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Dizziness and postural instability are frequently observed symptoms in patient 
with Parkinson’s disease (PD), potentially linked to vestibular dysfunction. 
Despite their significant impact on quality of life, these symptoms are often 
overlooked and undertreated in clinical practice. This review aims to summarize 
symptoms associated with vestibular dysfunction in patients with PD and 
discusses vestibular-targeted therapies for managing non-specific dizziness 
and related symptoms. We conducted searches in PubMed and Web of Science 
using keywords related to vestibular dysfunction, Parkinson’s disease, dizziness, 
and postural instability, alongside the reference lists of relevant articles. The 
available evidence suggests the prevalence of vestibular dysfunction-related 
symptoms in patients with PD and supports the idea that vestibular-targeted 
therapies may be effective in improving PD symptoms.
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1 Introduction

Parkinson’s disease (PD) is a neurodegenerative disease with a slow rate of progression 
primarily characterized by movement disorders, including resting tremors, rigidity, and 
bradykinesia. These symptoms often stand out prominently and have consistently been the 
primary focus of attention and treatment for most healthcare professionals. In contrast, 
dizziness and balance disorders are often overlooked as common symptoms in the elderly. 
Nevertheless, the prevalence of dizziness in patients with PD is twice higher than in normal 
elderly individuals (1), and the prevalence of balance disorders is indisputably higher, which 
greatly affects their quality of life (QoL) and urgently requires adequate attention and treatment.

The vestibular system, which integrates visual, proprioceptive, and vestibular signals, 
is the largest sensory system in the human body and is crucial for maintaining postural 
equilibrium and spatial orientation (2). Vestibular dysfunction is prevalent in PD (3–6) 
increasing the risk of falls (2, 7, 8). It is associated with dizziness, imbalance, gaze 
instability, and spatial disorientation, significantly affecting the QoL of patients (9, 10). 
The symptoms associated with vestibular dysfunction in patients with neurodegenerative 
diseases, including impaired balance, dizziness, and spatial disorientation, have recently 
been discussed (10). In addition, the anatomical and functional correlations between PD 
and vestibular system dysfunction have also been assessed (4). However, few reviews have 
focused on vestibular dysfunction-associated symptoms in patients with PD. Moreover, 
by integrating vestibular assessment and targeted therapeutic approaches into clinical 
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practice, healthcare professionals can provide more nuanced and 
comprehensive care for patients with PD. Therefore, in this review, 
we summarize the clinical characteristics of vestibular dysfunction-
related symptoms in patients with PD and explore vestibular-
targeted therapies for nonspecific dizziness of PD with the aim of 
bridging the gap between identifying vestibular dysfunction and 
its effective management in PD.

2 Symptoms of vestibular dysfunction 
in patients with PD

Vestibular dysfunction in PD might be associated with motor 
symptoms, including postural instability, Pisa syndrome, freezing of 
gait, abnormal eye movement, and non-motor symptoms such as 
dizziness, sleep disturbances, mood abnormalities, and cognitive 
impairment (Figure 1).

2.1 Associations between vestibular 
dysfunction and motor symptoms of PD

Resting tremors, limb rigidity, bradykinesia, postural 
abnormalities, gait dysfunction, and axial symptoms are established 
markers of disability in patients with PD. They usually manifest as a 
stooped or externally flexed posture, with reduced or increased 
variability in stride length and gait speed. As the main sensory system 
in maintaining balance and gait, the vestibular system might 
be involved in the mechanisms that drive such anomalies. Accordingly, 
vestibular laboratory tests have substantiated various such 
abnormalities in patients with PD (Table 1).

2.1.1 Postural instability
Postural instability (PI) is one of the most distressing motor 

symptoms in PD and significantly increases the risk of falls (18, 19). 
Approximately 70% of patients with PD fall at least once annually (2, 
20); moreover, this instability is known to increase with PD 
progression. PI occurs in approximately one-third of patients 2 years 
after the diagnosis of PD, rising to 71% after 10 years, and reaching 
92% after 15 years (21). Vestibular signaling plays a crucial role in 
processing ego-motion information and regulating posture and 
balance (10), with vestibular dysfunction being an independent risk 
factor for falls in patients with PD and animal models (2–4). Six 
sensory integration tests using the NeuroCom Dynamic Postural 
Balance Instrument revealed that disrupted balance in patients with 
PD resulted from the inability to effectively interpret vestibular 
information independent of visual and proprioceptive integration and 
the loss of nigrostriatal dopamine during disease progression (3).

Altered vestibular-evoked myogenic potentials (VEMPs) increase 
as PD progresses to advanced stages and correlate with PI (22, 23), 
suggesting that impaired vestibular activity is a critical underlying 
factor. A prospective one-year follow-up study found that 
neurovestibular dysfunction might predict falls in at-risk patients with 
PD and imbalanced posture (12), suggesting that a baseline assessment 
using VEMPs may help predict future PI occurrence. Overall, PI in 
PD is associated with vestibular dysfunction.

Regarding anatomical localization, vestibular dysfunction in PD 
is associated with changes in the substantia nigra and 
pedunculopontine nucleus (PPN)–thalamic cholinergic innervation. 
For example, altered levels of vesicular acetylcholine transporters in 
the medial geniculate body are associated with PI and gait 
abnormalities in patients with PD (24). Cholinergic nerve endings in 
the vestibular brainstem nuclei include the caudal medial vestibular 

FIGURE 1

Symptoms associated with vestibular dysfunction in PD.
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nucleus (25). Therefore, vestibular sensory information processing 
could be  modulated by cholinergic signaling, further implicating 
vestibular dysfunction in PI development.

2.1.2 Pisa syndrome
Pisa syndrome (PS), a disabling complication of PD, is defined 

as a specific set of recoverable postural changes involving ≥10° of 
lateral trunk flexion (LTF) and vestibular defects (13, 26, 27). The 

estimated prevalence of PS in patients with PD (PDPS) is 
7.4–10.3% (28); these patients are more likely to have disordered 
balance and experience falls than those without PS (27). Therefore, 
PS severely reduces the QoL of patients and can lead to fractures 
and death, especially during advanced stages. As the primary 
system involved in regulating postural balance, vestibular 
dysfunction might be associated with PS development in patients 
with PD (29, 30).

TABLE 1 Summary of studies associated with abnormal vestibular laboratory findings in Parkinson’s disease (PD).

Study Groups Outcome measure Proportion of patients with each characteristic

Venhovens et al. (2) Patients with PD (n = 30)

Patients with AP (n = 14)

HCs (n = 25)

oVEMPs, cVEMPs, BAEPs, 

SVV, VNG

Evidence of vestibular dysfunction in laboratory examinations in patients with 

PD (90%)

Falling at least once per year (37%)

Orthostasis (27%)

Postural instability (82%)

FoG (45%)

Bohnen et al. (3) Patients with PD (n = 106)

HCs (n = 29)

The six conditions of the SOT Disequilibrium in patients with PD (68%)

Shalash et al. (7) Patients with PD (n = 15)

HCs (n = 15)

oVEMPs, cVEMPs, BAEPs Absence of ACS oVEMPs in patients with PD (47%)

Absence of ACS cVEMPs in patients with PD (20%)

Abnormal BAEP wave morphology in patients with PD (53%)

Hawkins et al. (8) Patients with PD (n = 40)

HCs (n = 40)

oVEMPs, cVEMPs, SVV Bilateral absence of BCV cVEMPs in patients with PD and HCs (15% vs. 0%, 

respectively)

Significant reduction in BVC oVEMP amplitude in patients with PD than in 

HCs (13.20 μV vs. 16.04 μV, respectively)

More abnormal SVV responses in patients with PD than in HCs (23/40 vs. 

11/40, respectively)

Reichert et al. (11) Patients with PD (n = 36)

HCs (n = 316)

Bithermal caloric testing and 

ENG

Reduction or absence of caloric nystagmus in patients with PD (64%)

Venhovens et al. (12) Patients with PD (n = 30)

Patients with AP (n = 14)

HCs (n = 25)

VEMPs, BAEPs, SVV, VNG Patients with a history of falls (37%)

Vitale et al. (13) Patients with PD with LTF 

(n = 11)

Patients with PD without 

LTF (n = 11)

VNG Abnormal vestibular examination results in all patients with PD with LTF 

(100%)

Unilateral vestibular hypofunction in patients with PD without LTF (36%)

Di Lazzaro et al. (14) Patients with PD (n = 15)

Patients with PDPS (n = 15)

HCs (n = 30)

cVEMPs Unilateral absence of cVEMPs in patients with PD and PDPS (26% vs. 12%, 

respectively)

Bilateral absence of cVEMPs in patients with PD and PDPS (6% vs. 40%, 

respectively)

Scocco et al. (15) Patients with PD (n = 9)

Patients with PDPS (n = 8)

HCs (n = 18)

SVV SVV deviations in patients with PDPS or PD

Gandor et al. (16) Patients with PD without 

LTF (n = 9)

Patients with PD with LTF 

(n = 21)

SVV Normal SVV in patients with PD without LTF (100%)

Pathological SVV in patients with PD with LTF (67%)

Bohnen et al. (17) Patients with PD without 

FoG (n = 13)

Patients with PD with FoG 

(n = 79)

Romberg test Failure during condition 4 of the Romberg test in patients with PD without FoG 

(27.8%)

failure during condition 4 of the Romberg test in patients with PD with FoG 

(84.6%)

AP, atypical parkinsonism; ACS, air-conducted stimuli; BCV, bone-conducted vibration stimuli; BAEPs, brainstem auditory-evoked potentials; cVEMPs, cervical vestibular-evoked myogenic 
potentials; FoG, freezing of gait; HCs, healthy controls; LTF, lateral trunk flexion; oVEMPs, ocular vestibular-evoked myogenic potentials; PD, Parkinson disease; PDPS, Parkinson disease with 
Pisa syndrome; SVV, subjective visual vertical; VNG: videonystagmography. ENG, electronystagmography; SOT, sensory organization test.
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Unilateral damage to the vestibulospinal reflex arc in 
experimental animals causes an imbalance in the descending motor 
regulation system of the spinal cord, resulting in scoliosis (31). 
Bilateral vestibulospinal reflexes are defective in patients with 
PDPS, who tend to have more severe cervical VEMP (cVEMP) 
abnormalities than healthy controls, suggesting an association 
between the vestibulospinal pathway and PS pathophysiology in PD 
(14). Scocco et al. (15) found that 14 of 21 patients with PD and LTF 
had pathological subjective visual vertical (SVV) perception; 
Gandor et al. (16) reported similar results. Therefore, vestibular 
balance disorders might be involved in LTF pathophysiology. Vitale 
et al. examined 11 patients with PD and LTF and found vestibular 
hypofunction in all of them (13). These findings suggested a 
potential connection between the postural changes in PD and a 
combination of vestibular dysfunction and altered somatosensory 
integration, with vestibular dysfunction driving the mechanisms 
leading to scoliosis in PD.

2.1.3 Freezing of gait
Freezing of gait (FoG) is a unique and disabling clinical 

phenomenon characterized by brief episodes of inability to step 
forward or by extremely short steps that typically occur on initiating 
gait or turning while walking. Symptoms of FoG in patients with PD 
are also associated with vestibular dysfunction. Approximately 84.6% 
of patients experiencing FoG failed the modified Romberg 4 subtest, 
which focuses more specifically on altered vestibular function (17). 
Thus, vestibular processing deficits might pathophysiologically 
correlate with FoG in patients with PD.

Postural sensory processing, particularly of vestibular information, 
is poorer in patients with FoG, possibly due to impaired central 
processing of vestibular signals (32). Primates have a high vestibular 
response in the PPN (33). In addition, PPN connectivity can 
be enhanced via galvanic vestibular stimulation (GVS) in patients with 
PD (34), while rotational stimulation of the vestibular system might 
alleviate FoG (35). A study of four patients with PD who had 
undergone bilateral PPN and subthalamic (STN) electrode 
implantation found that deep brain stimulation (DBS) of the PPN 
improved vestibular perceptual thresholds, further confirming the 
response of PPN neurons to vestibular stimuli (36). Thus, the PPN 
might be a vestibular signal processing center within the brainstem, 
and its stimulation might improve posture and gait in patients with 
PD by modulating vestibular signals, thereby reducing the risk of 
falling. However, definitive proof of a causal relationship between FoG 
and impaired vestibular processing is lacking and further investigation 
is required.

2.1.4 Eye movement abnormalities
The vestibular system controls not only gait and posture but also 

eye movements, mainly through the vestibular-ocular reflex (VOR), 
which detects head movements and maintains image stability on the 
retinal fovea. Pathological changes involving the formation of Lewy 
bodies induced by the immune response to α-synuclein, the vestibular 
nucleus, oculomotor nucleus, and basal and upper ganglia affect 
saccadic and microsaccadic eye movements (37). Coincidentally, 
evidence of VOR abnormalities have been reported in many early 
studies of PD (4, 38).

A study of eye movements in 35 patients with idiopathic PD 
using videonystagmography (VNG) revealed visual and vestibular 

motoneuron abnormalities (39). Similarly, patients with PD 
exhibited poorer stereopsis and impaired oculomotor behaviors, 
as assessed using a three-dimensional active shutter system and 
Tobii Eye Tracker, respectively (40). Large meta-analyses have also 
confirmed the occurrence of increased response latencies in pro- 
and anti-saccade tasks in patients with PD (41, 42). A cross-
sectional study of oculomotor performance found prolonged 
saccadic latencies, poorer saccadic accuracy, and lower gain in 
smooth pursuit eye movement (SPEM) in patients with de novo 
PD compared with those in healthy individuals (43). In addition, 
vestibular rehabilitation (VR) was shown to help improve the VOR 
gain (44). Therefore, eye movement abnormalities in patients with 
PD appear to be closely associated with vestibular system changes. 
However, extensive case–control studies are needed to 
confirm this.

2.2 Associations between vestibular 
dysfunction and common nonmotor 
symptoms of PD

The impact of non-motor symptoms on the QoL of patients with 
advanced PD can be more significant than that of motor symptoms 
due to a lower treatment response. Some non-motor symptoms 
associated with vestibular dysfunction are dizziness, sleep and mood 
disorders, and cognitive issues.

2.2.1 Dizziness
The prevalence of dizziness complaints among patients with PD 

(48–68%) is twice as high as that among older individuals (20–30%) 
(1, 45). A case–control study reported that patients with de novo PD 
sometimes experience dizziness for many years before disease 
diagnosis (46). Dizziness in patients with PD is most often 
attributed to orthostatic hypotension (OH) (47, 48). Accordingly, 
various cross-sectional studies have shown that 30–50% of patients 
with PD have OH (49, 50). However, many patients with PD 
without OH also complain of dizziness. This type of dizziness is 
called non-specific dizziness and refers to a symptom of feeling 
dizzy or lightheaded without a specific identifiable cause. Of note, 
non-specific dizziness is the second most prevalent type of dizziness 
after OH. A retrospective study including 80 patients with early-
stage PD (disease duration ≤5 years) found that 37 (46.3%) 
presented with dizziness, which was non-specific in 11 (29.7%) of 
the cases (1).

Although the mechanism leading to non-specific dizziness in 
patients with PD is unclear, it may be  affected by vestibular 
dysfunction. A prospective study of 84 patients with PD with and 
without OH found greater impairment of vestibular function in 
patients with dizziness compared with those without dizziness (51). 
An electronystagmographic assessment of 30 patients with PD found 
vestibular disorders in 83% of them, with a 43.3% prevalence of 
dizziness despite the absence of complaints (52).

In summary, dizziness is prevalent among patients with PD; the 
symptoms of non-specific dizziness might be  closely associated 
with vestibular system dysfunction. Thus, targeted vestibular 
therapy or improving dysfunctional vestibular-related neural 
circuits might help relieve non-specific dizziness in patients 
with PD.
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2.2.2 Sleep disorders
Vestibular dysfunction might also be linked with sleep disorders. 

A study of nine adults with abnormal sleep patterns and shorter sleep 
durations uncovered greater bilateral vestibular hypofunction in these 
patients than in healthy controls (53). A cross-sectional study of 
20,950 patients also found that 30% of individuals with vestibular 
vertigo had abnormal sleep durations; those with vestibular symptoms 
were more likely to experience insomnia or lethargy (54). Changes in 
VEMPs were found to directly correlate with rapid eye movement 
(REM), sleep behavior disorder, and PI (22). cVEMP abnormalities 
directly correlated with sleep scores in patients assessed using the 
REM Sleep Behavior Disorder Screening Questionnaire (55). 
Additionally, a small randomized controlled trial of 20 adults found 
that repeated electrical vestibular stimulation administered for 
30 min/day improved total Insomnia Severity Index scores (56). These 
results indicated that vestibular pathways could project into multiple 
sleep and circadian-regulating nuclei in the brainstem 
and hypothalamus.

Mechanistically, the vestibular system regulates circadian rhythms 
and influences sleep behaviors by converging inputs from the visual 
and somatosensory systems (57). The higher centers of the vestibular 
system include many subcortical and cortical structures (58), which 
correlate with the function of the nerve center that regulates sleep; the 
hypothalamic circadian rhythm in animals is modulated through a 
neuroanatomical pathway between the medial vestibular nuclei and 
suprachiasmatic nucleus (59). In addition to sending projections to 
the cerebellar and brainstem nuclei, glutamatergic neurons in the 
vestibular nucleus project to the sleep–wake centers associated with 
brain regions that might be involved in sleep regulation (60).

Although the precise molecular mechanisms remain unknown, 
orexin expression increases after sleep deprivation (61). Interestingly, 
sleep regulation has been reported to depend on the activity of orexin-
producing neurons in experimental animals. Orexin-producing 
neurons are closely associated with the vestibular system (62), 
supporting the correlation between the vestibular system and 
sleep regulation.

2.2.3 Mood disorders
Mood disorders are a group of psychological disorders 

predominantly characterized by abnormal emotional regulation. 
Anxiety, fear, depression, and other neuropsychiatric symptoms are 
common in the general population and among patients with PD, 
although the underlying neurobiological mechanisms are complex 
and unclear (63). Many patients with impaired vestibular function 
also have emotional disorders, including those related to anxiety and 
fear (64). These relationships are not unidirectional, as mood disorders 
such as anxiety can lead to vestibular dysfunction and vice versa.

Ventricles synthesize adrenocorticotropic hormones, participate 
in processes associated with stress and anxiety, act on the 
vestibulolateral nucleus, and help regulate postural balance. Thus, 
stress, anxiety, and balance control are closely related to vestibular 
nuclei activity (65). Clinical findings have shown that caloric 
vestibular stimulation modulates mood and affective control (66); 
for instance, unrealistic optimism was selectively reduced during 
cold caloric stimulation of the left ear (67). The underlying 
mechanism might involve the vestibular cortex, and laterality may 
also be significant.

The right hemisphere is superior in dealing with negative 
emotions (68, 69). Similarly, vestibular cortical regulation is also 
affected by hemispheric lateralization, with the right hemisphere being 
more active than the vestibular cortex projection area in the left 
hemisphere in right-handed individuals (70). Hence, the right 
hemisphere might specialize in processes associated with interpreting 
or regulating negative emotions. More specifically, the right prefrontal 
region plays a role in negative emotional regulation associated with 
vestibular stimulation (71, 72). These findings indicated that cerebral 
hemisphere lateralization plays essential roles in vestibular and 
emotional processing, thus providing a theoretical basis for the 
interaction between the vestibular system and emotional 
processing centers.

2.2.4 Cognitive challenges
Vestibular cognitive (also known as advanced vestibular) function 

is associated with visuospatial interaction, attention, executive 
function, and memory; accumulating evidence have supported a link 
between vestibular disorders and cognitive impairment in humans 
(73–75). Thus, cognitive decline in patients with PD might 
be associated with vestibular dysfunction.

Patients with PD exhibit visuospatial processing capacity deficits 
associated with aberrant neural circuitry in the frontal basal ganglia 
(76). However, this alone does not fully explain the cause of 
visuospatial deficits in PD. Similar to the basal ganglia, the vestibular 
system is also involved in spatial processing; vestibular dysfunction 
has been identified as the cause of decreased visuospatial competence 
in patients with PD (77). Patients with PD are more likely to 
experience cognitive dysfunction if they have gait and balance 
disorders; moreover, both symptoms worsen with disease progression 
(78). Dizziness might also be associated with cognitive decline in 
PD. For example, dizziness was closely associated with low Montreal 
Cognitive Assessment scores in patients with early-stage PD (1). 
Conversely, patients with refractory dizziness experienced significant 
improvement in cognitive function and dizziness-related indicators 
following VR therapy (79).

Vestibular function and cognitive processing might be linked to 
hippocampal activity (80). The hippocampus is involved in emotional 
processing closely associated with cognitive processes such as spatial 
memory (81). The human posterior hippocampus is involved in 
information processing and spatial memory, whereas the ventral 
hippocampus is responsible for emotional regulation (82).

The mechanisms underlying cognitive dysfunction in PD appear 
to be  inextricably linked to the function of the vestibular system. 
However, further investigation is required to delineate 
these relationships.

2.2.5 Other non-motor symptoms
Vestibular signal transmission and reception frequently coincide 

with those of other types of sensory information; central vestibular 
processing is promiscuous, contributing to its ubiquitous nature. Hearing 
loss has recently been recognized as an additional non-motor symptom 
of PD (83, 84). The factors affecting hearing loss are multifaceted, and 
common diseases such as otitis media with effusion also play a role in 
vestibular dysfunction (85). Hearing and balance function have certain 
neural connections and pathophysiologic mechanisms with motor 
control. Thus, neurodegeneration in PD may affect these common neural 
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pathways, leading to hearing and balance problems. Although other 
non-motor symptoms, such as perception deficits, urinary problems, and 
cardiovascular and sexual dysfunction, are seemingly unrelated to 
vestibular function, some studies have suggested associations between 
these symptoms and VEMPs (7, 22). Thus, symptoms associated with 
vestibular system dysfunction are prevalent in patients with PD. While 
the underlying mechanisms are not fully understood, current pathologic, 
physiologic, and anatomic evidence support the idea that patients with 
PD have vestibular dysfunction (Table 2).

3 Treatment options for relieving 
non-specific dizziness associated 
with vestibular dysfunction in patients 
with PD

3.1 Vestibular rehabilitation therapy

Although medications are indispensable for treating certain 
diseases, they can also cause serious side effects that might limit their 
use. In contrast, non-invasive VR therapy has been associated with 
better compliance than pharmacotherapy. Due to its consistently 
recognized effectiveness (93–95), it is now recommended in 
United States clinical practice guidelines (96). VR therapy can improve 
many PD symptoms, increasing gait speed, reducing dizziness, 
resolving balance disorders, and decreasing the frequency of falls (97–
99). VR can also improve fatigue and enhance activities of daily living 
in patients with PD (100). VR works on the vestibular system through 
repetition of specific physical exercises that activate central neuroplastic 
mechanisms to achieve adaptive compensation of the impaired 
functions (101, 102). Synaptic inhibition or membrane 
hyperpolarization of neurons in the medial vestibular nucleus leads to 
a sustained increase in intrinsic excitability, a phenomenon referred to 
as “firing rate potentiation.” This mechanism could potentially 
be  employed in vivo to facilitate behavioral plasticity (103, 104). 
Besides, balance training increases cortical thickness in visual and 
vestibular cortical regions, which favors vestibular compensation (105). 
In summary, a growing body of evidence has confirmed the positive 
effects of VR in patients with PD experiencing dizziness and balance 
disturbances, including (1) augmenting vision and proprioception to 

compensate for the vestibular loss, (2) developing compensatory 
strategies in situations of imbalance, and (3) developing substitution 
strategies to assist with gaze stability. Moreover, virtual reality and 
other technologies will continue to evolve and become more frequently 
applied in VR therapy, offering promising clinical applications.

3.2 Galvanic vestibular stimulation

The application of GVS for treating PD has attracted considerable 
attention because of its ease of management, non-intrusive nature, 
affordability, favorable safety profile, and minimal side effects. It is 
currently recognized as enhancing PD symptom improvement through 
vestibular-targeted therapy. Vestibular stimulation has been shown to 
result in the activation of multiple cortical regions (106), with GVS 
repeatedly achieving PD symptom amelioration (4, 107). Near-threshold 
stochastic vestibular stimulation can improve postural control in patients 
with PD (108, 109). Case reports have also suggested that suprathreshold 
GVS could improve postural reflexes (110), with repetitive caloric 
vestibular stimulation resulting in lasting motor and non-motor 
symptom improvement (111). Both noisy and sinusoidal GVS patterns 
can aid balance control by increasing the PPN connection amplitude (34).

Galvanic vestibular stimulation has also been used to treat 
dizziness (112) in patients with bilateral vestibular disorders. Significant 
neural activity in cortical areas involved in vestibular processing is 
associated with the severity of dizziness-related disability (113). The 
underlying mechanism likely involves a central role of the vestibular 
cortical network. These results were further validated in a functional 
imaging study (114). Therefore, GVS can not only help improve 
postural imbalance in PD, but also help reduce non-specific dizziness.

3.3 Repetitive transcranial magnetic 
stimulation

Repetitive transcranial magnetic stimulation (rTMS) is a 
non-invasive, painless, and non-destructive extracranial 
neuromodulation technology that has become the primary adjuvant 
therapy for PD in clinical practice (115), especially for complications 
arising from pharmacotherapies. Of note, rTMS has been shown to 

TABLE 2 Possible mechanisms of vestibular dysfunction in Parkinson’s disease (PD).

Pathological aspects

Parkinsonian neuropathological changes that occur in the vestibular nuclear complex, including the formation of Lewy bodies and Lewy neurites (5), reduced abundance of 

non-phosphorylated neurofilaments, and increased lipofuscin accumulation (6)

Physiological aspects

PD might include the modulation of vestibular nucleus excitability by dopaminergic systems (86). Small-conductance calcium-activated potassium (SK) channels expressed 

by dopaminergic neurons project directly to the vestibular nucleus (VN) and are involved in the homeostatic regulation of the vestibular system. Dopaminergic neurons in the 

substantia nigra are regulated by SK channels in rodent models of PD (87)

Anatomical aspects

PD includes reduced neuronal activity in the visual region of the cingulate gyrus on functional neuroimaging evaluations, which correlate with disease severity (88). The 

visual region of the cingulate gyrus is a key site for the integration of vestibular and visual inputs. (89). A study of balance and postural abnormalities in 10 patients with PD 

found that balance and postural control significantly improved after 8 weeks of upper extremity motor training, and functional imaging assessment revealed increased 

connectivity between the bilateral pallidum and the posterior part of the right cingulate gyrus (90). This suggests that vestibular information is conveyed to the cerebral cortex 

and might play a role in PD development. Some electrophysiological and neurotracer studies have also confirmed vestibular projections to the parafascicular thalamus (91, 

92), suggesting that vestibular information is transmitted to the cerebral cortex and the striatum
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reduce motor symptoms and improve psychiatric symptoms, 
including anxiety and depression (116–118). Coincidentally, anxiety, 
depression, and stress commonly coexist with PD and can exacerbate 
dizziness symptoms. Psychological factors can amplify perceived 
dizziness severity and contribute to functional impairment. 
Therefore, rTMS may be effective in patients with PD who have 
non-specific dizziness, especially those with comorbid depression.

Moreover, rTMS has also been clinically applied to treat dizziness 
from other causes. A case study found that symptom severity was 
reduced by at least 50% after rTMS treatment over 3 months in a patient 
with chronic dizziness and persistent postconcussive symptoms (119). 
Eight women with a history of classic mal de débarquement syndrome 
were administered rTMS for 3 weeks in a prospective, double-blind, 
placebo-controlled study. They experienced significant improvements 
in various symptoms, including dizziness, mood disturbances, and 
anxious behaviors, achieving an approximate ten-point reduction in 
their Dizziness Handicap Inventory (DHI) scores (120). Therefore, 
we suggest that for patients with PD experiencing significant dizziness 
and depressive symptoms may benefit from daily sessions of rTMS 
lasting half an hour each, administered over a course of 1 to 3 months. 
This treatment approach could potentially help improve the patients’ 
symptoms of dizziness. However, the use of rTMS for treating 
non-specific dizziness in patients with PD has not been extensively 
studied. It is hoped that future large-scale clinical trials will be designed 
to confirm its effectiveness in this regard.

3.4 Deep brain stimulation

Deep brain stimulation (DBS) is an effective treatment for 
advanced PD (121–123). The relationship between DBS and 
vestibular function has recently attracted the interest of researchers. 
The cerebellum and vestibule work in tandem to assist in gaze 
stabilization and orientation for motion perception, thereby 
maintaining balance, with the cerebellum projecting directly to the 
ventroposterior and ventrolateral thalamus through the 
vestibulothalamic pathway (124). A study investigating 
DBS-induced changes in the thalamic ventral intermediate nucleus 
confirmed that SVV perception was altered during active electrical 
stimulation (125). DBS significantly improved vestibular 
discrimination accuracy and threshold in the rightward direction 
in patients with PD compared with that in healthy controls (126). 
Therefore, subthalamic DBS might exert differential effects on the 
vestibular and visual perception of linear motion in patients with 
PD. The effects of STN stimulation have also been investigated in 
a study of medial and caudal DBS electrode contact in five patients 
with PD (127). The patients described compromised rotational 
motion perception in the plane of the horizontal semicircular 
canal; one stated having the feeling of sitting on a swing. The latter 
form of complex perception impairment might be  due to the 
combined stimulation of fibers from the vertical semicircular 
canals and otolith-derived signals, representing pitch and fore-aft 
motion, respectively. These findings provided new insights into the 
counterintuitive implementation of DBS for treating vertigo and 
imbalance caused by abnormal motion perception. Collectively, 
these studies suggested that treatment for enhancing vestibular 
function might be helpful for such patients.

4 Conclusion

Vestibular dysfunction is prevalent among patients with PD; 
however, the underlying mechanisms are poorly understood. Targeted 
treatment of vestibular-related symptoms might alleviate PD 
symptoms and enhance the QoL of patients.

Two major themes have emerged in the literature. One emphasizes 
the clinical challenges of vestibular dysfunction in PD, with an urgent 
need for better characterization of its symptoms. Vestibular dysfunction 
in PD may be linked to motor symptoms like PI, PS, FoG, abnormal eye 
movements, as well as non-motor symptoms such as dizziness, sleep 
disturbances, mood changes, and cognitive impairment. The second 
emphasizes what vestibular dysfunction reveals about PD regarding 
disease staging and distribution, and its role as an adjunctive assessment 
of PD prognosis. Further investigation in this area will have implications 
beyond the symptoms themselves to broader issues, such as non-specific 
dizziness in PD, cognitive decline, and developing new treatments for 
such symptoms in PD and other clinical situations. Future studies could 
use this as a starting point and focus on assessing whether targeted 
treatment of the vestibular system can delay PD progression, potentially 
facilitating the exploration of improved clinical approaches.
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