReHo values in the right gyrus rectus when compared 
with HCs. After treatment, CS patients exhibited higher ReHo values in the left 
inferior temporal gyrus, right anterior and posterior cingulate gyrus, left inferior 
parietal gyrus and lower ReHo values in the right rectus gyrus when compared 
with HCs. CS patients after treatment demonstrated higher ReHo values in the 
left inferior occipital gyrus when compared with those before treatment. Positive 
correlations were found between ReHo values of the right rectus gyrus and VAS, 
NDI scores in CS patients before treatment. Differences of VAS scores between 
before and after treatment were negatively correlated with ReHo values of the 
left inferior temporal gyrus in CS patients after treatment.

Conclusion: This study demonstrated the presence of asynchronous activity in 
certain brain regions in CS patients, which might be associated with pain and 
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cervical spine dysfunction. Tuina therapy might modulate asynchronous activity 
of abnormal brain regions, which might contribute to the effectiveness of Tuina 
therapy in alleviating pain and cervical spine dysfunction in CS patients.

KEYWORDS

cervical spondylosis, pain, Tuina therapy, resting-state functional magnetic resonance 
imaging, regional homogeneity

1 Introduction

Cervical spondylosis (CS) is a condition characterized by typical 
symptoms such as pain, numbness in the upper extremities and 
limited neck movement, and its primary clinical manifestation is pain 
(1). CS is now considered as a significant global public health burden, 
which is recognized as the fourth most disabling disease worldwide 
with an estimated annual global prevalence of over 30% (2). In 2020, 
a Global Burden of Disease survey reported a global age-standardized 
prevalence of 3551.1 cases and an incidence of 806.6 cases of neck pain 
per 100,000 people, respectively (3). It is essential to understand the 
sources of pain and the mechanism underlying the effectiveness of 
treatment. Biomechanical influences, such as osteophyte formation, 
disk degeneration, a decrease in the sagittal diameter of the spinal 
canal (4), inflammatory biomarkers including CRP, IL-1β, TNF-α, 
IL-6, etc. (5), as well as dysfunction in pain conduction and 
modulation at the level of the brain and spinal cord, are commonly 
associated with the pain symptom in patients with CS.

The central pathophysiological mechanism of pain in the cervical 
spine is complex. Previous study on the central mechanism of CS 
showed that the neurological symptoms were more pronounced in 
patients with CS (6). These symptoms were found to be negatively 
correlated with the activity in the precuneus, posterior cingulate gyrus 
and positively associated with the activity in the precentral gyrus, 
supplementary motor areas (6). Considering the multiple influencing 
factors, patients with CS might experience abnormal activation in 
multiple regions that caused the symptoms including pain, reduced 
neck movement and negative emotion. Resting-state functional 
magnetic resonance imaging (rs-fMRI) is a noninvasive technique to 
evaluate spontaneous brain activity of subjects during rest. Regional 
homogeneity (ReHo) is a commonly used parameter for measuring 
the level of local synchronization of intrinsic fMRI signals by 
calculating Kendall’s coefficient concordance (KCC) between the time 
series of a given voxel and those of its neighboring voxels (7). This 
method is commonly used to detect brain regions with altered 
activation in patients with neuropsychiatric disorders, as well as 
patients complained of pain (8–11). However, fewer studies have 
explored the central pathogenesis of CS using rs-fMRI. The utilization 
of neuroimaging methods to investigate the mechanisms of Tuina is 
currently being employed in multitude spinal disorders. For instance, 
Chen et al. examined the function of default mode network in the 
brain in patients with lumbar disk herniation and discovered that 
Tuina could modify the patient’s pain modulation patterns to achieve 
pain (12). Furthermore, rs-fMRI has been employed to investigate the 
analgesic effects of Tuina. Animal studies had demonstrated that the 
impact of Tuina on neuropathic pain relievers pain behavior by 
promoting cortical remodeling (13).

Various non-surgical protocols have been used to treat CS, 
including pharmacological treatments such as non-steroidal anti-
inflammatory drugs (NSAIDs), selective 5-hydroxytryptamine 
reuptake inhibitors (SSRIs), opioids, sedative-hypnotic drugs, as well 
as non-pharmacological treatments such as physiotherapy, injections, 
surgical interventions (14, 15). However, the application of NSAIDs is 
limited by their adverse effects and poor tolerance (16). Considering 
the positive effects and safety, clinicians often recommend 
complementary therapies, including Tuina, acupuncture, exercise, 
yoga, tai ji, Chinese herbs and sports (17). The effectiveness of Tuina 
in the treatment of CS have been confirmed in numerous previous 
studies and the symptom of neck pain can be effectively relieved by 
Tuina therapy by raising the neck pain threshold (18–20). Proper 
release maneuvers can improve the tension of the cervical 
musculoskeletal nerves (21–23). Tuina therapy is now commonly used 
as a conservative treatment for CS. Manipulation practitioners employ 
a range of techniques to relax the cervical muscles and joints, including 
kneading, pressing, lifting and pulling. This is done in order to correct 
imbalanced joints and to relax tense and tired muscles. A randomized 
controlled trial study demonstrated that a combination of different 
manipulative techniques significantly improved pain symptoms and 
mobility function in patients with vertebral artery whiplash (24). A 
randomized controlled trial study of chronic neck pain by Kang et al. 
revealed that resistance exercise combined with massage achieved 
superior outcomes in terms of pain, cervical mobility, and trapezius 
muscle tone in patients with chronic neck pain (25). However, the 
therapeutic efficacy of Tuina is inconclusive due to its specificity, such 
as different therapeutic precision and methods, sample size issues, 
methodological quality and limitations of existing scientific tools in 
clinical studies of Tuina therapy.

In this study, we aimed to explore the differences in resting-state 
brain activity between CS patients and matched healthy controls 
(HCs), as well as the central mechanism underlying therapeutic effects 
of Tuina therapy in the treatment of CS. We hypothesized that (1) 
compared to HCs, CS patients might exhibit altered activity in specific 
brain regions that were linked to clinical symptoms of patients, and 
(2) after Tuina therapy, CS patients’ clinical symptoms might 
be improved, which might be achieved by the changes of spontaneous 
neural activity in these specific brain regions.

2 Participants and methods

2.1 Participants

The Ethics Committee of Jiangsu Province Hospital of Chinese 
Medicine, Affiliated Hospital of Nanjing University of Chinese 
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Medicine approved this study (Ethics Approval No. 2022NL-169-02). 
In addition, it was registered in the China Clinical Trial Registration 
Center (registration number: ChiCTR2200066373), available.1 
Moreover, all subjects gave their written informed consent to 
participate in the study. All patients were recruited from the 
Department of Tuina, Jiangsu Province Hospital of Chinese Medicine, 
Affiliated Hospital of Nanjing University of Chinese Medicine from 
September 2022 to December 2022. CS was diagnosed based on the 
11th Revision of the International Classification of Diseases (ICD-11) 
(26) for CS and neck pain.

The inclusion criteria were as follows: (1) meeting the diagnostic 
criteria for CS; (2) aged 20–55; (3) right-handedness; (4) patients 
could either be treatment naive or had received prior therapy with a 
minimum washout period of 28 days; (5) those who were willing to 
be treated by Tuina therapy; (6) had good compliance and signed 
written informed consent.

The exclusion criteria were as follows: (1) neurogenic CS with 
surgical indications, excluding patients with spinal cord cervical 
spondylosis; (2) serious organic diseases and mental diseases; (3) 
patients with vertebral artery-type cervical spine vertigo episodes who 
were unable to take care of themselves; (4) patients with broken skin 
or other skin diseases at the site of Tuina treatment; (5) women who 
were breastfeeding, pregnant, or preparing to become pregnant; (6) 
patients with other chronic and persistent pain who needed to take 
pain medication; (7) patients participating in other clinical trials; (8) 
patients who had a fear of previous Tuina therapy or MRI examination 
or who suffered from claustrophobia.

2.2 Intervention of Tuina

The physician used a thumb of one hand and the four remaining 
fingers of the other hand, to apply pressure at Tuina acupoints on both 
sides of the neck muscles, including Jingbailao (EX-HN14), Fengchi 
(GB20) and Wangu (GB12). Additionally, longitudinal vertical flicking 
techniques were used on the neck muscles in the direction of their fibers 
for 5–6 repetitions. The physician applied Tuina manipulation on the 
neck and shoulder muscles, and repeated Tuina treatment 5–6 times, 
and used kneading techniques on various muscle groups in the scapular 
region of the patient’s back. Furthermore, acupressure points such as 
Bingfeng (SI12), Quqiguan (SI13), Shoulder Well (GB21) and Tianzong 
(SI11) were pressed and held, and the patient’s comfort level was 
considered to determine the optimal length of the treatment. The 
treatment lasted about 15–20 min and was done 2–3 times per week, 
with a one-day break in between, for a total of 6 treatments over 2 weeks.

2.3 Assessment measures

The Visual Analog Scale (VAS) was used to evaluate the level of 
pain in the cervical spine area, with a score of 0 representing the 
lowest level of pain and a score of 10 representing the highest level of 
pain. The Neck Disability Index (NDI) was used to evaluate the degree 
of cervical spine dysfunction based on 10 aspects, including pain 

1 https://www.chictr.org.cn/

intensity, reading, heavy lifting, headache, work, sleep, driving, 
recreational activities, concentration and self-care aspects of life.

2.4 MRI data acquisition and preprocessing

MRI data were acquired using a 3.0 T GE MRI scanner. All 
participants were instructed to stay relaxed and awake, keep eyes 
closed, not think of anything particular during the entire MRI 
scanning procedure. T1-weighted structural data were acquired 
using the following parameters: repetition time (TR) = 7.7 ms; 
echo time (TE) = 3.1 ms; slice thickness = 1 mm; field of  
view (FOV) = 256 × 256 mm2; matrix = 256 × 256; number of 
slices = 160. All rs-MRI data were acquired using the following 
parameters: TR = 2000 ms; TE = 30 ms; slice thickness = 3.5 mm; 
FOV = 224 × 224 mm2; matrix = 80 × 80; number of slices = 33; number of 
volumes = 240. Based on MATLAB, MRI data preprocessing was 
performed using the software of Data Processing Assistant for Resting-
State fMRI (DPARSF) (27) according to the steps presented in our 
previous study. Subjects with head-translation more than 2.0 mm or 
rotation more than 2.0° were excluded in this study. In order to prevent 
other factors from interfering with the collection of rs-fMRI data, all 
participants were instructed on their body and emotional state, and were 
asked to maintain a still head and body, close their eyes, and refrain from 
thinking about anything. They were also instructed to remain relaxed.

2.5 ReHo calculation

The steps of ReHo calculation were as follows: (1) linear 
detrending; (2) temporal band-pass filtering; (3) regress out nuisance 
covariates. Finally, Kendall’s coefficients of concordance (KCC) were 
calculated by the correlations between the time series of a voxel and 
those of its 26 nearest neighbor voxels in a voxel-wise manner, which 
were defined as ReHo values. For standardization purpose, ReHo 
values were transformed to zReHo values by Fisher’s r-to-z 
transformation. Finally, all zReHo values were smoothed. ReHo 
reflects the synchronization of spontaneous brain activity within a 
region by measuring the consistency of a given voxel and its adjacent 
voxels. ReHo can evaluate the activity levels of brain regions and 
reflect the consistency of local neuronal activity levels. An increase in 
ReHo represents an increase in the consistency of local brain neuronal 
activity, while a decrease in ReHo indicates a decrease.

2.6 Statistical analysis

In this study, between-group differences in demographic and 
clinical data were compared using independent two-samples t-tests 
(normally distributed data), non-parametric tests (non-normally 
distributed data) and chi-squared tests (count data) by SPSS 25.0 
software. p < 0.05 was considered statistically significant. In addition, 
between-group differences in ReHo values were compared using t-tests 
by the software of Resting-State fMRI Data Analysis Toolkit (REST) 
(28). The methods of GRF (voxel-level p < 0.001 and cluster-level 
p < 0.05) and AlphaSim (p < 0.001 and minimum cluster size was set at 
six voxels) methods in REST software were used for the correction of 
multiple comparisons. Finally, relationships between altered brain 
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regions and clinical characteristics were evaluated by Pearson’s 
correlation analysis. p < 0.05 was considered statistically significant.

3 Results

3.1 Comparison of demographic and 
clinical data

No significant differences were observed in the gender, age and 
BMI between CS patients and HCs (Table 1). After treatment, CS 
patients exhibited decreased VAS and NDI scores when compared 
with those before treatment (Table 2).

3.2 Comparison of ReHo values between 
groups

Before treatment, CS patients showed higher ReHo values in the 
left middle temporal gyrus, left thalamus, right anterior and posterior 
cingulate gyrus, left inferior parietal gyrus and lower ReHo values in 
the right gyrus rectus when compared with HCs (Table 3; Figure 1).

After treatment, CS patients exhibited higher ReHo values in the 
left inferior temporal gyrus, right anterior and posterior cingulate 
gyrus, left inferior parietal gyrus and lower ReHo values in the right 
rectus gyrus when compared with HCs (Table 3; Figure 1).

CS patients after treatment demonstrated higher ReHo values in 
the left inferior occipital gyrus when compared with those before 
treatment (Table 3; Figure 1).

3.3 Relationships between altered brain 
regions and clinical characteristics

Positive correlations were found between ReHo values of the right 
rectus gyrus and VAS (r = 0.517, p = 0.006), NDI (r = 0.395, p = 0.041) 
scores in CS patients before treatment (Figure 2). Differences of VAS 
scores between before and after treatment were negatively correlated 
with ReHo values of the left inferior temporal gyrus in CS patients 
after treatment (r = −0.45, p = 0.032; Figure 3).

4 Discussion

To the best of our knowledge, this was the first rs-fMRI study 
exploring the central pathological mechanism of CS and the changes 

TABLE 1 Demographic and clinical characteristics between groups.

CS (n  =  27) HCs (n  =  27) χ2/t p

Gender (M/F) 7/20 6/21 0.10 0.75

Age (years) 37.29 ± 14.60 39.00 ± 14.26 −0.43 0.67

BMI (kg/m2) 21.68 ± 3.20 21.14 ± 2.72 0.66 0.51

CS, cervical spondylosis; HCs, healthy controls. BMI, body mass index.

TABLE 2 Comparison of VAS and NDI scores before and after treatment 
CS.

Before 
treatment 

(n  =  27)

After 
treatment 

(n  =  27)
t p

VAS scores 4.74 ± 1.89 1.85 ± 1.91 8.126 <0.001

NDI scores 13.77 ± 6.15 5.29 ± 4.22 7.564 <0.001

CS, cervical spondylosis; VAS, visual analog scale; NDI, neck disability index.

TABLE 3 Comparison of ReHo values between groups.

Brain regions Peak MNI coordinate Cluster Peak T value

x y z

CS before treatment vs. HCsa

Left middle temporal gyrus −57 −48 −9 73 5.20

Left thalamus −3 −9 9 37 4.80

Right anterior cingulate gyrus 3 36 18 57 5.09

Right posterior cingulate gyrus 3 −36 27 39 4.74

Left inferior parietal gyrus −33 −72 42 35 4.75

Right gyrus rectus 6 42 −21 90 −5.03

CS after treatment vs. HCsa

Left inferior temporal gyrus −60 −51 −15 75 5.45

Right anterior cingulate gyrus 6 36 24 44 4.76

Right posterior cingulate gyrus 3 −36 27 72 5.21

Left inferior parietal gyrus −33 −72 42 44 4.87

Right rectus gyrus 9 42 −21 42 −4.70

CS after vs. before treatmentb

Left inferior occipital gyrus −18 −96 −6 6 4.55

CS, cervical spondylosis; HCs, healthy controls. ReHo, regional homogeneity; MNI, Montreal Neurological Institute; x, y and z, the coordinates of peak voxels of clusters in MNI space. 
aGRF (voxel-level p < 0.001 and cluster-level p < 0.05) in REST software was utilized for the correction of multiple comparisons.
bAlphaSim (p < 0.001 and minimum cluster size was set at 6 voxels) in REST software was utilized for the correction of multiple comparisons.
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of brain activation associated with Tuina therapy in the treatment of 
CS. Compared with HCs, CS patients before treatment showed 
increased consistency of spontaneous neural activity in the left middle 
temporal gyrus, left thalamus, right anterior and posterior cingulate 
gyrus, left inferior parietal gyrus, as well as decreased consistency of 

neural activity in the right gyrus rectus. After treatment, CS patients 
exhibited higher activity in the left inferior temporal gyrus, right 
anterior and posterior cingulate gyrus, left inferior parietal gyrus and 
lower activity in the right rectus gyrus when compared with HCs. 
Moreover, CS patients after treatment demonstrated higher activity in 

FIGURE 1

Showed altered ReHo values. CS, cervical spondylosis; HCs, healthy controls. ReHo, regional homogeneity.
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the left inferior occipital gyrus when compared with those before 
treatment. Positive correlations were found between ReHo values of 
the right rectus gyrus and VAS, NDI scores in CS patients before 
treatment. Differences of VAS scores between before and after 
treatment were negatively correlated with ReHo values of the left 
inferior temporal gyrus in CS patients after treatment.

Previous MRI study showed that neck pain could cause reduced 
gray matter volume in the right middle cingulate cortex, right superior 
temporal gyrus, right precuneus in patients with chronic cervical 
spondylotic pain and these patients displayed decreased functional 
connectivity between the right precuneus and bilateral medial 
prefrontal cortex (29). Additionally, gray matter volume of the right 
middle cingulate cortex, right superior temporal gyrus and right 
precuneus, as well as resting-state functional connectivity between the 
right precuneus and bilateral medial prefrontal cortex, were negatively 
correlated with the VAS respectively (29). Another rs-fMRI study 
demonstrated that CS patients had altered amplitude of low-frequency 
fluctuation (ALFF) in the middle cingulate cortex, cerebellum and 
middle frontal gyrus (30). Previous studies demonstrated that pain 
could cause extensive functional alterations in several brain networks, 
particularly in the default mode network (DMN) (31, 32). The DMN 
is composed of several brain regions, including the medial prefrontal 
cortex, inferior parietal lobule, posterior cingulate gyrus/precuneus, 

hippocampus, angular gyrus and temporal lobe (33, 34). These regions 
exhibit strong neural activity during resting-state and decreased 
synchronized intrinsic neuronal activation during goal-oriented tasks 
(35, 36). Recurrent patients with chronic pain showed abnormal 
functional connectivity in DMN, which suggested that patients’ 
recurrent pain states were associated with enhanced spontaneous 
neural activity in the thalamus, temporal cortex, cingulate cortex (32).

Abnormal brain areas attributed to DMN, such as the thalamus, 
posterior cingulate gyrus, middle temporal gyrus and inferior 
temporal gyrus, were also identified in this study. The middle temporal 
gyrus is considered as a key region of DMN (37), and it is also a region 
involved in language and word processing, emotion and memory 
processing (38, 39). The middle temporal gyrus can integrate 
cognitional and emotional information under nociceptive stimulation 
and can express the degree of pain perception under the control of 
cortical–limbic system (40). The inferior temporal gyrus is an 
important region for cognition and learning (41). The left inferior 
parietal gyrus is a component of the frontoparietal network, and it is 
more specialized in the semantic encoding of retrieval of scene 
memories and executive processing of perceptual motions compared 
to the right inferior parietal gyrus (42). The anterior cingulate gyrus, 
which is a brain region associated with sensory and pain modulation, 
plays a role in receiving and storing painful emotional information. 
Pain triggers the activation of anterior cingulate gyrus to improve the 
transmission of sensory-motor neurons (42–46). Suppressing the 
activity in the anterior cingulate gyrus could lead to a reduction in 
pain and adverse emotion (45). The anterior and posterior cingulate 
gyrus are critical constituents of the limbic system (47). The posterior 
cingulate gyrus is a brain region that possesses several features, 
including sensory monitoring, spatial localization, internal orientation 
and high metabolic rate (48). Additionally, it receives nociceptive 
information from the thalamus, which contributes to its sensitivity. In 
addition, the rectus gyrus, located on the orbital surface of the frontal 
lobe, is a part of the limbic system and medial prefrontal brain 
network. This region is the main origin of downstream connections 
from the medial prefrontal lobe to the hypothalamus, brainstem, and 
it is a part of the limbic system and DMN, which plays a key role in 
transmitting information in the brain (47, 49).

The thalamus, anterior cingulate gyrus, posterior cingulate gyrus, 
insula, amygdala and periaqueductal gray matter are considered as 
“pain matrix,” indicating that injurious nociceptive stimuli can exert 
feedback modulation on these regions (50–52). Following 2 weeks of 
Tuina therapy, CS patients exhibited higher ReHo values in the left 
inferior temporal gyrus, right anterior and posterior cingulate gyrus, 

FIGURE 2

Relationships between VAS, NDI scores and ReHo values in CS patients before treatment. CS, cervical spondylosis. ReHo, regional homogeneity. VAS, 
visual analog scale; NDI, neck disability index.

FIGURE 3

Relationships between differences of VAS scores and ReHo values in 
CS patients after treatment. CS, cervical spondylosis. ReHo, regional 
homogeneity. VAS, visual analog scale.
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left inferior parietal gyrus and lower ReHo values in the right rectus 
gyrus when compared with HCs. Increased ReHo values of the 
anterior cingulate gyrus after treatment suggested increased 
compensatory inhibition of the nociceptive neural circuit associated 
with the thalamic-cingulate cortex, which might lead to a reduction 
in pain sensation. Furthermore, compensatory spontaneous neural 
activity was observed in the posterior cingulate gyrus due to the 
reduction in pain sensation. However, the thalamus disappeared in the 
differences of brain regions between CS patients and HCs. The 
thalamus is the relay station for information rectification and 
transmission of injurious nociceptive stimulus in the brain, which can 
feedback activate the thalamus (53, 54). These findings suggested that 
inhibition of the nociceptive neural circuit involving the thalamus-
cingulate cortex, resulting in a reduction in pain sensation. Therefore, 
we speculated that the thalamus was an important relay station for 
pain information transmission, and the cingulate cortex, temporal 
lobe cortex were the key regions for encoding information about 
injurious nociceptive transmitted upstream from the thalamus in CS 
patients with neck pain.

The study confirmed the ameliorative effect of Tuina therapy on 
pain and cervical spine dysfunction in patients with CS. The changes 
in the ReHo values of the right rectus gyrus and left inferior temporal 
gyrus, in conjunction with the improvement in symptom scores 
observed prior to and following Tuina therapy, provided evidences 
that the analgesic effect and relief of cervical spine dysfunction could 
be fed back into the central nervous system through brain area activity. 
However, the only brain area that displayed differences in ReHo values 
before and after treatment was the left inferior occipital gyrus. The 
small number of differences observed in brain areas might be due to 
the selection of right-handed subjects, along with a small sample size 
and the shorter treatment period, which were the two limitations of 
this study. The results of this study were partly inconsistent with 
previous studies, but there were some similarities and overlaps. 
Possible explanations for this could be that CS itself was a clinical 
symptom manifestation and it had several subtypes. Additionally, 
previous studies had smaller and mostly observational samples, which 
might have contributed to the differences in results. Therefore, future 
prospective longitudinal follow-up and multimodal neuroimaging 
studies with larger sample sizes were needed to further validate these 
findings, as well as other objective indicators including inflammatory 
biomarkers and additional imaging techniques like PET or EEG in 
patients with different subtypes of CS. Moreover, a negative correlation 
was found between changes in VAS scores and ReHo values in the left 
inferior temporal gyrus. However, the single finding of a negative 
correlation between VAS score changes and ReHo values was not 
sufficient to establish a definitive relationship. The joint evaluation of 
these multiple indicators (brain structure, brain electrophysiological 
and metabolic activity, inflammatory biomarkers) might better 
establish a definitive relationship.

5 Conclusion

In conclusion, CS patients showed impaired activity in the 
pain-related brain regions, resulting in neck pain and limited neck 
movement. Tuina therapy could improve the clinical conditions of 
pain and cervical mobility, which might be achieved by modulating 
asynchronous activity of abnormal brain regions. All these 
findings provided new insights into understanding the central 

mechanism underlying the therapeutic effects of Tuina in the 
treatment of CS.
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