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Background: It is vital to accurately and promptly distinguish unstable from 
stable intracranial aneurysms (IAs) to facilitate treatment optimization and avoid 
unnecessary treatment. The aim of this study is to develop a simple and effective 
predictive model for the clinical evaluation of the stability of IAs.

Methods: In total, 1,053 patients with 1,239 IAs were randomly divided the 
dataset into training (70%) and internal validation (30%) datasets. One hundred 
and ninety seven patients with 229 IAs from another hospital were evaluated 
as an external validation dataset. The prediction models were developed using 
machine learning based on clinical information, manual parameters, and 
radiomic features. In addition, a simple model for predicting the stability of IAs 
was developed, and a nomogram was drawn for clinical use.

Results: Fourteen machine learning models exhibited excellent classification 
performance. Logistic regression Model E (clinical information, manual 
parameters, and radiomic shape features) had the highest AUC of 0.963 (95% 
CI 0.943–0.980). Compared to manual parameters, radiomic features did 
not significantly improve the identification of unstable IAs. In the external 
validation dataset, the simplified model demonstrated excellent performance 
(AUC  =  0.950) using only five manual parameters.

Conclusion: Machine learning models have excellent potential in the classification 
of unstable IAs. The manual parameters from CTA images are sufficient for 
developing a simple and effective model for identifying unstable IAs.
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Introduction

With the increasing availability and quality of noninvasive imaging modalities, a 
growing number of intracranial aneurysms (IAs) are being detected (1, 2). Computed 
tomography angiography (CTA) remains the first-line imaging modality due to its features 
of being noninvasive, fast, cost-effective and wide availability. Most IAs are asymptomatic, 
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but once ruptured, they can lead to subarachnoid hemorrhage 
(SAH). The mortality and morbidity of aneurysmal SAH are high 
worldwide, and the 1-year mortality rate can reach 65% 
(untreated), while approximately half of the survivors are left with 
permanent neurological deficits (3, 4). Prophylactic treatment of 
unruptured IAs via endovascular therapy (EVT) or neurosurgical 
therapy (NST) can decrease the risk of SAH. However, a systemic 
review revealed that the clinical complication risk and case fatality 
rate from EVT were 4.96 and 0.30%, respectively, and those from 
NST were 8.34 and 0.10%, respectively (5). Therefore, the risk of 
an unruptured IA treatment should be  balanced with the risk 
of rupture.

The processes leading to IA development and rupture are poorly 
understood. However, the rupture rate of growing unruptured IAs is 
significantly increased, and patients with IA growth should be strongly 
considered for treatment (1, 2, 6, 7). In addition, patients with 
symptomatic unruptured IAs and a history of aneurysmal SAH also 
have a significantly increased risk of rupture (1, 7–10). Hence, in 
clinical work, it is vital to accurately and promptly distinguish unstable 
from stable IAs to facilitate treatment optimization and avoid 
unnecessary treatment.

In recent years, machine learning and radiomics-based studies 
have been used to identify risk factors for IA. Furthermore, various 
rupture and instability classification models for IAs have been 
proposed (11–18). These studies indicate that machine learning 
models may help identify potentially ruptured IAs. However, only a 
few studies have constructed models for the stability of IAs (11, 13). 
Hence, the purpose of this study was to develop a simple and effective 
classification model using machine learning based on patient clinical 
information and CTA images to assist in the clinical evaluation of the 
stability of IAs. The main steps of this study framework are shown in 
Figure 1.

Materials and methods

Patients

This retrospective study was approved by our institutional ethics 
committees, and the requirement for informed consent was waived. 
We retrospectively reviewed the medical records and imaging data in 
our hospitals from August 2011 to May 2021. The inclusion criteria 
were as follows: (1) aged older than 18 years, (2) had a diagnosis of 
saccular IA, and (3) had accessible clinical and radiological data. The 
exclusion criteria were as follows: (1) a diagnosis of an infectious, 
traumatic, fusiform, or dissecting IAs; (2) combined with other 
vascular diseases (e.g., moyamoya disease and arteriovenous 
malformations); and (3) absence of clinical data or high-quality 
radiological data and surgery or interventional therapy prior to the 
CTA examination.

All IAs met the aforementioned inclusion criteria and were 
divided into 2 groups: stable IAs and unstable IAs. The criteria for 
unstable IAs included (1) a history of SAH (ruptured but untreated), 
(2) rupture, growth or gross evolution (e.g., formation of blebs and 
lobes) during follow-up, and (3) neurologic symptoms (e.g., sudden 
headache or blepharoptosis) related to the IA. The ruptured IA was 
confirmed based on operative findings, angiography, or hemorrhage 
patterns of nonenhanced CT. When patients with multiple IAs and 
clinical symptoms, but could not determine which IA caused the 
symptoms, ruling out other causes of symptoms, the largest IA was 
then identified as the responsible IA for the patients’ neurological 
symptoms (1, 7–10, 19, 20). For IAs discovered by chance, stable IAs 
were diagnosed by follow-up of ≥3 months using magnetic resonance 
angiography (MRA) or CTA (11, 13). Clinical information, such as 
hypertension or diabetes mellitus, were collected. Finally, a total of 
1,053 patients with 1,239 IAs (683 unstable, 556 stable) were 

FIGURE 1

Main steps of the study framework. IAs, intracranial aneurysms; ROI, region of interest; ICC, intraclass correlation coefficient; LASSO, least absolute 
shrinkage selection operator; ROC, receiver operating characteristic; LR, logistic regression; KNN, k-nearest neighbors; SVM, support vector machine.
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retrospectively enrolled to develop classification models, and 197 
patients from another hospital with 229 IAs (106 unstable, 123 stable) 
were used as the external validation set.

Acquisition of manual parameters

All the CTA images were acquired from a 64-channel 
multidetector CT scanner with a section thickness of 0.625 mm and a 
reconstruction interval of 0.625 mm. The images were subsequently 
transferred to a GE Advantix workstation (Advantage Windows 4.5) 
to generate 3D volume renderings (VRs) and maximum intensity 
projections (MIPs). Manual parameters were measured directly from 
3-dimensional CTA images according to previous definitions (19, 20). 
All the images were examined by two experienced neuroradiologists. 
Continuous data were calculated as the means, while any differences 
in categorical data were reassessed by a third reader (an observer with 
20 years of experience in neuroradiology) for subsequent statistical 
analysis. And Inter-rater interclass correlation (ICC) was used to 
evaluate the inter-observer reproducibility.

Twenty-one manually identified and measured parameters (called 
manual parameters herein) were obtained from the CTA images of 
each IA: multiplicity; location, which was divided into 6 categories 
[internal carotid artery (ICA), middle cerebral artery (MCA), anterior 
cerebral artery (ACA), anterior communicating artery (ACoA), 
posterior communicating artery (PCoA), and posterior circulation 
artery (PCA)]; IA size (neck width, depth, width, height, maximum 
size); IA morphology (irregular shape, which was defined as one that 
was not smooth or that presented with lobular or daughter sac); and 
8 secondary geometric morphology indices: aspect ratio (AR, depth/
neck width), AR1 (height/neck width), size ratio (SR, depth/parent 
artery diameter), SR1 (depth/mean artery diameter), SR2 (maximum 
size/mean artery diameter), SR3 (maximum size/parent artery 
diameter), depth-to-width ratio (DW, depth/width) and bottleneck 
factor (BF, width/neck width); IA origin (sidewall or bifurcation); and 
parameters related to the parent artery, including the parent artery 
diameter, mean artery diameter and the flow angle (FA) (13, 19, 20).

Radiomic feature extraction

Each IA was defined as a region of interest (ROI) and manually 
segmented by 2 experienced neuroradiologists who were aware of 
the location of the IA on each slice of the CTA images. Then, 30 
aneurysms were randomly selected to be re-segmented by another 
neuroradiologist. We  calculated the inter-rater interclass 
correlation ICC to evaluate the inter-observer reproducibility. All 
ROIs were segmented slice by slice on three orthogonal views using 
the Dr. Wise Multimodal Research Platform.1 Subsequently, 2,107 
radiomic features were automatically extracted for each ROI using 
the open-source “PyRadiomics” Python package (21). In this study, 
radiomics features were divided into two parts: 14 radiomic shape 
features and a large number of radiomic non-shape features. The 
radiomic non-shape features were as follows: 18 first-order 

1 https://keyan.deepwise.com

features, 22 gray-level cooccurrence matrix (GLCM) features, 16 
gray-level size zone matrix (GLSZM) features, 16 gray-level run 
length matrix (GLRLM) features, 14 gray-level dependence matrix 
(GLDM) features, 5 neighboring gray-tone difference matrix 
(NGTDM) features, and a total of 2002 higher-order features. 
These features were calculated from the above features using filters 
(including exponent, gradient transform, wavelet, Laplace-Gauss, 
square root, logarithm, and local binary mode transform). All 
radiomic features were standardized by z score transformation to 
eliminate the unit limits of each feature. All the calculation 
equations and the pipeline can be found at https://pyradiomics.
readthedocs.io/en/latest/.

Statistical analysis

Clinical information and manual parameters
First, patients with a total of 1,239 IAs (683 unstable, 556 stable) 

were randomly sampled into a training set and an internal validation 
set at a 7:3 ratio. Thus, 867 IAs (478 unstable and 389 stable) were 
randomly selected as the training set for feature selection and 
classification model construction. The remaining 372 IAs (205 
unstable, 167 stable) composed the internal validation set, which was 
only used to test the model. In addition, an external validation set (106 
unstable, 123 stable) was used to ultimately evaluate the effectiveness 
of the model.

R software (version 4.0.3; Boston, MA, USA) was used in the 
analyses for all clinical information and manual parameters. 
Categorical variables are expressed as frequencies, and the Chi-square 
test was used to evaluate the differences between groups. Continuous 
variables are expressed as the means. The Shapiro–Wilk test was used 
to assess the normality of the distribution. The Mann–Whitney U test 
or two-tailed independent Student’s t test was used to assess 
continuous variables as appropriate. Then, only statistically significant 
variables at the p < 0.05 level in univariate analysis were selected as 
input variables for the machine learning models for all clinical 
information. The variance threshold (threshold = 0.8), and the least 
absolute shrinkage selection operator (LASSO) were used to screen 
for the optimal manual parameters. If the predictive model contained 
too many parameters, a maximum of 10 parameters with the highest 
weight were retained. Similar methods were used to screen the 
radiomic shape features.

The radiomic non-shape features selection steps were as follows: 
(1) The interrater reliability of the morphology measurements was 
assessed by the intraclass ICC. Features with an ICC > 0.8 were 
selected for further analysis. (2) Spearman’s rank correlation was 
employed to eliminate high-dimensional feature redundancy (for the 
remaining features after removing 3D-based shape features). If the 
correlation coefficient was >0.9 for two features, then one of the 
features was excluded; (3) the variance threshold was set to 0.8 was 
used; (4) and the LASSO was used and regularized by 10-fold cross-
validation to ensure the robustness of the results. Fourteen 3D-based 
radiomic shape features were filtered out via LASSO regression. 
Moreover, the 10 features with the highest weights were selected from 
the other features filtered by LASSO regression (if there were not 10 
features in the final LASSO result, all were selected) as the radiomics 
signature, which was incorporated into the predictive models built 
using machine learning algorithms.
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Machine learning model development and 
evaluation

Four classification models, Model A (manual parameters), Model 
B (manual parameters + radiomic shape features), Model C (radiomic 
non-shape features), and Model D (manual parameters + radiomic 
non-shape features) were developed to identify unstable and stable 
IAs. Three machine learning algorithms were used to find the optimal 
classifier for stable and unstable IA classification: logistic regression 
(LR), k-nearest neighbors (KNN), and support vector machine 
(SVM) classifiers; these algorithms are widely used in clinical 
classification and prediction research and have shown good 
performance (15, 16, 19). The model with the highest classification 
performance among Models A-D was subsequently reconstructed by 
adding useful clinical information to obtain Model E. The 
performance of all the models was assessed by using the area under 
the receiver operating characteristic (ROC) curve (AUC), accuracy, 
precision, sensitivity and specificity. The performance of all the 
models was evaluated in a separate internal validation set and an 
external validation set.

Correlation analysis
Canonical correlation analysis (CCA) is a statistical method used 

to address the relationship between two random vectors and has been 
widely used in data analysis, information fusion and other fields (22). 
CCA was used to explore the associations between the radiomic 
features of the radiomics signature and manual parameters.

Results

Clinical information and manual 
parameters

Table 1 shows the clinical information and manual parameters of 
the IAs. The results showed that patients with unstable IAs were 
younger than were those with stable IAs (p = 0.001). Hypertension, 
heart disease, diabetes mellitus and cerebral vascular sclerosis were 
more prevalent in the stable group (p = 0.012, p < 0.001, p = 0.001, and 
p < 0.001, respectively).

For manual parameters, the mean Inter-rater ICC value was 0.81. 
All the manual parameters were significantly associated with IA 
stability (p < 0.001). Multiple IAs were more common in the stable 
group than in the unstable group (35.2% vs. 21.1%). IA stability was 
significantly associated with location: unstable IAs were significantly 
more common than stable IAs in the ACA, ACoA and PCoA 
(p = 0.013, p < 0.001, and p < 0.001, respectively). In contrast, stable IAs 
were more prevalent than unstable IAs in the ICA (p < 0.001). The sizes 
(neck width, depth, width, height, maximum size) of the stable IAs 
were smaller than those of the unstable IAs. Irregular shape, daughter 
sac and bifurcation type were more common in the unstable group 
than in the stable group. Moreover, the 8 secondary geometric 
morphology indices (AR, AR1, DW, BF, SR, SR1, SR2, and SR3) of the 
unstable IAs were greater than those of the stable IAs. The 10 highest 
weighted manual parameters are shown in Supplementary Table S1. 
IA stability was also significantly associated with parameters related 
to the parent artery. The parent artery diameter and mean artery 
diameter were greater in the stable than in the unstable IAs. Moreover, 
there were no significant differences between the training set and the 

internal validation set. For more information of the IAs in the external 
validation set, please refer to Supplementary Table S2.

Optimal radiomics signature

A total of 1,698 radiomic features and 12 radiomic shape features 
showed high interobserver agreement (ICC > 0.8). Finally, 10 radiomic 
features and 4 radiomic shape features remained after LASSO 
regression, as shown in the Supplementary Tables S3, S4. The 
coefficient–lambda graph and error–lambda graph was shown in 
Supplementary Figure S1.

Machine learning models

The accuracy, precision, sensitivity, and specificity of each model 
are listed in Supplementary Tables S5–S7. The performance of each 
model in the external validation set is listed in Table 2. With respect 
to the external validation set, the results showed that all the machine 
learning models had outstanding classification ability (all AUCs 
>0.80). Model B (built by manual parameters and radiomic shape 
features) showed the best classification performance among models 
A-D. At the same time, among the four models, the AUC of the LR 
algorithm was the highest. The AUC values of Model B for the LR, 
SVM, and KNN algorithms were 0.960 (95% CI 0.939–0.978), 0.952 
(95% CI 0.925–0.973), and 0.930 (95% CI 0.900–0.956), respectively. 
Then, we constructed Model E by adding 5 clinical characteristics, 10 
manual parameters, and 4 radiomic shape features, and LR was used 
to develop this model. LR Model E had an AUC of 0.963 (95% CI 
0.943–0.980), an accuracy of 91.7%, a precision of 92.2%, a sensitivity 
of 89.6%, and a specificity of 93.5%. The ROC curve and AUC of LR 
Model B and Model E are shown in Figure 2. Nineteen variables in 
Model E and their importance are shown in Table 3. The p-values from 
the DeLong test of the statistical comparison of the ROC curves in 
external validation set are given in Supplementary Table S8. The 
confusion matrix for Model E in the external validation set is shown 
in Supplementary Figure S2.

The simplified model and nomogram

Model E consists of 19 variables, and too many variables can limit 
its practical use in clinical settings. Therefore, based on the coefficients 
(variable importance) of each variable, a simplified model with only 5 
manual parameters (absolute coefficients ≥2) was derived, and a 
nomogram was drawn. The 5 parameters are as follows: irregular 
shape, DW, BF, mean artery diameter, and SR. The simplified model 
had an AUC of 0.950 (95% CI 0.924–0.970), an accuracy of 86.9%, a 
precision of 82.2%, a sensitivity of 91.5%, and a specificity of 82.9%. 
The DeLong test showed that there is no statistical difference between 
the Model E and simplified model (p = 0.245, in the external validation 
set). The nomogram of the simplified model is shown in Figure 3.

Correlation analysis
The CCA analysis results showed that there was a strong 

correlation between the radiomic features of the radiomics signature 
and manual parameters, with a correlation coefficient of 0.822.
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Discussion

In this study, we constructed multiple machine learning models 
for unstable and stable IAs and evaluated their classification 

performance; all the machine learning models were found to exhibit 
good classification ability. The simplified model demonstrated 
excellent performance (AUC = 0.950) using only five manual  
parameters.

TABLE 1 Clinical information and manual parameters of the IAs.

Clinical information Training set p Training set Internal 
validation set

p

Stable 
(n  =  389)

Unstable 
(n  =  478)

(n  =  867) (n  =  372)

Female (%) 244 (62.7) 306 (64.0) 0.748 550 (63.4) 246 (66.1) 0.4

Age (median [IQR]) 61.00 [50.00, 70.00] 57.00 [49.00, 67.00] 0.001 59.00 [49.50, 68.00] 59.00 [49.00, 68.00] 0.929

Hypertension (%) 189 (48.6) 194 (40.6) 0.012 383 (44.2) 172 (46.2) 0.296

Heart disease (%) 47 (12.1) 24 (5.0) <0.001 71 (8.2) 31 (8.3) 0.999

Diabetes mellitus (%) 42 (10.8) 23 (4.8) 0.001 65 (7.5) 21 (5.6) 0.292

Cerebral vascular sclerosis (%) 86 (22.1) 45 (9.4) <0.001 131 (15.1) 55 (14.8) 0.952

Alcohol consumption (%) 76 (19.5) 102 (21.3) 0.229 178 (20.5) 67 (18) 0.538

Smoking (%) 92 (23.7) 119 (24.9) 0.736 211 (24.3) 88 (23.5) 0.988

Manual parameters

Multiple aneurysms (%) 137 (35.2) 101 (21.1) <0.001 238 (27.5) 109 (29.3) 0.551

Location (%) <0.001 0.333

ACoA 27 (6.9) 137 (28.7) <0.001 164 (18.9) 57 (15.3) 0.13

ACA 11 (2.8) 31 (6.5) 0.013 42 (4.8) 15 (4.0) 0.532

MCA 76 (19.5) 75 (15.7) 0.137 151 (17.4) 58 (15.6) 0.432

PCoA 52 (13.4) 158 (33.1) <0.001 210 (24.2) 106 (28.5) 0.114

ICA 215 (55.3) 56 (11.7) <0.001 271 (31.3) 119 (32.0) 0.799

PCA 8 (2.1) 21 (4.4) 0.057 29 (3.3) 17 (4.6) 0.296

Neck width (mm) 4.09 (1.15) 5.06 (2.28) <0.001 4.63 (1.92) 4.52 (1.78) 0.373

Height (mm) 3.25 (1.16) 6.62 (3.67) <0.001 5.11 (3.29) 4.93 (3.12) 0.382

Depth (mm) 3.44 (1.27) 7.22 (3.87) <0.001 5.52 (3.54) 5.35 (3.36) 0.418

Width (mm) 3.67 (1.31) 6.54 (4.08) <0.001 5.25 (3.46) 5.10 (3.34) 0.467

Maximum size (mm) 4.49 (1.46) 8.48 (4.28) <0.001 6.69 (3.87) 6.55 (3.77) 0.564

Parent artery diameter (mm) 4.02 (0.92) 3.33 (0.86) <0.001 3.64 (0.95) 3.64 (0.93) 0.945

Mean artery diameter (mm) 3.73 (0.88) 3.02 (0.81) <0.001 3.33 (0.91) 3.36 (0.93) 0.693

AR 0.85 (0.24) 1.47 (0.56) <0.001 1.19 (0.54) 1.21 (0.65) 0.588

AR1 0.80 (0.23) 1.35 (0.53) <0.001 1.10 (0.50) 1.12 (0.62) 0.59

DW 0.96 (0.22) 1.19 (0.37) <0.001 1.08 (0.33) 1.09 (0.36) 0.938

BF 0.89 (0.18) 1.29 (0.51) <0.001 1.11 (0.45) 1.12 (0.46) 0.833

SR 0.96 (0.38) 2.46 (1.23) <0.001 1.79 (1.21) 1.76 (1.43) 0.743

SR1 0.89 (0.35) 2.25 (1.20) <0.001 1.64 (1.14) 1.62 (1.32) 0.806

SR2 1.26 (0.45) 2.90 (1.35) <0.001 2.16 (1.33) 2.15 (1.63) 0.94

SR3 1.16 (0.41) 2.64 (1.32) <0.001 1.97 (1.25) 1.98 (1.54) 0.955

Irregular shape (%) 25 (6.4) 315 (65.9) <0.001 340 (39.2) 140 (37.6) 0.645

Daughter sac (%) 12 (3.1) 211 (44.1) <0.001 223 (25.7) 97 (26.1) 0.952

Bifurcation (%) 60 (15.4) 133 (27.8) <0.001 193 (22.3) 69 (18.5) 0.142

FA (°) 104.33 (28.81) 120.55 (25.49) <0.001 113.27 (28.19) 111.03 (28.57) 0.201

ICA, internal carotid artery; MCA, middle cerebral artery; ACA, anterior cerebral artery; ACoA, anterior communicating artery; PCoA, posterior communicating artery; PCA, posterior 
circulation artery; AR, aspect ratio (depth/neck width); SR, size ratio (depth/parent artery diameter); DW, depth-to-width ratio (depth/width); BF, bottleneck factor (width/neck width); 
IA origin, (sidewall or bifurcation); FA, flow angle.
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Machine learning and radiomics are powerful tools that can 
increase the power of decision support models (23). In this study, our 
results indicated that all the machine learning models had great 
potential in classifying unstable IAs. Further analysis of the external 
validation set revealed that the LR algorithm was superior to the SVM 
and KNN algorithms among all the models. Similarly, a Chinese 
multicenter study showed that the KNN and SVM methods cannot 
outperform conventional LR in prediction models for ruptured IAs 
(24, 25). Interestingly, the AUC of the LR algorithm was not optimal 
in the training set or internal validation set; however, the final external 
validation results were better than those of the KNN and SVM 
algorithms. This highlights the importance of external validation and 
the potential advantages of LR.

Currently, most IA studies that apply both machine learning and 
radiomics have built and assessed classification models for ruptured 

or unruptured IAs (12, 14, 17, 18). However, simple classification of 
IAs based on ruptured or unruptured cases is no longer applicable. 
The rupture rate of growing unruptured IAs significantly increases, 
and enlargement should replace rupture as an indicator of IA risk (1, 
2, 6, 7). Therefore, a portion of unruptured IAs are unstable. For IAs, 
grouping them based on stability seems to have more clinical 
significance. This may also explain why the stability classification 
models of IAs exhibited excellent performance in this study.

To date, few studies have used machine learning to classify IA 
stability (11, 13). Both of these studies used 3D digital subtraction 
angiography images. In these studies, the criteria for an unstable IA 
included rupture within 1 month and growth on sequential imaging 
follow-up (11, 13). However, growth or overall evolution is not 
necessarily linear and is sometimes random and discontinuous (2). 
Some IAs that take longer than 1 month to rupture are also unstable. 

TABLE 2 The performance of each model in the external validation set.

Model Algorithm AUC Accuracy Precision Sensitivity Specificity

Model A

LR 0.959 (0.937–0.978) 0.895 0.860 0.925 0.870

KNN 0.913 (0.879–0.944) 0.852 0.781 0.943 0.772

SVM 0.947 (0.919–0.971) 0.891 0.852 0.925 0.862

Model B

LR 0.960 (0.939–0.978) 0.891 0.909 0.849 0.927

KNN 0.930 (0.900–0.956) 0.834 0.793 0.868 0.805

SVM 0.952 (0.925–0.973) 0.891 0.852 0.925 0.862

Model C

LR 0.899 (0.860–0.933) 0.821 0.788 0.840 0.805

KNN 0.828 (0.779–0.868) 0.760 0.695 0.858 0.675

SVM 0.898 (0.855–0.933) 0.834 0.793 0.868 0.805

Model D

LR 0.959 (0.936–0.978) 0.900 0.874 0.915 0.886

KNN 0.905 (0.871–0.936) 0.834 0.788 0.877 0.797

SVM 0.942 (0.913–0.967) 0.873 0.829 0.915 0.837

Model E LR 0.963 (0.943–0.980) 0.917 0.922 0.896 0.935

Simplified model LR 0.950 (0.924–0.970) 0.869 0.822 0.915 0.929

Model A, manual parameters model; Model B, manual parameters + radiomic shape features model; Model C, radiomics non-shape signature model; Model D, manual parameters + radiomics 
non-shape signature model; Model E, manual parameters + radiomic shape features + useful clinical information model; LR, logistic regression; KNN, k-nearest neighbors; SVM, support 
vector machine.

FIGURE 2

ROC curves and AUCs of the LR Model B (A) and Model E (B). I-Val set, internal validation set; E-Val set, external validation set.
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Thus, given the potentially catastrophic consequences of 
misdiagnosing unstable IAs as stable with a low risk of rupture, the 
classification of unstable IAs in this study may be more favorable 
for patients.

The simplified model also demonstrated excellent classification 
performance and used only 5 manual parameters, which are the top 5 
variables in Model E. Notably, although Model A’s classification ability is 
slightly lower than that of Model B, Model A only uses manual 
parameters from CTA images. This means that the parameters from 
CTA images are sufficient to construct a classification model for 
identifying unstable IAs. Theoretically, manually measured diameters are 
semi objective because the results may differ among different raters, and 
these indices are insufficient for delineating the overall morphological 
features of the IA. However, manual delineation of ROIs for extracting 
radiomic features is also currently needed. Furthermore, the rupture risk 
of an IA and the treatment strategy used are closely related to the IA itself 
and its parent artery (such as location, flow angles, and bifurcation) (1, 
4, 26). For example, for medium and small IAs, the size of the neck is 
related to the choice of surgical method (27, 28). However, delineating 
the IA itself as the only ROI would eliminate all parent artery 
information, and the location and size of the IA neck would not 
be  identified. Our simplified model with only 5 manual parameters 
(irregular shape, DW, BF, mean artery diameter, and SR) contains 
important information about the IA and its parent artery. Determine the 
morphological parameters related to IA rupture by measuring them the 
risk of rupture of this IA is the ultimate goal of morphological 
measurement. Our research results also fit this purpose perfectly.

TABLE 3 Nineteen variables and their coefficients in Model E.

Variable Coefficients

DW 4.221404732

BF 3.013506085

Irregular shape 2.348992875

SR3 0.726773537

Original shape Flatness 0.678361904

Original shape Major Axis Length 0.667566627

Heart disease 0.112164126

Width 0.047364246

Maximum size 0.005060162

Original shape Mesh Volume 0.001738275

Age −0.012289048

Neck width −0.013327893

SR1 −0.092761402

Hypertension −0.181961963

Diabetes mellitus −0.386633538

Cerebral vascular sclerosis −1.112285891

original shape Surface Volume Ratio −1.354612045

SR −1.966730872

Mean artery diameter −2.08726665

DW, depth-to-width ratio; BF, bottleneck factor; SR, size ratio.

FIGURE 3

The nomogram of the simplified model. DW, depth-to-width ratio (depth/width); BF, bottleneck factor (width/neck width); SR, size ratio (depth/parent 
artery diameter).
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Limitations

This study has several limitations. First, although ruptured 
IAs were indeed unstable and a previous study reported that 
unruptured IAs do not shrink when they rupture (29), post-
rupture morphology should not be  considered an adequate 
surrogate for pre-rupture morphology, which may generate a 
possible bias in our results (30). Second, the IA size was not 
further graded in this study. The measurement and delineation of 
ROIs for small IAs may be  debatable depending on different 
observers. Third, incidentally discovered IAs with no apparent 
symptoms are classified as stable, which may lead to 
misclassification of some unstable IAs. In the future, our aim is to 
develop a decision-making tool for use in practical clinical 
environments and to further validate the large number of enrolled 
patients using prospective, multicenter designs before use in a real 
clinical setting.

Conclusion

Machine learning models have excellent potential in the 
classification of unstable IAs. This approach will facilitate the rapid 
and accurate identification of unstable IAs in clinical practice. 
Compared to manual parameters, radiomic features did not 
significantly improve the identification of unstable IAs, and the 
manual parameters from CTA images are sufficient for developing a 
simple and effective model for identifying unstable IAs. The accuracy 
of this simple model needs to be further verified through the use of 
additional data and randomized controlled studies with 
multicenter data.
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