
Frontiers in Neurology 01 frontiersin.org

The current landscape of 
machine learning-based 
radiomics in arteriovenous 
malformations: a systematic 
review and radiomics quality 
score assessment
Audrey A. Grossen 1, Alexander R. Evans 1, Griffin L. Ernst 1, 
Connor C. Behnen 2, Xiaochun Zhao 1 and Andrew M. Bauer 1*
1 Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 
United States, 2 Data Science and Analytics, University of Oklahoma, Norman, OK, United States

Background: Arteriovenous malformations (AVMs) are rare vascular anomalies 
involving a disorganization of arteries and veins with no intervening capillaries. 
In the past 10  years, radiomics and machine learning (ML) models became 
increasingly popular for analyzing diagnostic medical images. The goal of this 
review was to provide a comprehensive summary of current radiomic models 
being employed for the diagnostic, therapeutic, prognostic, and predictive 
outcomes in AVM management.

Methods: A systematic literature review was conducted according to the 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 
2020 guidelines, in which the PubMed and Embase databases were searched 
using the following terms: (cerebral OR brain OR intracranial OR central 
nervous system OR spine OR spinal) AND (AVM OR arteriovenous malformation 
OR arteriovenous malformations) AND (radiomics OR radiogenomics OR 
machine learning OR artificial intelligence OR deep learning OR computer-
aided detection OR computer-aided prediction OR computer-aided treatment 
decision). A radiomics quality score (RQS) was calculated for all included studies.

Results: Thirteen studies were included, which were all retrospective in 
nature. Three studies (23%) dealt with AVM diagnosis and grading, 1 study (8%) 
gauged treatment response, 8 (62%) predicted outcomes, and the last one (8%) 
addressed prognosis. No radiomics model had undergone external validation. 
The mean RQS was 15.92 (range: 10–18).

Conclusion: We demonstrated that radiomics is currently being studied in 
different facets of AVM management. While not ready for clinical use, radiomics 
is a rapidly emerging field expected to play a significant future role in medical 
imaging. More prospective studies are warranted to determine the role of 
radiomics in the diagnosis, prediction of comorbidities, and treatment selection 
in AVM management.
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Introduction

Arteriovenous malformations (AVMs) are rare vascular 
anomalies involving dysplastic arteries and veins with no 
intervening capillaries and little to no brain parenchyma. The 
annual rupture rate of AVMs has been reported to be as high as 
2–4% with re-hemorrhage rates closer to 6–7% (1–7). Current 
therapies include routine surveillance, endovascular 
embolization, microsurgery, and stereotactic radiosurgery (SRS). 
While there are clinical trials underway studying the efficacy of 
medications in AVMs, their role in management has yet to 
be fully established (8). Often, multimodality treatment of AVMs 
is warranted, using a combination of methods.

The management strategy of AVMs is controversial and 
dependent on a number of factors including patient anatomy, 
past medical history, and surgeon preference (9, 10). It is difficult 
to predict behavior of AVMs due to a large amount of 
hemodynamic heterogeneity (10, 11). A number of grading 
systems have been used to predict surgical morbidity and most 
of these are dependent on the imaging and angiographic 
appearance of the AVM. Treatment decisions are, in large part, 
made from assessment of multiple imaging modalities; most 
useful when analyzed in combination. While catheter angiography 
is diagnostic, other imaging methods such as CT, CTA, MRI, and 
MRA can provide additional information about adjacent brain 
that cannot be fully assessed with catheter angiography alone.

In the past decade, medical imaging analysis has grown to 
be  quite sophisticated. Increasing data set sizes and pattern 
recognition tools have led to the development of systems which 
allow for the conversion of images into mineable data, and can 
subsequently be used in clinical decision-making and support (12). 
The term “radiomics” was first coined in 2012 by Philippe Lambin, 
a Dutch research and radiation oncologist (13). While the field grew 
around oncology and tumor management, it has begun to expand 
to other medical niches. Today, radiomics is understood to be a 
research field of medical imaging which can utilize artificial 
intelligence (AI) to quantitatively measure parameters of the visual 
information on standard medical imaging (12, 14). Machine 
learning (ML) and deep learning (DL) methods have both been 
applied toward this goal. Applying algorithms to imaging databases 
has the potential to lead to the discovery of radiomic features 
undetectable to the naked eye which can aid in clinical decision-
making. The goal of this review was to provide a comprehensive 
summary of current radiomic models being employed for the 
diagnostic, therapeutic, prognostic, and predictive outcomes in 
AVM management. Specifically, we  aim to assess the role of 
radiomics in the clinical course of AVM patients undergoing 
imaging and/or therapeutic intervention in the context of 
conventional assessment modalities. Additionally, we describe the 
workflow of radiomics, quality of included models, current 
challenges, and future opportunities in precision medicine.

Methods

We conducted this review in accordance with PRISMA (Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses) 
guidelines (15).

Search strategy

We performed a systematic search of the PubMed and Embase 
databases to identify studies published up to April 26, 2024 using 
the terms: (cerebral OR brain OR intracranial OR central nervous 
system OR spine OR spinal) AND (AVM OR arteriovenous 
malformation OR arteriovenous malformations) AND (radiomics 
OR radiogenomics OR machine learning OR artificial intelligence 
OR deep learning OR computer-aided detection OR computer-
aided prediction OR computer-aided treatment decision). The 
clinicaltrials.gov website was also searched for existing 
clinical trials.

Articles were screened by title and/or abstract by two 
independent reviewers based on proper inclusion and exclusion 
criteria. Reviews, case reports, letters to the editor, commentaries, 
abstracts published from academic conferences, and articles not 
accessible in English were excluded. Articles were included if they 
(1) presented original research, (2) involved imaging of patients 
diagnosed with AVM (3) employed manual or automatic methods 
to segment these images and (4) identified and extracted radiomic 
features to assess in the diagnosis, therapeutic decisions, 
prognosis, or predictive models of AVM.

Data extraction and outcomes of interest

Full text review was conducted by the same two reviewers, 
with the following metrics extracted: study objectives, number of 
patients with imaging assessed, imaging modalities, scanner, the 
number of radiomic features included in the model, AI 
component, and all reported statistics from training and validation 
models [ROC AUC, Sensitivity, specificity, true positives (TPs), 
true negatives (TNs), false positives (FPs), and false negatives 
(FNs), negative predictive value (NPV), and positive predictive 
value (PPV)]. In cases in which researchers presented data for 
various models examining the same variable were tested, the 
performance metrics for the best-performing model 
were extracted.

Radiomics quality score

To qualitatively assess each article, we calculated a Radiomics 
Quality Score (RQS) for each of the included studies following the 
criteria set forth by Lambin et al. (16). In short, 16 variables were 
extracted from each study and awarded a certain amount of points 
according to the outlined criteria (16). The maximum score was 
36. If the information for a certain variable was not stated within 
the article, the study received no points or deductions for that 
particular variable.

Abbreviations: AVM, arteriovenous malformation; AI, artificial intelligence; ML, 

machine learning; DL, deep learning; AUC, area under the curve; CT, computed 

tomography; CTA, computed tomography angiography; MRI, magnetic resonance 

imaging; MRA, magnetic resonance angiography; RIC, radiation-induced changes.
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Performance metrics definitions

Training: First stage of algorithm development, in which model 
weights and biases are adjusted during continuous passes through a 
dataset to minimize error.

Testing: Second stage of algorithm development, where 
hyperparameters (e.g., learning rate) and/or feature selection can 
be  tuned. Testing dataset should be  entirely separate from 
training dataset.

Validation: Final verification of algorithm on another dataset. 
Ideally, this dataset is externally sourced from the datasets used for 
training and testing.

Accuracy (ACC): Percentage of observations in which model 
correctly predicts condition.

Sensitivity (SENS): Equivalent to true positive rate, i.e., percentage 
of observations in which model correctly predicts condition given that 
subject actually has the condition.

Specificity (SPEC): Equivalent to 1—false positive rate, i.e., 
percentage of observations in which model correctly predicts NO 
condition, given that subject does NOT actually have the condition.

Precision (PREC): Percentage of observations in which the subject 
actually has the condition, given the model predicted the subject had 
the condition, also known as positive predictive value.

Area under the curve (AUC): Calculated area under receiver 
operating characteristic (ROC) curve, which plots false positive rate (1—
specificity) vs. true positive rate (sensitivity). Area of 1 indicates perfect 
model, area of 0.5 indicates model is equivalent to random guessing.

F1 Score: Measure of the harmonic mean between sensitivity and 
precision. Also known as the Dice similarity coefficient (DSC).

Results

According to the search strategy described above, the search 
yielded a total of 167 articles. Of these, 13 studies were included in 
analysis with a total of 14 radiomic models described (Figure  1). 
Table 1 outlines the general study characteristics of each study. All of 
the included studies were retrospective in nature. Three of the studies 
(23%) dealt with AVM diagnosis and grading, 1 study (8%) gauged 
treatment response, 8 (62%) predicted outcomes, and the last one 
(8%) addressed prognosis. Table 2 reports the performance evaluation 
metrics of each study. Table 3 calculates the RQS for each study. The 
mean RQS was 15.92 (range: 10–18).

Discussion

Recent studies have examined the efficacy of radiomics in AVM 
diagnosis, prediction of epilepsy in unruptured AVMs, and 
cerebrovascular anatomical mapping for SRS planning, among others. 
Here, we discuss the workflow of radiomics in AVMs (Figure 2) along 
with its potential applications in routine use, limitations, and 
future directions.

Radiomics workflow

Radiomics analysis can be applied to virtually any image generated 
in a clinical setting. Workflow is generally divided into the following 
components: study design and planning, medical imaging, feature 

FIGURE 1

PRISMA flow diagram.
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TABLE 1 Study characteristics.

Study design Objective(s) Patients 
(N)

Imaging 
modalities

Scanner 
(Vendor)

AI 
Component

Segmentation 
method

Features 
(N)

Diagnosis and grading

Zhu et al. 

2023 (17)

Single-institution 

retrospective study

Evaluate 

hemodynamic 

differences in 

ruptured versus 

unruptured AVMs

529 (284 

hemorrhage 

AVMs, 245 

non-

hemorrhage 

AVMs)

DSA AXIOM-Artis 

(Siemens)

ML Manual 5

Shi et al. 

2021 (18)

Single-institution 

retrospective study

AVM diagnostic 

model

AVM grading 

model

305 (153 normal 

and 152 AVMs)

DSA videos UNIQ FD20 

digital 

subtraction 

biplane 

angiographic 

system 

(Philips)

DL

ML

NR 280

Zhang et al. 

2019 (19)

Single-institution 

retrospective study

Diagnosis of 

AVM-related IPH 

vs. hematomas 

from another 

origin

261 (261 IPH) NECT Sensation 16 

CT scanner 

(Siemens)

ML Manual 11

Treatment response

Meng et al. 

2021 (20)

Single-institution 

retrospective study

Prediction of 

volume reduction 

velocity following 

fractionated SRS

30 (30 AVMs) stereotactic 

MRI

1.5-T 

Magneton 

Vision 

(Siemens)

NR Automated 13

Predictive outcomes

Zhang et al. 

2024 (21)

Single-institution 

retrospective study

Prediction of AVM 

rupture risk

896 (896 AVMs) DSA NR ML Manual 4

Jiao et al. 

2023 (22)

Single-institution 

retrospective study

Prediction of 

motor deficits 

following AVM 

resection

83 (83 AVMs) MRI 3.0-T 

Magnetom 

Trio (Siemens)

DL

ML

Manual 4

Lin et al. 

2023 (23)

Single-institution 

retrospective study

Prediction of 

seizures in 

unruptured AVMs

111 (111 

unruptured 

AVMs)

T2-Weighted 

MRI

1.5-T Signa 

Cvi (GE 

Healthcare)

NR Manual 73

Zhang et al. 

2023 (24)

Multicenter 

retrospective study

Predicting rupture 

risk of AVMs

586 (368 

hemorrhage 

AVMs, 218 

non-

hemorrhage 

AVMs)

CT Revolution 

EVO (GE 

Healthcare)

ML Manual 1790

Meng et al. 

2022 (25)

Single-institution 

retrospective study

Predicting 

outcomes of SRS 

for AVM after 

partial 

embolization

130 (130 AVMs) MRI 3.0-T 

Discovery MR 

750 (GE 

Healthcare)

ML Manual 4

Gao et al. 

2022 (26)

Single-institution 

retrospective study

Predicting 

outcome of gamma 

knife radiosurgery 

for unruptured 

AVMs

88 (88 

unruptured 

AVMs)

T1-weighted, 

T1 post-

contrast, and 

T2-weighted 

MRI

3.0-T 

Discovery MR 

750 (GE 

Healthcare)

ML Manual 12

(Continued)
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extraction, data curation, data analysis, and modeling. We outline this 
general workflow and provide caveats to be mindful of when dealing 
with AVMs.

Study design and planning

The first step in radiomics analysis is the identification of a clinical 
hypothesis. After this, the appropriate region of interest (ROI) or 
volume of interest (VOI) and analysis end-points can be identified. 
For our purposes, the ROI/VOI would be the patient’s AVM. However, 
it is also possible to perform radiomic analyses on normal tissue or 
specific sections of the lesion. In these cases, study of the feeding 
arteries, intranidal features, or draining veins may be appropriate. 
Also, perfusion data to evaluate phenomena like steal or normal 
perfusion pressure breakthrough might be useful.

Medical imaging

Image acquisition
An advantage to the implementation of radiomics in AVMs is that 

it utilizes routine clinical images obtained in patient management such 
as CT, CTA, MRI, MRA, and DSA. An imaging protocol is put into 
place where medical images are obtained from large, established 
patient databases or ones that are newly created. Ideally, imaging 
protocols would be described in-depth for reported models. There are 
currently no universal standardized imaging protocols. Standardizing 
imaging protocols and/or disclosing current protocols utilized is 

necessary in order to provide reproducible and comparable results 
across studies (16). Imaging patients multiple times can also mitigate 
the variability in radiomics features seen with motion degradation 
(16, 30).

Lesion segmentation
Once identified and saved within a database, images are stored as 

their essential components. Segmentation of the ROI/VOI can then 
be performed manually or with auto-segmentation, which involves the 
use of automatic or semiautomatic algorithms. A number of studies 
have been described which utilize machine learning for AVM 
segmentation in both MR imaging and CT (28, 31, 32). Dice Similarity 
Coefficient (DSC) is one of the most commonly used performance 
metrics in the imaging segmentation literature. Unfortunately, this 
metric is not yet uniformly associated with clinical utility (3, 33). 
During the process of segmentation, the choice of which voxels, a unit 
of graphical information that defines a three dimensional space, to 
incorporate into analysis is determined. This is a crucial step as 
production of different radiomic features can result from different 
segmentation techniques (manual vs. semi-automatic vs. automatic) 
and leads to bias during analysis (16). In order to improve quality of 
the model, and limit bias, multiple segmentations by different 
algorithms or physicians can be performed (16).

Feature extraction
Qualitative and quantitative information can be  derived from 

medical images. Qualitative features are what is commonly used in 
radiological vernacular. Today, countless quantitative features can 
be identified and extracted using high-throughput computing. Feature 

TABLE 1 (Continued)

Study design Objective(s) Patients 
(N)

Imaging 
modalities

Scanner 
(Vendor)

AI 
Component

Segmentation 
method

Features 
(N)

Zhao et al. 

2021 (27)

Retrospective 

review of bAVM 

database of two 

prospective 

clinical trials 

(ClinicalTrials.gov 

Identifier: 

NCT01758211 and 

NCT02868008)

Prediction of 

epilepsy in 

unruptured AVMs

176 (176 

unruptured 

AVMs; 100 w/ 

epilepsy and 76 

w/o epilepsy)

TOF-MRA 3.0-T MR 

scanner 

(Siemens Trio)

ML Manual 15

Zhang et al. 

2019 (28)

Single-institution 

retrospective study

Prediction of 

epilepsy in 

unruptured AVMs

117 (117 AVMs) T2-weighted 

MRIs

Magnetom 

Trio 3 T 

(Siemens)

ML Manual 4

Prognosis

Jiao et al. 

2021 (29)

Retrospective 

review of bAVM 

database of two 

prospective 

clinical trials 

(ClinicalTrials.gov 

Identifier: 

NCT01758211 and 

NCT02868008)

Determination of 

AVM diffuseness

635 (635 AVMs) TOF-MRA 3.0-T MR 

scanners 

(Siemens Trio, 

Philips Ingenia 

CX, and GE 

Discovery 

MR750)

ML Automated 13

SRS, stereotactic radiosurgery; TOF, time of flight; MRA, magnetic resonance angiography; MRI, magnetic resonance imaging; CT, computed tomography; DSA, digital subtraction 
angiography; NR, not reported; DL, deep learning; ML, machine learning; NECT, Non-contrast enhanced CT; IPH, intraparenchymal hemorrhage.
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TABLE 2 Model performance metrics.

Study Training Testing Validation/final model

Zhu et al. 2023 (17)

AUC: 0.891

ACC: 0.863

SENS: 0.861

SPEC: 0.865

PPV: 0.877

NPV: 0.848

ACC: 0.849

SENS: 0.852

SPEC: 0.844

PPV: 0.881

NPV: 0.809

NR

Shi et al. 2021 (18)

Diagnosis Model:

AUC: 0.942

ACC: 0.889

SENS: 0.943

SPEC: 0.823

Grading Model:

AUC: 0.871

ACC: 0.840

SPEC: 0.866

SENS: 0.797

NR

Diagnosis Model:

AUC: 0.971

ACC: 0.937

SENS: 0.911

SPEC: 0.967

Grading Model:

NR

Zhang et al. 2019 (19)

AUC: 0.957

ACC: 0.926

SENS: 0.889

SPEC: 0.937

PPV: 0.800

NPV: 0.967

NR AUC: 0.988

Meng et al. 2021 (20) N/A N/A

AUC: 0.83

SENS: 0.75

SPEC: 0.79

Zhang et al. 2024 (21) AUC: 0.935

ACC: 0.869

SENS: 0.888

SPEC: 0.843

AUC: 0.933

ACC: 0.880

SENS: 0.914

SPEC: 0.831

AUC: 0.911

ACC: 0.840

SENS: 0.889

SPEC: 0.823
Zhao et al. 2021 (27)

Jiao et al. 2023 (22) NR NR

AUC: 0.88

SENS: 0.92

SPEC: 0.74

Lin et al. 2023 (23) NR AUC: 0.817 NR

Zhang et al. 2023 (24)

Random Forest

ROC: 0.982

ACC: 0.86

PREC: 0.99

F1 SCORE: 0.77

Random Forest

ROC: 0.893

ACC: 0.79

PREC: 0.88

F1 SCORE: 0.64

ROC: 0.779

Meng et al. 2022 (25)
AUC: 0.78

ACC: 0.74

AUC: 0.77

ACC: 0.83

AUC: 0.78

ACC: 0.74

Gao et al. 2022 (26) NR NR

AUC: 0.88

ACC: 0.80

SENS: 0.92

SPEC: 0.60

PPV: 0.81

NPV: 0.82

Zhao et al. 2021 (27) NR NR

AUC: 0.82

SENS: 0.77

SPEC: 0.82

PPV: 0.84

NPV: 0.73

ACC: 0.78

(Continued)
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extraction involves the use of manual image processing or AI to 
extract a large number of features from medical imaging via 
mathematical algorithms. After segmentation, individual features can 
be assessed for correlation to a chosen outcome. Extracted quantitative 
features can be  loosely broken into three categories: shape, signal 
distribution, and texture (34). Table  4 further categorizes these 
subgroups. Any combination of these features can lead to the 
generation of hundreds of variables from a single image (34).

One important variable to consider during feature extraction is 
the scanner type and vendor. Studies which utilize various scanners 
must take this into account as it can affect subsequent analyses and 
may not be  externally valid (30). One method to address the 
uncertainty seen between scanners and vendors is the implementation 
of phantom studies. These studies use a specifically engineered object 
which provides an optimal imaging scenario to evaluate and tune 
performance among different imaging devices (16, 30).

Data curation
This part of the workflow deals with quality analysis and is often 

the limiting stage. At this point, radiologic data can be enriched with 
the addition of other patient data including genetic, biological, and 
clinical information.

Data analysis
During analysis, all of the information incorporated into the 

algorithm (radiologic, genetic, biological, clinical) is synthesized and 
repetitive components are removed. Then, features can be compared 
and contrasted in order to examine specific outcomes.

Construction of radiomics models
Radiomics has been mostly employed in tumor pathology with 

few studies involving vascular pathology. Current AVM radiomics 
models have yet to undergo external validation and are not ready for 
clinical use. Key components of modeling include training, validation, 
and quality assessment.

Training and validation
Machine learning-based radiomics models must undergo training 

and validation before clinical use. Performance metrics are most 
commonly reported as discrimination statistics such as ROC, AUC, 
accuracy, sensitivity, specificity. There is heterogeneity in how these 
metrics are reported. Specifically, studies do not uniformly report 

statistical methods for both training and validation models. Training 
and validation models should demonstrate consistency in reported 
statistics (16). There is also confusion in commonly used terminology. 
Protocols for reporting guidelines in radiomics models and their 
validation process could lead to improved quality of these studies (14). 
Lambin et al. (16) described how to perform quality assessment of 
radiomics models at length. The mean RQS of our studies was 15.92 
(range: 10–18). This is comparable to the values of radiomics models 
in other fields (35–41).

Clinical applications of radiomics in AVMs

Diagnosis and grading
Shi et al. (18) described a hybrid machine learning/deep learning 

network which utilized temporal and spatial features from DSA videos 
to diagnose and grade AVMs. This was one of the few studies which 
studied DSA videos—arguably the most important imaging technique 
in evaluation of cerebrovascular diseases (42). While some would 
argue that the diagnosis of AVM is clear without utilizing advanced 
models, this is not always true in inexperienced centers. Particularly 
in emergency situations, a tool which aids in diagnosis could lead to 
faster treatment.

An advantage to using DSA in diagnosis is that it can provide 
in-depth detail about the cerebrovascular anatomy, including specific 
arteries feeding the AVM, venous drainage pattern, and perfusion and 
distribution patterns. Such advantages are highlighted in Zhu et al.’s 
work,32 which used machine learning analysis of DSA to evaluate 
hemodynamic differences in ruptured versus unruptured AVMs. This 
is an advantage over models of AVM diagnosis which utilize 4D-CTA 
and 3D-RA but do not allow for visualization of vascular perfusion 
and distribution within the AVM (18, 43–45). Extraction of relevant 
data from DSA videos had not been proposed prior to the work done 
by Shi et al. (18) In order to do so, they created a hybrid machine/deep 
learning model which extracted information from DSA videos by 
using automated methods to collect information on AVM perfusion 
and distribution and then combining that with information gleaned 
from intensity, texture, and wavelet radiomic features taken from 
static images.

Zhang et al. (19) produced a successful radiomics model for 
differentiating between AVM-related hematomas versus 
hematomas from a different etiology using NECT. This is a 

TABLE 2 (Continued)

Study Training Testing Validation/final model

Zhang et al. 2019 (28)
ACC: 0.822

AUC: 0.866

SENS: 0.786

SPEC: 0.769

ACC: 0.778

NR

Jiao et al. 2021 (29) AUC: 0.93

TEST #1

AUC: 0.95

ACC: 0.90

PREC: 0.81

RECALL: 0.84

F1 SCORE: 0.83

TEST #2

AUC: 0.99

ACC: 0.95

PREC:0.84

RECALL: 0.94

F1 SCORE: 0.89

NR

NR, Not Reported; N/A, Not Applicable; AUC, area under the receiver operating characteristic curve; ACC, accuracy; SENS, sensitivity; SPEC, specificity; PPV, positive predictive value; NPV, 
negative predictive value; PREC, precision; ROC, receiver operating characteristic curve.

https://doi.org/10.3389/fneur.2024.1398876
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Grossen et al. 10.3389/fneur.2024.1398876

Frontiers in Neurology 08 frontiersin.org

TABLE 3 Calculation of radiomics quality score (RQS).

Variable (maximum 
points)

Shi et al. 2021 (18) Zhang et al. 
2019 (19)

Meng et al. 
2021 (20)

Zhao et al. 
2021 (27)

Jiao et al. 
2021 (29)

Zhang et al. 
2019 (28)

Diagnosis Grading

Image protocol quality (2 points) +1 +1 +1 0 +1 +1 +1

Multiple segmentation (1 point) 0 0 +1 0 +1 +1 +1

Phantom study (1 point) 0 0 0 0 0 0 0

Imaging at multiple time points (1 

point)

+1 +1 0 0 0 0 0

Feature reduction or adjustment for 

multiple testing (3 points)

+3 +3 +3 +3 +3 +3 +3

Multivariable analysis (1 point) 0 0 +1 0 +1 +1 +1

Biological correlates (1 point) 0 0 0 0 0 0 0

Cut-off analysis (1 point) +1 +1 +1 +1 +1 +1 +1

Discrimination statistics (2 points) +2 +2 +2 +1 +2 +2 +2

Calibration statistics (2 points) 0 0 0 0 +2 0 0

Prospective study (7 points) 0 0 0 0 0 0 0

Validation (5 points) +2 +2 +2 0 +2 +2 +2

Comparison to ‘gold standard’ (2 

points)

+2 +2 +2 +2 +2 +2 +2

Potential clinical applications (2 

points)

+2 +2 +2 +2 +2 +2 +2

Cost-effectiveness analysis (1 point) 0 0 0 0 0 0 0

Open science and data (4 points) +1 +1 0 +1 +1 +1 0

Total: 36 15 15 15 10 18 16 15

Variable (maximum points) Zhang et al. 

2024 (21)

Lin et al. 

2023 (23)

Gao et al. 2022 

(26)

Zhang et al. 2023 

(24)

Jiao et al. 2023 

(22)

Zhu et al. 2023 

(17)

Meng et al. 2022 

(25)

Image protocol quality (2 points) +1 +1 +2 +1 +1 +1 +1

Multiple segmentation (1 point) 0 0 +1 +1 +1 +1 0

Phantom study (1 point) 0 0 0 0 0 0 0

Imaging at multiple time points (1 

point)

0 0 0 0 0 0 0

Feature reduction or adjustment for 

multiple testing (3 points)

+3 +3 +3 +3 +3 +3 +3

Multivariable analysis (1 point) +1 +1 +1 +1 +1 +1 0

Biological correlates (1 point) 0 0 0 0 0 0 0

Cut-off analysis (1 point) +1 +1 0 +1 +1 +1 +1

Discrimination statistics (2 points) +2 +2 +2 +2 +2 +2 +2

Calibration statistics (2 points) 0 +2 +1 +1 +1 0 0

Prospective study (7 points) 0 0 0 0 0 0 0

Validation (5 points) +2 0 +2 +3 +2 +2 +2

Comparison to ‘gold standard’ (2 

points)

+2 +2 +2 +2 0 +2 +2

Potential clinical applications (2 

points)

+2 +2 +2 +2 +2 +2 +2

Cost-effectiveness analysis (1 point) 0 0 0 0 0 0 0

Open science and data (4 points) 0 0 0 0 0 0 0

Total: 36 14 14 16 17 14 15 13
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clinically useful tool as NCET is often the first step in evaluation 
of suspected intracranial hemorrhage. Distinguishing AVM-related 
hematomas by the naked eye remains difficult and angiography 
remains the gold standard. However, angiography can be  time 
consuming and requires the use of contrast agents and patient 
cooperation. Zhang et  al. described their model as a fast, 
non-invasive method which did not require the use of contrast 
agents for diagnosis. Their model demonstrated that hematomas 
resulting from AVM had a larger diameter, coarser texture, and 
more heterogeneous composition when compared to non-AVM 
hematomas (19). Their model also outperformed interventional 
radiologists when comparing measures of specificity and accuracy 
(19). Distinguishing between AVM-related hematoma and 
hematomas from other etiologies allows for a faster, more accurate 
treatment response with targeted utilization of resources.

Treatment planning
A significant portion of the work involving ML and DL for AVM 

has been devoted to methods of delineating the AVM nidus and 
surrounding structures in preparation for radiosurgery. Specifically 
for describing methods of auto-segmentation of the ROI/VOI for 
precise SRS target planning (3, 31, 46). While these studies do not fit 
the criteria for radiomic modeling, they warrant discussion as they 
show promise for future studies.

Simon et al. (3) created the first model attempting to generate 
cerebrovascular anatomical maps in AVM patients. They provided a 
proof-of-principle study using multiple MRI sequences 
demonstrating an effective method for producing high-resolution 
images capable of differentiating not only the AVM nidus, but 
collateral vessels and surrounding parenchyma for pre-SRS planning. 
Their model was also able to differentiate those vessels that had been 
previously embolized. Wang et al. (31) also successfully described this 
method using CT.

Treatment response
It is currently unclear which AVM patients, particularly those 

with large or high-grade AVMs, could potentially benefit from DS-SRS 
(dose-staged SRS) versus VS-SRS (volume-staged SRS). A benefit for 
DS-SRS is that it allows for multiple sessions of targeted radiation as 
opposed to a single, large dose (47). Meng et  al. (20) extracted 
radiomic features from stereotactic MR images in order to predict the 
rate of nidus obliteration (volume reduction velocity) following 
DS-SRS (dose-stage SRS). They found one radiomic feature 
(SurfaceVolumeRatio) that was associated with volume reduction 
velocity. Following DS-SRS, a smaller SurfaceVolumeRatio predicted 
a higher volume reduction rate. This supported the author’s statement 
that DS-SRS is more appropriate for AVM niduses which are large and 
compact as AVM obliteration may be achieved faster (20).

FIGURE 2

Radiomics workflow.

TABLE 4 Radiomic quantitative features.

Feature Definition Examples

Shape features Geometric properties of the ROI/VOI Shape, volume, orthogonal direction maximum diameter, 

surface area, compactness, surface-to-volume ratio

First-order statistics features Distribution of the image voxel values Voxel intensity mean, median, maximum, minimum; 

asymmetry, flatness, uniformity, entropy

Second-order statistics features (aka textural 

features)

Calculation of the relationships between neighboring 

voxels via statistical methods

Spatial arrangement, intra-lesion heterogeneity

Higher-order statistics features Features obtained via statistical methods after the 

application of filters or mathematical algorithms

Identification of repetitive or non-repetitive patterns, 

noise suppression, highlighting details
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Predictive outcomes and prognosis
Three of the included studies predicted epilepsy in unruptured 

AVMs (23, 27, 28). Zhao et  al. (27) retrospectively reviewed the 
database of 2 prospective clinical trials in order to accurately predict 
epilepsy from TOF-MRAs. Zhang et  al. (28) and Lin et  al. (23) 
produced similar results with T2-weighted MR imaging. Early 
prediction of seizure development in unruptured AVMs could lead 
to a change in management advocating for more 
aggressive intervention.

To date, two radiomics models have been reported that assess the 
risk of rupture in AVM patients, utilizing DSA and CT imaging (21, 
24). In young adults, AVMs are one of the most common causes of 
intracranial hemorrhage (ICH) resulting in a morbidity rate of 
30–50% and a mortality rate of 10–15% (18, 48). While the yearly 
rupture rate of AVMs is about 2–4%, prognostic factors that alter this 
risk are uncertain.

AVM diffuseness is a prognostic factor of microsurgical resection 
and has been associated with hemorrhagic risk (29). However, this 
value can sometimes be hard to quantify and exist along a spectrum. 
Jiao et  al. (29) developed a machine learning algorithm that was 
capable of determining diffuseness from extracted first-order 
statistical radiomic features on 3D TOF-MRA. This could help stratify 
patients before surgical intervention.

Other ML approaches have been described in the prognosis of 
AVM management. Following SRS, it can take up to 3 years for an 
AVM to be fully obliterated (46). In this time period, it is important 
for these patients to remain under clinical surveillance for brain 
edema and other radiation effects. Meng et al. (25) and Gao et al. 
(26) described radiomics models utilizing MRI for predicting 
outcomes of SRS after partial embolization and gamma knife 
radiosurgery, respectively. Moreover, although not in the realm of 
radiomics, Yang et al. (32) and Peng et al. (46) both described ML 
algorithms that were capable of predicting radiation-induced 
changes following SRS. Using T2-weighted MR images, Yang et al. 
(32) calculated the volume and proportion of brain parenchyma 
within the 12 Gy radiosurgical volume (V12) in patients with 
unruptured AVMs and previous SRS. They found that the volume 
of brain parenchyma within the 12 Gy radiosurgical volume (V12) 
following SRS was associated with both early and late radiation-
induced changes (32). Similarly, Peng et  al. (46) developed an 
algorithm which was capable of automatically segmenting different 
regions within the prescription isodense region. This could predict 
adverse effects in the latency period. Interestingly, radiomics 
analyses may also target specific outcomes, as Jiao et  al. (22) 
described deep and machine learning methods for predicting motor 
deficits following AVM resection. These findings underscore the 
utility of radiomics in postoperative care.

Future directions

Radiomics in AVM management is still in its infancy. However, 
the described radiomics models in our analysis show great promise 
for the future.

Precision medicine
In the era of precision medicine, radiomics has the potential to 

tailor AVM management as individual patient data can 

be converted to digital images and mineable data. It is feasible that 
radiomics will become routine practice in the future as these 
analyses are intended to be  conducted with standard of care 
medical images (12). Eventually, it is possible that radiomics can 
personalize AVM management by selecting the most appropriate 
therapy for each patient and identify more rapidly if it is not 
working. An area of particular interest would be  the use of 
radiomics to guide treatment of high-grade AVMs, which currently 
involves considerable debate (49). Radiomics could also assist in 
the assessment of AVM genetics. The combination of radiological 
data and genetic data is known as radiogenomics. AVMs represent 
an interesting pathology for implementation of radiogenomics 
given recent findings in genetic biomarkers.

Specific to AVMs, the ability of radiomics to handle large 
volumes of data could lead to both better predictive models 
describing the natural history as well as treatment response and 
success. For instance, utilizing quantitative magnetic resonance 
angiography, flow rates in the feeding arteries and draining veins 
could be  calculated. At this time, it is unknown if these 
measurements are predictive of rupture or predict a positive or 
negative treatment outcome (50–52). Due to the large amount of 
data, it is difficult to determine these relationships manually. Using 
radiomics, ML and AI could easily be  used to study these 
parameters over a much larger data set.

Artificial intelligence in AVM management and 
other cerebrovascular diseases

A large part of the growing field of radiomics is the integration of 
AI methods into models. It is important to note that the goal of AI is 
not to replace physicians; rather it acts as a clinical tool. One study 
showed that a combined model incorporating both a clinical and 
radiomics model performed better than either model alone (27). In its 
most basic form, AI is any technology that uses explicit programming 
codes in an attempt to mimic human behavior. The fact that a code 
would have to be written for any and every given scenario, makes it 
rudimentary and non-ideal for AVM management as many thousands 
of variables could be present given an individual’s anatomy and past 
medical history. Machine learning (ML) is a subset of AI. It is more 
sophisticated as it does not rely on explicit programming. Instead, the 
machine is able to learn the programming rules. However, it is not a 
fully intelligent method as humans are still defining the features of the 
programming. One advantage of AI in radiomics studies is the 
elimination of bias. Evaluation of these films by the operating surgeon 
or radiation oncologist often introduces bias as that physician already 
may have a preconceived notion of what they would like to do. 
Similarly, they may be  biased toward one treatment outcome or 
another. Radiomics would allow the use of objective data to evaluate 
treatment outcomes and surgical risk, eliminating this type of bias.

Deep learning (DL) is a subset of ML inspired by the brain’s 
biological neural networks. This technology has the capability to 
create its own neural networks. When this neural network has 
multiple layers, it is called a deep neural network. A recent meta-
analysis examining DL in neurosurgery showed promising results of 
DL models (53). However, their review demonstrated that aside from 
public databases, there was a paucity of readily available data (53). 
Especially when dealing with large data stores, large-scale data sharing 
is necessary to promote transparency, create reproducible results, and 
mitigate bias (53).
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Study limitations

Limitations of the included studies pertain to the rarity of 
AVMs. This is overcome, in part, by the large amount of data that 
can be extracted from a single image. While ML and DL systems 
require hundreds to thousands of training examples before 
outputting predictions, MRIs contain hundreds of slices so the 
imaging from a relatively small number of patients is adequate (3). 
Nonetheless, validating these models still requires an ample set of 
AVM patients. There is also a heterogeneous nature to the 
pathology and patients differ considerably in prior symptom (e.g., 
seizure, hemorrhage) and treatment course (e.g., prior 
microsurgery, SRS, embolization). Detailed patient demographics 
can help subclassify these patients in the future. Many of the 
current models also have to exclude patients with other 
neurological diseases such as moyamoya and brain tumors, which 
could lead to bias during validation of the model.

Limitations of our analysis include a small amount of included 
studies. The limited number of studies and heterogeneity of current 
literature precluded us from performing a meta-analysis of the 
included studies. Additionally, the RQS score was originally created 
for radiomics within oncology. However, it is a widely applicable 
assessment for radiomic models. In the future, a quality assessment 
model for radiomic models specific to AVM may be suggested.

Conclusion

The authors’ results demonstrated that radiomics is currently 
being studied in different facets of AVM management. Additionally, 
other ML/DL studies are paving the way for other predictive models. 
More prospective studies are warranted to determine the role of 
radiomics in the diagnosis, prediction of comorbidities, and treatment 
selection in AVM management. Further collaborative efforts between 
neurosurgeons, radiologists, biomedical engineers, and data scientists 
has the potential to result in algorithms that successfully assess AVMs 
and individualize patient management.
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