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Multimodal imaging and
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tremor
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1Neuroscience Research Center, University “Magna Graecia”, Catanzaro, Italy, 2Institute of Neurology,

University “Magna Graecia”, Catanzaro, Italy, 3Biotecnomed S.c.a.r.l., Catanzaro, Italy

Introduction: Distinguishing tremor-dominant Parkinson’s disease (tPD) from

essential tremor with rest tremor (rET) can be challenging and often requires

dopamine imaging. This study aimed to di�erentiate between these two

diseases through a machine learning (ML) approach based on rest tremor (RT)

electrophysiological features and structural MRI data.

Methods: We enrolled 72 patients including 40 tPD patients and 32 rET patients,

and 45 control subjects (HC). RT electrophysiological features (frequency,

amplitude, and phase) were calculated using surface electromyography

(sEMG). Several MRI morphometric variables (cortical thickness, surface area,

cortical/subcortical volumes, roughness, and mean curvature) were extracted

using Freesurfer. ML models based on a tree-based classification algorithm

termed XGBoost using MRI and/or electrophysiological data were tested in

distinguishing tPD from rET patients.

Results: Both structural MRI and sEMG data showed acceptable performance in

distinguishing the two patient groups. Models based on electrophysiological data

performed slightly better than those based onMRI data only (mean AUC: 0.92 and

0.87, respectively; p = 0.0071). The top-performing model used a combination

of sEMG features (amplitude and phase) and MRI data (cortical volumes, surface

area, andmean curvature), reaching AUC: 0.97± 0.03 and outperformingmodels

using separately either MRI (p = 0.0001) or EMG data (p = 0.0231). In the best

model, the most important feature was the RT phase.

Conclusion: Machine learning models combining electrophysiological and MRI

data showed great potential in distinguishing between tPD and rET patients

and may serve as biomarkers to support clinicians in the di�erential diagnosis

of rest tremor syndromes in the absence of expensive and invasive diagnostic

procedures such as dopamine imaging.
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1 Introduction

Rest tremor (RT) is one of the core clinical signs of Parkinson’s

disease (PD) occurring in about 75% of PD patients (1, 2), but it can

also be found in some non-parkinsonian tremor syndromes, such as

Essential Tremor (ET) plus (3, 4). Differentiating tremor-dominant

PD (t-PD) from ET with rest tremor (rET) patients can be clinically

challenging, especially in tremor-dominant PD phenotype (tPD) or

in the early stages of the disease, when bradykinesia and rigidity

can be slight or absent (5–7). Single photon emission computed

tomography with 123I-ioflupane (DaTscan) has a crucial role in

differentiating parkinsonian RT from other tremulous diseases

(4, 8, 9), but it is an expensive, invasive and time-consuming

procedure not widely available and not commonly employed in

the clinical routine (4). In the last years, the electrophysiological

examination of RT has gained a growing importance in the

differential diagnosis of rest tremor syndromes (10, 11). It is a cheap

and available procedure which can be easily performed worldwide

and can support the clinical diagnosis (10–17). In addition to

neurophysiology, brain MRI availability has significantly increased

over the last decades and it is now often included in the diagnostic

work-up of patients with tremor, with the primary aim of ruling out

structural causes (4). A few pilot studies showed high potential of

MRI quantitative data in distinguishing PD from rET patients using

a machine learning approach based on MR volumes and diffusion

tensor imaging (DTI) data of basal ganglia and cerebellum (18), or

metabolic alterations in the thalamus detected by MR spectroscopy

(19). In addition, a recent functional MRI study found differences

between PD and rET also in cortical regions (20). The exact role

of advanced MRI in distinguishing between these two diseases,

however, is still largely unknown and needs further investigations.

Recently, machine learning (ML) algorithms have been successfully

applied to distinguish among different neurological disorders (21–

28), and the combination of different sources of data (i.e., clinical,

imaging, electrophysiological, and fluid) often provided the best

classification performance (25, 29).

In the current study, we employed a modern powerful

ML decision tree-based classification algorithm [eXtreme

Gradient Boosting [XGBoost] (30)] to compare the classification

performance of structural MR imaging data (several cortical

metrics and subcortical volumes) with those of the RT

electrophysiological features in distinguishing between rET

and tPD patients. Furthermore, we investigated whether the

combination of electrophysiological and imaging data may

improve the classification performance.

2 Materials and methods

2.1 Study participants

Forty tPD and 32 rET consecutive patients with available 3T

brain MRI and surface electromyographic (sEMG) analysis of RT,

and 45 age- and sex-matched control subjects (HC) were included

in this study. The clinical diagnoses of rET (now included in the “ET

plus” category) and PD were performed by a movement disorder

specialist in accordance with the recent consensus statement of

the Movement Disorder Society task force (3) and international

diagnostic criteria for PD (2). Only PD patients classified as

“tremor-dominant” using theMDS-UPDRS sub-scores (assessment

performed in OFF state) as previously described (31) were included

in the study. All patients underwent a detailed neurological

examination, a sEMG analysis of the rest tremor, a brain 3T-

MRI scan, and a 123I-FP-CIT-SPECT (DaTscan) performed

as described previously (17) and in Supplementary material,

with visual assessment and semi-quantitative analysis through

DaTQUANT (32). The brain MRI and sEMG tremor analysis were

performed on the same day of the clinical examination, and the

DaTscan was performed within 1 month. All study procedures

and ethical aspects were approved by the institutional review

board (Magna Graecia University review board, Catanzaro, Italy).

Written informed consent for the research was obtained from all

the individuals participating in the study. Further information and

detailed exclusion criteria in Supplementary material.

2.2 Electrophysiological examination

All patients underwent a sEMG recording in the most affected

upper limb with RT, as described in previous publications (12,

17) and in Supplementary material. The patient was seated in a

comfortable chair with the arm flexed at 90◦, the forearm fully

supported against gravity, and the hand hanging down from

the chair armrest. All drugs that might interfere with tremor

were suspended 2 days before the examination. The bursts were

manually segmented from the filtered sEMG signals, and the mean

burst amplitude was evaluated. Spectral analysis was performed

to extract the frequency and signal-to-noise ratio associated with

the tremor peak. Quantitative RT phase values were determined

using cross-spectral analysis, as described by Boose et al. (33), as an

indicator of the temporal relationship between extensor and flexor

bursts. A phase close to 0◦ corresponds to synchronous extensor

and flexor signals, while a phase close to 180◦ describes a temporal

shift between the contraction bursts of antagonistic muscles. The

sEMG examination was coupled with simultaneous acquisition of

inertial data in all patients through an accelerometer positioned on

the hand with tremor at rest.

2.3 MRI acquisition

All MRI scans were performed with the same 3-T MR750

General Electric scanner with an 8-channel head coil (Discovery

MR- 750, GE, Milwaukee, WI, USA). The acquisition protocol is

detailed in Supplementary material.

2.4 MR image processing and feature
extraction

The automated neuroanatomical segmentation was performed

with FreeSurfer 7.1.1 software (Massachusetts General Hospital,

Harvard Medical School; http://surfer.nmr.mgh.harvard.edu),

on T1-weighted MR images in all study participants. Structural

images were automatically processed with the standard pipeline
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(recon-all), including: motion correction and averaging volumetric

T1 weighted images; removal of non-brain tissue; automated

Talairach transformation; segmentation of the subcortical white

matter and deep gray matter volumetric structures; tessellation

of the gray matter white matter boundary; automated topology

correction; surface deformation to optimally place the GM/WM

and GM/cerebrospinal fluid (CSF) borders at the location

(34). We employed advanced surface-based and volume-based

techniques capable of estimating multiple complementary

morphometric characteristics of cortical structures, and the

following morphometric metrics were calculated into 34 cortical

regions of interest (ROIs) per hemisphere according to the

Desikan–Killiany atlas: cortical thickness, surface area, cortical

volume, mean curvature and roughness (the standard deviation

of cortical thickness) (23). Subcortical structures (cerebellum,

thalamus, caudate, putamen, globus pallidus, hippocampus,

amygdala, and nucleus accumbens) were also segmented to obtain

volumetric data. A total of 358 structural features were extracted

from each subject.

2.5 Statistical analysis

Difference in sex distribution was assessed with Fisher’s exact

test. Normality of data was tested using Shapiro’s test. The analysis

of variance (ANOVA) or Kruskal-Wallis test were employed for

comparing age at examination among the three groups (tPD, rET,

and HC). Age at disease onset, disease duration, RT duration

and electrophysiological data were compared between the two

patient groups using t-test or Wilcoxon rank sum test. ANCOVA

with age as covariate was applied to assess differences in MMSE.

ANCOVA with age and sex as covariates was used to compare the

cortical metrics among groups. ANCOVA with age, sex and total

intracranial volume (TIV) as covariates was used to compare the

subcortical volumes among groups. All tests were two tailed, and

the α level was set at p< 0.05. All p-values were corrected according

to Bonferroni. Statistical analysis was conducted with R language

version 4.1.2.

2.6 Machine learning models

2.6.1 ML model development
We investigated the performances of machine learning (ML)

models using an algorithm termed XGBoost (30) based on

different combinations of structural MR imaging data and or

RT electrophysiological features in distinguishing between t-PD

and rET patients. First, we investigated the performances of

ML models using either MRI or RT electrophysiological data

separately; subsequently, we developed models combining imaging

and sEMG data, aiming to improve the classification performance.

The analyses were conducted with Python 3.9 and the packages

scikit-learn v1.0.2. The RT electrophysiological features included

RT amplitude, frequency and phase; the imaging features included,

for each of the 68 cortical regions, 34 for each hemisphere: cortical

thickness, cortical volumes, surface areas, mean curvature and

roughness, and subcortical volumes. For each XGBoost model,

the hyperparameters [learning rate, maximum depth, minimum

child weight, gamma, and colsample bytree (the fraction of features

used to train each tree)] of the ML models were tuned through 5-

fold cross-validation (5-fold cv) repeated 5 times, with randomized

search (100 iterations) to maximize the accuracy.

2.6.2 Feature selection procedure
To reduce the number of features which may bring redundant

information and noise in the data, we used a two-step feature

selection procedure.We first calculated the feature importance with

the “permutation accuracy importance” technique (35) assessing

the Mean Decrease in Accuracy after permuting each feature,

using 50 repetitions to ensure the reliability of the feature ranking.

Feature selection was then applied by iteratively training themodels

on the variables ordered according to the permutation importance.

2.6.3 Classification performance
The performance of the XGB models trained on the most

important features were evaluated in cross-validation (cv) analysis,

though two alternative cv approaches (repeated stratified 5-fold

cross cv and leave-one out). First, the dataset was divided into K

subsets (folds) and the models were iteratively trained K times. For

each iteration, each model was trained on (K-1) folds as described

above and the performance was assessed in the Kth (validation)

fold, which was not used for model training, to ensure performance

assessment on unseen data. The mean and standard deviation of

area under the curve (AUC), accuracy, sensitivity, and specificity

in validation folds were calculated. A model was considered able to

distinguish between groups when the mean AUC in the validation

folds was >0.85. The performances were compared across different

models using Friedman test followed by the Durbin-Conover post-

hoc for pairwise comparisons.

3 Results

3.1 Patients

Demographic, clinical and electrophysiological data of patients

and controls are shown in Table 1. No differences were found

in age and sex among groups. tPD patients had shorter disease

duration than rET patients but the two groups had similar

duration of tremor at rest. tPD patients had slight cognitive

impairment in comparison with control subjects, but no significant

difference was found between the two patient groups. Regarding

electrophysiological data, the RT was characterized by higher

amplitude, higher phase values and lower frequency in tPD patients

than in rET patients (Table 1). sEMG-derived amplitude showed

a strong Pearson’s linear correlation (r: 0.841; p < 0.001) with

accelerometric amplitude of RT. The DaTscan was normal in all

rET patients and abnormal in all PD, per inclusion criteria. All

PD patients had reduced DAT uptake in the putamen contralateral

to the clinically most affected side (with or without milder

involvement of the ipsilateral putamen and the caudate nuclei;

Supplementary Table 1).
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TABLE 1 Demographic, clinical and electrophysiological data of patients with Parkinson’s disease, patients with essential tremor with rest tremor, and

control subjects.

Data Tremor dominant PD ET with rest tremor Control subjects p-value

(N = 40) (N = 32) (N = 45)

Sex (M/F) 21/19 14/18 27/18 0.369a

Age at examination, yearsb 66.2± 8.8 64.4± 11.0 68.5± 6.9 0.341c

Age at disease onset, yearsb 62.5± 8.5 45.1± 15.0 / <0.001
d

Disease duration, yearsb 3.7± 3.4 16.8± 11.8 / <0.001
d

RT duration, yearsb 3.7± 3.4 4.7± 3.9 / 0.270d

MDS-UPDRS-III scoreb 23.0± 14.4 / / /

H-Y scoreb 1.4± 0.6 / / /

MMSEb 23.2± 5.1∗∗ 25.6± 3.7 27.6± 2.1 <0.001
e

Electrophysiological data

RT amplitudeb 189.6± 99.8 76.7± 67.7 / <0.001
d

RT frequencyb 5.0± 0.7 5.6± 1.0 / 0.003
d

RT phaseb 126.2± 54.3 26.7± 37.0 / <0.001
d

PD, Parkinson’s disease; ET, essential tremor; RT, rest tremor; MDS-UPDRS-III, Movement Disorder Society—Unified Parkinson’s Disease Rating Scale- part III (Motor Examination); H-Y,

Hoehn and Yahr; MMSE, Mini Mental State Examination.

Significant p-values are in bold.
aFisher’s exact test.
bData are expressed as mean± standard deviation.
cANOVA or Kruskal-Wallis rank sum test, followed by t-test or Wilcoxon rank sum test with Bonferroni correction.
dt-test or Wilcoxon rank sum test.
eANCOVA among the three groups with age as covariate, followed by post-hoc with Bonferroni correction.
∗∗Tremor-dominant PD vs. controls, p < 0.001.

3.2 MRI cortical and subcortical
morphometric features

Tremor-dominant PD patients showed increased mean

curvature in the right inferior temporal gyrus, increased roughness

in the left isthmus cingulate cortex and an increased cortical

thickness in bilateral orbito-frontal regions in comparison with

control subjects (Supplementary Table 2). ET patients with rest

tremor showed increased roughness and mean curvature in

temporal regions while these metrics were reduced in a few other

regions in comparison with controls (Supplementary Table 2).

By directly comparing the two patient groups, rET showed

reduced cortical thickness in the right medial orbitofrontal cortex

and in the left lateral occipital cortex in comparison with tPD.

No differences were found in the volumes of subcortical

structures among the three groups.

3.3 Machine learning models

Among ML models based on imaging data, we first assessed

the performance of models using one structural MRI metric at a

time. The model using cortical thickness was the most powerful

one though showing a suboptimal AUC of 0.788 ± 0.109 in

distinguishing between tPD and rET patients; none of the other

models reached AUC values above 0.80. By employing as input

for the models different structural MRI metrics together, the

classification performance improved and the best results (AUC:

0.868 ± 0.086) were achieved by a model using a combination of

mean curvature and roughness (Table 2).

Among the different RT electrophysiological features, the best

model in distinguishing between t-PD and rET patients (AUC:

0.924 ± 0.053) used a combination of RT phase and amplitude;

slightly lower performances were obtained using the RT phase

alone (AUC: 0.880± 0.079), followed by RT amplitude (AUC: 0.797

± 0.104) and RT frequency (AUC: 0.736± 0.121; Table 2).

Overall, the best ML models using either structural MRI data

or sEMG data showed acceptable classification performances (AUC

> 0.85) in distinguishing between tPD and rET patients. By

comparing the two data sources, the best ML model based on RT

electrophysiological data yielded higher performance (AUC: 0.924

± 0.053; sensitivity: 85.0%, specificity: 83.8%, accuracy: 84.5%) in

distinguishing tPD from rET patients than the best model based

on MR structural data only (AUC: 0.868 ± 0.086; sensitivity:

81.5%, specificity: 73.4%, accuracy: 77.9%; p = 0.0071; Table 2

and Supplementary Table 3). In this study, the top-performing

model in discriminating between rET and tPD (AUC: 0.967 ±

0.032), however, included a combination of sEMG and MRI

data, outperforming models using the two data sources separately

(Figure 1, Table 2, and Supplementary Table 3). The best model

showed all classification metrics above 85%, with sensitivity: 92.0%,

specificity: 85.4%, and accuracy: 89.2% (Table 2). In this model,

the feature importance analysis identified the RT phase as the

most informative feature for classification between the two groups,

followed by RT amplitude and mean curvature (Figure 2). Almost
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TABLE 2 Classification performances of XGBoost models based on rest

tremor electrophysiological features and structural MRI features in

distinguishing between patients with tremor-dominant Parkinson’s

disease and patients with essential tremor with rest tremor.

Cortical
thickness

Cortical
volumes

Surface area

AUC: 0.788 (0.109) AUC: 0.655 (0.103) AUC: 0.655 (0.119)

Acc: 0.708 (0.097) Acc: 0.588 (0.076) Acc: 0.591 (0.106)

Sens: 0.775 (0.132) Sens: 0.900 (0.137) Sens: 0.690 (0.146)

Spec: 0.626 (0.141) Spec: 0.207 (0.217) Spec: 0.463 (0.188)

(#7) (#6) (#2)

Subcortical
volumes

Mean curvature Roughness

AUC: 0.503 (0.131) AUC: 0.653 (0.135) AUC: 0.542 (0.151)

Acc: 0.520 (0.095) Acc: 0.605 (0.116) Acc: 0.512 (0.148)

Sens: 0.655 (0.188) Sens: 0.920 (0.105) Sens: 0.645 (0.186)

Spec: 0.350 (0.209) Spec: 0.220 (0.248) Spec: 0.349 (0.189)

(#1) (#14) (#31)

RT amplitude RT frequency RT phase

AUC: 0.797 (0.104) AUC: 0.736 (0.121) AUC: 0.880 (0.079)

Acc: 0.764 (0.098) Acc: 0.747 (0.099) Acc: 0.826 (0.072)

Sens: 0.835 (0.116) Sens: 0.875 (0.132) Sens: 0.815 (0.112)

Spec: 0.673 (0.143) Spec: 0.589 (0.142) Spec: 0.840 (0.162)

Best MR model Best sEMG
model

Best combined
model

AUC: 0.868 (0.086) AUC: 0.924 (0.053) AUC: 0.967 (0.032)

Acc: 0.779 (0.111) Acc: 0.845 (0.076) Acc: 0.892 (0.069)

Sens: 0.815 (0.123) Sens: 0.850 (0.106) Sens: 0.920 (0.093)

Spec: 0.734 (0.151) Spec: 0.838 (0.167) Spec: 0.854 (0.138)

(#9) (#2) (#6)

AUC, Area Under the Curve; Acc, Accuracy; Sens, sensitivity; Spec, specificity; MR, Magnetic

Resonance; RT, rest tremor; sEMG, surface electromyography.

Data are shown as mean (standard deviation) in the repeated 5-fold cross-validation folds.

The number of features used by each model determined using feature selection is reported in

round brackets (#).

The best MR model included mean curvature and roughness.

The best sEMGmodel included RT amplitude and phase.

The best combined model used as input the cortical volumes, surface areas, mean curvature,

RT amplitude and RT phase and effectively used mean curvature, RT amplitude and RT phase

after feature selection.

identical results were obtained with leave-one-out cross-validation

procedures (Supplementary Table 4).

4 Discussion

In this study, machine learning models using structural MRI

data and RT electrophysiological features showed great potential in

discriminating between t-PD and rET patients.

Differentiating between tremor-dominant Parkinson’s disease

and non-parkinsonian rest tremor syndromes can be really

challenging, and ancillary diagnostic tests are useful to support

the clinical diagnosis (3–5, 7, 8). The gold standard diagnostic

procedure in this context is the DaTscan, which typically reveals

striatal dopaminergic deficit in PD patients and integrity of the

dopaminergic system in other RT syndromes such as ET plus

(4, 8, 9). Dopamine imaging, however, is expensive, invasive and

not widely available, and there is thus a need for other biomarkers

to distinguish between these tremulous disorders. These tests may

include tremor analysis (with accelerometry or surface EMG), smell

testing, transcranial sonography and brain MRI. We have recently

demonstrated that the RT electrophysiological analysis could be

used as surrogate biomarker of dopamine imaging in patients with

RT (17); on the other hand, smell testing and sonography showed

some potential in distinguishing PD from ET patients (36, 37), but

only few data exist in ET patients with rest tremor (38), and the role

of structural MRI in distinguishing between tPD and rET remains

largely unexplored.

In this study, we investigated differences between t-PD and

rET patients in multiple MRI cortical morphometric measures

(thickness, volume, surface area, mean curvature, and roughness)

and subcortical volumes, all derived from T1-weighted images.

Despite the large amount of considered features, the two patient

groups diverged only in the thickness of a couple of cortical regions

(right medial orbitofrontal and left lateral occipital gyrus), which

was slightly lower in rET than in t-PD patients, demonstrating

that only minimal structural differences exist between these

tremulous disorders.

Interestingly, a powerful machine learning decision-tree-based

ensemble algorithm using eXtreme Gradient Boosting (XGBoost),

was able to discriminate with acceptable performances (AUC: 0.868

± 0.086) between these two diseases by using a combination of

cortical metrics, demonstrating that machine learning technology

can take advantage of subtle differences and combine them

together to achieve good classification performances. Indeed,

this ML algorithm builds a sequential ensemble of trees with

the aim to improve the performance of the previous tree by

correcting its errors, thus having the ability to learn from its

wrong predictions, which are corrected by giving more weight

to the misclassified instances, thus leading to high classification

accuracy (39). We first assessed the performance of ML models

using structural MRI metrics separately (i.e., thickness only,

roughness only, etc. . . ). The model based on cortical thickness

was the most powerful, in agreement with the slight group

differences in cortical thickness between PD and rET patients,

but none of these models reached AUC values above 0.80. The

performance improved when different cortical metrics were used

together as input for the models, demonstrating that surface-

based and volume-based metrics can explore complementary

morphometric characteristics of cortical structures, detecting even

subtle cortical alterations.

In the current study, we also compared the classification

performances of brain MRI data with those of electrophysiological

RT features, using the same ML algorithm. RT showed higher

amplitude, higher phase values and lower frequency in PD patients

than in rET patients, in agreement with the existing literature

(12, 16, 17). Machine learning models employing a combination

of electrophysiological RT features distinguished the two patient

groups with AUC of 0.924 ± 0.053 using RT phase as the
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FIGURE 1

Machine learning models in di�erentiating between tPD and rET patients. The XGBoost “best combined model” was based on RT amplitude, RT

phase and mean curvature. The XGBoost “best sEMG model” was based on RT amplitude and phase. The XGBoost “best MRI model” was based on

mean curvature and roughness. tPD, tremor-dominant Parkinson’s disease; rET, essential tremor with rest tremor; RT, rest tremor; sEMG, surface

electromyography; AUC, Area Under the Curve; SD, standard deviation.

FIGURE 2

The feature importance assessed via permutation methods of the best combined XGBoost model including both electrophysiological and MRI data

in distinguishing between between tPD and rET patients. Data are shown in descending order from the most to the less important feature. tPD,

tremor-dominant Parkinson’s disease; rET, essential tremor with rest tremor; Rh, right; Lh, left.

most important feature, slightly outperforming models based on

MRI data. The higher phase values of RT tremor in PD than

in rET patients reflects the empirical observation of alternating

muscular contraction pattern in PD and synchronous pattern

in rET patients. It is possible that different tremor generators

are involved in these two conditions, and a possible dystonic
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basis of RT in rET patients has been hypothesized to explain

the co-contracting pattern (40), but the exact pathophysiological

bases of the different RT patterns across PD and rET remain to

be determined.

Finally, we combined MRI metrics and RT electrophysiological

features into ML models, leading to an extremely high

classification performances (AUC: 0.967± 0.032) in distinguishing

between these two patient groups. This result demonstrates a

complementary role of these two diagnostic procedures (advanced

brainMRI and RT electrophysiological analysis), both of whom can

be helpful in the differential diagnosis of rest tremor syndromes,

especially when combined together. Our ML model also provided

insights on the measures that helped most in the classification of

patients, by automatically selecting the RT phase as the feature

with the highest importance score, followed by RT amplitude

and then by MRI metrics, confirming the relative superiority

of sEMG over structural MRI in this classification task. Our

combined approach has the obvious advantage of yielding

higher diagnostic performances, and the relative drawback of

requiring different sources of data (sEMG and MRI); these

techniques, however, are available and often included in the

diagnostic work-up of tremor, thus not requiring additional tests

for patients.

The current study is one of the first MR imaging studies

comparing tremor-dominant PD and rET patients, and has

several strengths. First, we compared the performance of ML

models based exclusively on either MRI or sEMG data and on

a combination of the two data sources, to get objective insights

on the diagnostic usefulness of these two different procedures.

Second, differently from most studies which focused on the

differential diagnosis between PD and classical ET syndrome,

we included in the study only patients ET patients with tremor

at rest (rET), whose differential diagnosis represents a higher

clinical challenge. Finally, to minimize potential misdiagnosis and

thus increase the reliability of our findings, all patients included

in the study had the clinical diagnosis supported by DaTscan

(abnormal with a typical pattern in tPD patients and normal in

rET patients).

The main limitations to this study are the relatively limited

sample size and the lack of an independent validation cohort.

In this study, the performances of the ML models were assessed

using 5-fold cross-validation with 5 repetitions thus calculating the

mean AUC on unseen data (data not used to train the models)

and increase the reliability of the findings. However, future studies

to validate the performances of these models based on structural

MR data and sEMG in independent patient cohorts are needed.

Second, a relative limitation is the limited explainability of gradient

boosting machines when it comes to individual predictions (30).

We employed themodel-agnostic permutation approach to provide

information on the features contributing most to the prediction.

Although this is a robust and widely used approach to assess the

impact of a feature on the model’s performance (35), it describes

the global behavior of the model without considering interactions

among features. Recent explainable machine learning algorithms

can provide information on the features used for prediction at

the individual level and may represent a step toward increasing

the confidence of clinicians with ML models. Finally, a limitation

to the immediate widespread use of such biomarkers is the

complexity of ML approaches, which require high-level expertise

and technology and are thus not yet suitable for clinical routine;

however, there is a huge interest in ML use in the medical field

for diagnostic and prognostic purposes, making these approaches

likely available in clinical practice in the near future through

automatized and user-friendly tools. In this context it is of high

relevance the source of data included into the machine learning

models, which should not contribute limiting the feasibility of such

ML approaches. In this study, we developed an extremely accurate

model including only electrophysiological data and structural MRI

data obtained from T1-weighted images, without any specific

MR sequence and any nuclear medicine procedure, hopefully

allowing a larger use of such biomarkers. Future studies may

investigate the usefulness of combining electrophysiology with

other bedside testing (i.e., sniffing tests, Rem Behavior Disorder

Questionnaires, or brain sonography), or with specific MRI

techniques such as iron-sensitiveMRI, in differentiating among rest

tremor syndromes.

5 Conclusion

In conclusion, this is the first study combining MRI data

and RT electrophysiological data to accurately distinguish between

rET and tPD patients in vivo. This finding, if further validated

into independent cohorts, may have a positive impact on tremor

diagnosis, also translating into economic advantages by reducing

the use of expensive procedures such as dopamine imaging.
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