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Background: The extent of ischemic injury in acute stroke is assessed in clinical 
practice using the Acute Stroke Prognosis Early CT Score (ASPECTS) rating 
system. However, current ASPECTS semi-quantitative topographic scales 
assess only the middle cerebral artery (MCA) (original ASPECTS) and posterior 
cerebral (PC-ASPECTS) territories. For treatment decision-making in patients 
with anterior cerebral artery (ACA) occlusions and internal carotid artery (ICA) 
occlusions with large ischemic cores, measures of all hemispheric regions are 
desirable.

Methods: In this cohort study, anatomic rating systems were developed for the 
anterior cerebral (AC-ASPECTS, 3 points) and anterior choroidal artery (ACh-
ASPECTS, 1 point) territories. In addition, a total supratentorial hemisphere 
(H-ASPECTS, 16 points) score was calculated as the sum of the MCA ASPECTS 
(10 regions), supratentorial PC-ASPECTS (2 regions), AC-ASPECTS (3 regions), 
and ACh-ASPECTS (1 region). Three raters applied these scales to initial and 24  h 
CT and MR images in consecutive patients with ischemic stroke (IS) due to ICA, 
M1-MCA, and ACA occlusions.

Results: Imaging ratings were obtained for 96 scans in 50 consecutive patients 
with age 74.8 (±14.0), 60% female, NIHSS 15.5 (9.25–20), and occlusion locations 
ICA 34%; M1-MCA 58%; and ACA 8%. Treatments included endovascular 
thrombectomy +/− thrombolysis in 72%, thrombolysis alone in 8%, and 
hemicraniectomy in 4%. Among experienced clinicians, inter-rater reliability for 
AC-, ACh-, and H-ASPECTS scores was substantial (kappa values 0.61–0.80). 
AC-ASPECTS abnormality was present in 14% of patients, and ACh-ASPECTS 
abnormality in 2%. Among patients with ACA and ICA occlusions, H-ASPECTS 
scores compared with original ASPECTS scores were more strongly associated 
with disability level at discharge, ambulatory status at discharge, discharge 
destination, and combined inpatient mortality and hospice discharge.

Conclusion: AC-ASPECTS, ACh-ASPECTS, and H-ASPECTS expand the scope 
of acute IS imaging scores and increase correlation with functional outcomes. 
This additional information may enhance prognostication and decision-making, 
including endovascular thrombectomy and hemicraniectomy.
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Introduction

The medical and surgical management of patients with anterior 
circulation cerebral infarcts and large hemispheric infarcts has 
advanced dramatically over the past decade. For patients with 
isolated anterior cerebral artery (ACA) occlusions, whose lesions 
were previously inaccessible, a new generation of retriever and 
aspiration thrombectomy devices are now being tested in 
randomized trials. For patients with internal carotid artery (ICA) 
occlusion and large ischemic cores, previously only treatable with 
hemicraniectomy, multiple recent trials have demonstrated the 
benefit of endovascular thrombectomy, with final outcome 
disability levels limited by the extent of pretreatment injury (1). In 
addition, preliminary trials and studies have shown promise for 
multiple additional therapies, including intravenous glyburide, 
strokectomy (compared with hemicraniectomy), selective cerebral 
hypothermia, and hyperosmolar therapy (2–4). A barrier to the 
further development of therapeutics for patients with ACA 
occlusion and patients with ICA occlusion and large ischemic core 
is that the only available pragmatic assessment of initial and early 
ischemic injury extent is the Alberta Stroke Program Early 
Computed Tomography score (ASPECTS), a clinician-performed, 
semi-quantitative, 10-point topographic imaging 
assessment (5–11).

The ASPECTS score has been a foundation for acute stroke 
therapeutics for the past quarter century since its development in 2000 
(11). However, although it was developed to assess early ischemic 
changes in patients with “acute ischemic stroke of the anterior 
circulation” (refs 6–11), the ASPECTS scale is constrained in its 
interrogation of the degree of injury to only a subset of relevant fields - 
the middle cerebral artery (MCA) territory. It provides no useful 
information regarding the extent of tissue injury in patients with 
isolated ACA occlusion. It also provides less than optimal information 
in patients with ICA occlusion and large ischemic cores. In these 
patients, the extent of injury beyond the MCA territory, including in 
ACA, anterior choroidal artery (ACh), and supratentorial posterior 
cerebral artery fields, contributes independently to worse prognosis 
and the need for early intervention (12–14). Accordingly, clinical 
management is guided by volumetric imaging of ischemic injury, 
incorporating all supratentorial arteries, when available (15–17). 
However, when true volumetric imaging is not available, the 
prognostic and decision-making accuracy of pragmatic semi-
quantitative topographic scan evaluation potentially may be increased 
by including ratings of injury in the ACA, AChA, and supratentorial 
PCA fields.

The objective of this study was to develop and preliminarily 
validate semi-quantitative topographic assessments of the ACA 
(AC-ASPECTS) and AChA (ACh-ASPECTS) territories and a total 
hemispheric score (H-ASPECTS) incorporating MCA, ACA, AChA, 
and supratentorial PCA ASPECTS ratings.

Methods

The regions that comprise the new scales were selected based on 
neuroanatomic and imaging atlases that delineated the cerebral 
arterial territories (18–21).

Nomenclature

Two salient ASPECTS scores already are in wide use: the original 
ASPECTS, assessing the MCA territory, and the PC-ASPECTS, 
assessing the PCA territory. In the expanded system advanced in the 
current study, the original ASPECTS score is given the more specific 
designation of the middle cerebral – ASPECTS score (MC-ASPECTS). 
The three new, complementary ASPECTS scores developed for the 
current study are: the Anterior Cerebral Acute Stroke Early Cerebral 
Topographic Score (AC-ASPECTS); the Anterior Choroidal Acute 
Stroke Early Cerebral Topographic Score (ACh-ASPECTS); and the 
Hemispheric Acute Stroke Early Cerebral Topographic Score 
(H-ASPECTS).

Demarcation of AC-ASPECTS regions

The volume of the ACA territory is approximately one-third of the 
volume of the MCA territory (18). The MC-ASPECTS divides the 
MCA territory into 10 component regions. In order to give 
proportionate weighting to ACA fields as to MCA fields, the 
AC-ASPECTS divides the ACA territory into three component 
regions: A1, A2, and A3. As shown in Figure 1, on standard axial 
computed tomography slices, the A1 region delineates the inferior 
portion of the ACA territory, extending from the lowest CT slice up 
to the highest slice that includes the lateral ventricles. On the highest 
cut, it lies only between the ventricles. The A2 region is the 
anterosuperior portion of the ACA territory. Along the vertical axis, 
it starts at the highest cut through the lateral ventricles and continues 
to the highest cut through the top of the cerebrum. Along the 
anteroposterior axis, the A2 region is the anterior half of the ACA 
territory on each slice. The A3 region is the posterosuperior portion 
of the ACA territory. Like the A2, along the vertical axis, it starts at the 
highest cut through the lateral ventricles and continues to the highest 
cut through the top of the cerebrum. If all ACA regions are normal, 
the ACA-ASPECTS score is 3. One point is subtracted from 3 for each 
abnormal region.

Demarcation of the ACh-ASPECTS region

Of the regions supplied by the ACh, several fall within existing 
ASPECTS topographies (22). The MC-ASPECTS regions include the 
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posterior limb of the internal capsule and the medial area of the 
pallidum. The PC-ASPECTS regions include the lateral geniculate 
body. The ACh-ASPECTS assigns 1 point to spare the remaining, 
otherwise unassessed region - the mesial temporal lobe (amygdala-
hippocampal field), as shown in Supplementary Figure S1.

Total H-ASPECTS score

The total H-ASPECTS score of a cerebral hemisphere is a 16-point 
scale that combines the four territorial-specific ASPECTS scores, 
including the MC-ASPECTS (10 regions), the supratentorial segments 
of the PC-ASPECTS (two regions: thalamus (THAL) and occipital), 
the AC-ASPECTS (three regions), and the ACh-ASPECTS (one 
region). One point is subtracted from 16 for each abnormal region.

Prospective validation study

The prospective validation cohort study of the ACA-ASPECTS, 
ACh-ASPECTS, and H-ASPECTS scores was performed in a sample 
of 50 consecutive patients with confirmed acute ischemic stroke (IS) 
admitted to Ronald Reagan - University of California, Los Angeles 
Medical Center. Inclusion criteria for the study were: (1) diagnosis of 
acute IS on CT or MRI, (2) presentation within 24 h of last known 
well, (3) occlusion of the cervical or intracranial ICA, M1-MCA, or 
ACA on initial CTA or MRA. The exclusion criterion was transferred 
to another acute care hospital, precluding clinical outcome assessment.

For each patient, data were abstracted regarding demographics 
(age, sex), medical history (e.g., hypertension and diabetes), initial 
systolic and diastolic blood pressure in the ED, initial National 
Institutes of Health Stroke Scale (NIHSS) score, the pre-stroke 
modified Rankin Scale (mRS) score, time from last known well to first 
parenchymal imaging, time from first imaging to 24 h (−12 h to +24 h) 
follow-up imaging, reperfusion therapy with intravenous thrombolysis 
alone, endovascular thrombectomy alone, or both; and 
hemicraniectomy. If patients had more than one follow-up imaging 
study performed between 12 and 48 h after initial imaging, the scan 
closest to 24 h was analyzed. For patients undergoing EVT, the 
expanded thrombolysis in cerebral infarction (eTICI) score at the 
procedure end was recorded. Clinical outcomes analyzed were: global 
disability on the mRS at discharge; discharge destination (home, acute 
rehabilitation facility, skilled nursing facility, long-term acute care, 
hospice, or inpatient mortality); and ambulatory status at discharge 
(unassisted, with assistance, non-ambulatory, or death).

Imaging

Standard non-helical non-contrast CT (NCCT) was performed on 
a multislice CT scanner (GE Medical Systems or Siemens) using 
120 kV, 170 mAs and 5-mm slice thickness. Coverage was from skull 
base to vertex, with continuous axial slices parallel to the orbitomeatal 
line. Standard diffusion-weighted MRI (DWI), as well as ADC, 
FLAIR, and GRE sequences, were obtained on 1.5-T or 3-T Siemens 
MR systems equipped with echo planar imaging data acquisition 

FIGURE 1

AC-ASPECTS subregions within the anterior cerebral artery territory. The A1 region is the inferior portion of the ACA territory, extending from the lowest 
slice through the ACA territory up to the highest slice that includes the lateral ventricles. On the highest cut, the A1 region lies only between the 
ventricles. The A2 region is the anterosuperior portion of the ACA territory. Along the vertical axis, it starts at the highest cut through the lateral 
ventricles and continues to the highest cut through the top of the cerebrum. Along the anteroposterior axis, the A2 region is the anterior half of the 
ACA territory on each slice. The A3 region is the posterosuperior portion of the ACA territory. Like the A2, along the vertical axis, it starts at the highest 
cut through the lateral ventricles and continues to the highest cut through the top of the cerebrum. Along the anteroposterior axis, the A3 region is the 
posterior half of the ACA territory on each slice.
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capability designed to obtain rapid diffusion images. Diffusion 
imaging was performed using a slice thickness of 5 mm with no 
interslice gap and two levels of diffusion sensitization (b = 0, 
1,000 s/mm2).

Imaging analyses

On CT, one point each was subtracted for early ischemic changes 
(parenchymal hypoattenuation or focal swelling) in each of the 
defined regions. On MRI, one point each was subtracted for early 
ischemic changes (hyperintensity on DWI) in ≥20% of each of the 
defined regions. The images were assessed with knowledge of the side 
affected but without knowledge of the baseline stroke severity, site of 
occlusion, or clinical outcome. Baseline scans were assessed without 
knowledge of 24 h scans; 24 h scans were assessed with knowledge of 
baseline scans. Each scan was independently scored for AC-ASPECTS, 
ACh-ASPECTS, PC-ASPECTS, MC-ASPECTS, and H-ASPECTS by 
three levels of practitioner: one general neurology resident (MPR), 
one stroke fellow (ST), and one senior stroke neurologist (JLS). 
Differences were resolved by consensus discussion.

Statistical analyses

Numerical data were descriptively presented as mean ± standard 
deviation for parametric data and median with interquartile range 
(25th percentile–75th percentile) for non-parametric data. Categorical 
variables were described as the number and percentage of patients. 
Inter-rater agreement on the AC-ASPECTS, ACh-ASPECTS, and 
H-ASPECTS was assessed separately for arrival scans and the 24-h 
scans using joint probability of agreement and the kappa statistic. 
Kappa values ≤0 were considered to indicate no agreement, 0.01–0.20 
as none to slight, 0.21–0.40 as fair, 0.41–0.60 as moderate, 0.61–0.80 
as substantial, and 0.81–1.00 as almost perfect agreement (23). 
Correlation coefficients were calculated for the association of the 
ASPECTS scales with clinical outcomes. In sample size calculations 
for a projected correlation of 0.6, the sample size of 50 patients 
provided 95% power to narrow the two-way 95% confidence interval 
around the point estimate to 0.15.

Results

The characteristics of the 50 consecutive IS patients meeting study 
entry criteria are shown in Table 1. No patients were excluded due to 
transfer to another acute hospital or missing data. The age was 
74.8 years (±14.0), 60% were female, and the baseline NIHSS was 15.5 
(IQR 9–20). Occlusion locations were the ICA at 34% (cervical ICA at 
16%, intracranial ICA alone at 2%, and carotid T at 16%), M1-MCA 
at 58%, and ACA at 8%. The time from the last known well to the first 
imaging was a median of 393 min (IQR 114–851) and from the last 
known well to follow-up imaging, 32 h (IQR 29–41). A total of 80% of 
patients received reperfusion therapy, including EVT alone in 48%, 
IVT alone in 8%, and both in 24%. Hemicraniectomy was performed 
in 4% of patients.

Concurrence rates among scan interpreters are shown in Table 2 
and illustrative cases are shown in Figure 2. Concurrence rates were 

TABLE 1  Patient characteristics.

Age, y - mean (±SD) 74.8 (±14.0)

Sex, Female - N (%) 30 (60)

NIHSS

 � Mean (±SD) 14.8 (±7.5)

 � Median (IQR) 15.5 (9–20)

ED BP - mean (±SD)

 � Systolic 147.7 (±29.1)

 � Diastolic 83.6 (±17.8)

Medical history - N (%)

 � Hypertension 33 (66)

 � Diabetes 15 (30)

 � Dyslipidemia 24 (48)

 � Atrial fibrillation 21 (42)

 � Coronary artery disease 9 (18)

 � Prior ischemic stroke 1 (2)

 � Prior smoking 0 (0)

Pre-stroke mRS

 � Mean (±SD) 1.2 (±1.4)

 � Median (IQR) 1 (0–2)

 � Time LKW to 1st imaging, median (IQR) 6 (2–15)

 � Time LKW to 2nd imaging, median (IQR) 32 (29–41)

 � Type of 1st imaging (n = 50)

CT, n (%) 40 (80)

MR, n (%) 10 (20)

Type of 2nd imaging (n = 46)

 � CT, n (%) 11 (24)

 � MR, n (%) 35 (76)

Site of occlusion - N (%)

 � Cervical ICA 8 (16)

 � Intracranial ICA 1 (2)

 � Carotid T 8 (16)

 � M1-MCA 29 (58)

 � ACA 4 (8)

Treatment - N (%)

 � None 9 (18)

 � IVT alone 4 (8)

 � EVT alone 24 (48)

 � IVT + EVT 12 (24)

 � Hemicraniectomy 2 (4)

eTICI - N (%) (EVT N = 36)

 � 0 1 (3)

 � 1 1 (3)

 � 2A 2 (6)

 � 2B 10 (28)

 � 2C 7 (19)

 � 3 11 (31)

(Continued)
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higher between the two most experienced raters (Attending-Fellow) 
but also were considerable in dyadic comparisons with the least 
experienced rater (resident). For the three individual ACA subregions 
(A1, A2, and A3), the Attending-Fellow raters showed exact agreement 
in 94–96% of patients and kappa rates of 0.48–0.54 (moderate) on 
initial images and exact agreement in 89–100% and kappa rates of 0.55 
to 1.0 (moderate to almost perfect) on follow-up images. For the total 
territory AC-ASPECTS score, the Attending-Fellow raters showed 
exact agreement in 94% of patients and weighted kappa rates of 0.74 
(substantial) on the initial images and exact agreement in 97% and 
weighted kappa 0.62 (substantial) on follow-up images. The attending-
fellow rater exact agreement rates for total AC-ASPECTS scores 
exceeded those for total MC-ASPECTS scores; the weighted kappa 
values were comparable for the total AC-ASPECTS and total 
MC-ASPECTS scores. For the total hemispheric H-ASPECTS score, 
the Attending-Fellow raters showed exact agreement in 67% of 
patients and weighted kappa rates of 0.73 (substantial) on initial 
images and showed exact agreement in 74% of patients and weighted 
kappa rates of 0.73 (substantial) on follow-up images. Attending-
Fellow rater agreement rates and kappa values were comparable for 
the total H-ASPECTS scores and MC-ASPECTS scores. Inter-rater 
concurrence rates were similar for CT ratings and for MR ratings, 
although analysis power was limited by low numbers of initial MR 
scans and follow-up CT scans (Supplementary Tables S1A,B).

Entire cohort

After consensus discussion, across the entire cohort, AC-ASPECTS 
abnormality was deemed present in seven (14%) patients (including 
six patients on initial imaging and seven on follow-up imaging), and 

ACh-ASPECTS abnormality was present in one (2%) patient (present 
on both initial and follow-up imaging). Considering AC-ASPECTS 
subregions, on initial imaging, 6% of patients had A1, 4% of patients 
had A2, and 4% of patients had A3 involvement. On follow-up 
imaging, 9% of patients had A1, 13% of patients had A2, and 9% of 
patients had A3 involvement. The total AC-ASPECTS score on initial 
imaging was median 3 (IQR 3–3) and mean 2.9 (± 0.4). The total 
AC-ASPECTS score on follow-up imaging was median 3 (IQR 3–3) 
and mean 2.7 (± 0.8). AC-ASPECTS abnormalities occurred in 
isolation, without accompanying MC-ASPECTS abnormalities, in 4% 
of patients and concurrently with MC-ASPECTS abnormalities in 8%.

Over the entire cohort, on initial imaging, the H-ASPECTS score 
was a median of 15 (IQR 12–16) and a mean of 13.7 (± 2.6), while the 
MC-ASPECTS score was 9 (IQR 6–10) and a mean of 7.9 (± 2.5). On 
follow-up imaging, the H-ASPECTS score was a median of 13 (IQR 
10.25–14) with a mean of 12.0 (± 3.2), while the MC-ASPECTS score 
was 7 (IQR 4–9) with a mean of 6.3 (± 2.9). Among all patients, 
abnormalities on the H-ASPECTS that were not also present on the 
MC-ASPECTS occurred on the initial scan in 10% and on the 
follow-up scan in 15%. Considering patients with ACA or ICA 
occlusions, abnormalities on the H-ASPECTS not also present on the 
MC-ASPECTS occurred on the initial scan in 24% and on the 
follow-up scan in 37%. The frequency of involvement of individual 
H-ASPECTS regions on baseline and follow-up scans is shown in 
Supplementary Table S2. Supplementary Table S3 shows the mean/
median AC-ASPECTS, MC-ASPECTS, PC-ASPECTS, 
ACH-ASPECTS, and H-ASPECTS for all patients.

Occlusion site subgroups

Involvement frequency of ASPECTS regions among patients 
subgrouped by vascular occlusion sites is shown in Table  3. 
Involvement of regions A1, A2, and A3 occurred only with ACA and 
ICA occlusions and not MCA M1 occlusions. Involvement of ACh and 
THAL occurred only with ICA occlusions and not MCA M1 or ACA 
occlusions. For the different occlusion sites, H-ASPECTS were: ICA 
12 (11–14); M1-MCA 15 (13–16); ACA 15.5 (15–16); MC-ASPECTS 
scores were: ICA 7 (5–8); M1-MCA 9 (7–10); and ACA 10 (10–10).

With regard to clinical outcomes, among patients with ACA and 
ICA occlusions, H-ASPECTS scores were more strongly associated 
than MC-ASPECTS scores with disability level at discharge, 
ambulatory status at discharge, discharge destination, and combined 
inpatient mortality and discharge to hospice in dichotomized 
(Table  4A) and ordinal (Table  4B and Supplementary Figure S2) 
analyses. In contrast, among patients with MCA occlusions, 
H-ASPECTS scores and MC-ASPECTS scores were equally strongly 
associated with these clinical outcomes (Supplementary Table S4). 
Considering the area under the curve for dichotomized outcomes, on 
initial scans, H-ASPECTS scores were again more strongly associated 
than MC-ASPECTS scores with all four clinical outcomes; on 
follow-up scans, H-ASPECTS scores were nominally more strongly 
associated with combined inpatient mortality and discharge to hospice 
and MC-ASPECTS scores were nominally more strongly associated 
with disability level at discharge, ambulatory status at discharge, and 
discharge destination (Supplementary Table S5). Among patients with 
ACA occlusions, AC-ASPECTS was more strongly associated than 
MC-ASPECTS with these outcomes.

TABLE 1  (Continued)

Discharge destination - N (%)

 � Home 11 (22)

 � Acute rehabilitation facility 19 (38)

 � Skilled nursing facility 7 (14)

 � Long-term acute care 2 (4)

 � Hospice 4 (8)

 � In-hospital mortality 7 (14)

Ambulatory status at discharge - N (%)

 � Ambulatory unassisted 13 (26)

 � Ambulatory with assistance 20 (40)

 � Non-ambulatory 10 (20)

 � In-hospital mortality 7 (14)

mRS at discharge - N (%)

 � 0 3 (6)

 � 1 2 (4)

 � 2 1 (2)

 � 3 7 (14)

 � 4 20 (40)

 � 5 10 (20)

 � 6 7 (14)
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Discussion

This study developed and validated three new IS brain 
parenchymal imaging rating scales, AC-ASPECTS, ACh-ASPECTS, 
and H-ASPECTS, that extend semi-quantitative ischemic injury 
assessment to regions unaddressed by the existing MC-ASPECTS and 
PC-ASPECTS instruments. These new atlas-based scores allow the 
characterization of injury extent for infarctions confined to the ACA 
territory, infarctions confined to the ACh territory amygdala-
hippocampal field, and cumulative injury degree throughout the 
entire human cerebral hemisphere. Inter-rater agreement on both 
presenting and follow-up images was high for all three new scales. 
Among patients with occlusions of the ICA, H-ASPECTS scores were 
more strongly associated than MC-ASPECTS scores with the level of 
disability at discharge, ambulatory status at discharge, discharge 
destination, and combined inpatient mortality and discharge to 
hospice. Among patients with occlusions of the ACA, both the 
AC-ASPECTS and H-ASPECTS correlated more strongly than the 
MC-ASPECTS with clinical outcomes.

The AC-ASPECTS, ACh-ASPECTS, and H-ASPECTS 
substantially increase the amount of information provided by the 
ASPECTS rating strategy in patients with acute IS due to ACA, ACh, 
and ICA occlusions, which collectively account for more than one in 
five ISs due to large and medium vessel occlusions in the anterior 
circulation (24, 25). Isolated ACA infarctions account for 1–3% of ISs 
in large cohort studies (26–28) and can produce substantial disability, 
with common clinical manifestations of lower extremity predominant 
hemiparesis, urinary incontinence, apathy, and aphasia (26–28). 
Being able to characterize ACA infarct extent with a pragmatic, semi-
quantitative ASPECTS scale provides a pragmatic method to rate 
ACA core extent rapidly prior to intravenous thrombolysis in current 
clinical practice and prior to endovascular thrombectomy in 

randomized trials of catheter intervention for distal, medium 
vessel occlusions.

ICA occlusions, which account for 6–15% of ISs (29), may now 
be more accurately characterized by the use of the H-ASPECTS 
scale, which captures not only the 10 MC-ASPECTS regions that 
may be  involved but the 6 additional AC-ASPECTS, 
ACh-ASPECTS, and PC-ASPECTS regions also often affected 
(29–32). As the MCA territory supplies only approximately 54% of 
the human cerebral hemisphere (20), the MC-ASPECTS scale 
alone interrogates a markedly incomplete fraction of the entire 
supratentorial brain volume that can be  compromised by ICA 
occlusions, which can additionally affect the ACA, AChA, and 
PCA fields. Each of these territories supplies substantial portions 
of the cerebral hemisphere: ACA approximately 18%, posterior 
cerebral artery approximately 13%, and ACh approximately 4% 
(with watershed zones accounting for the remaining approximately 
11%) (20–22, 33). In patients with ICA occlusions, the H-ASPECTS 
scale has the potential to better guide decision-making than the 
MC-ASPECTS scale alone, as it delineates the extent of injury in 
its entirety rather than just a bit more than one-half of the potential 
ICA territory.

Recent randomized trials have demonstrated the benefit of 
endovascular thrombectomy for select patients with large infarct 
cores, but the core size was most often assessed incompletely via the 
use of the MC-ASPECTS alone (1). Reassessment for subgroups of 
patients who do and do not benefit from thrombectomy is desirable 
with the use of the H-ASPECTS scale. Of note, in the current study, 
the MC-ASPECTS scale did exhibit worse scores among patients 
with ICA compared with MCA occlusion, despite not interrogating 
non-MCA brain regions. The worse scores likely reflected that 
MCA field ischemic was more severe in ICA than M1-MCA 
occlusions due to the compromise of collateral supply from 

TABLE 2  Concurrence rates.

Raters Measure of 
concurrence

A1 
region

A2 
region

A3 
region

Total AC-
ASPECTS 

score

Total 
ACh-

ASPECTS 
score

Total MC-
ASPECTS 

score

Total PC-
ASPECTS 

score

Total 
H-ASPECTS

Initial imaging

Attending 

vs. fellow

Agreement rate 94 96 96 94 100 72 100 67

Kappa 0.54 0.48 0.48 0.74 1 0.65 1 0.73

Attending 

vs. resident

Agreement rate 84 88 96 80 100 58 90 55

Kappa 0.25 0.20 0.48 0.41 1 0.49 0.00 0.61

Fellow vs. 

resident

Agreement rate 90 92 96 86 100 50 90 50

Kappa 0.5 0.47 0.48 0.57 1 0.40 0.00 0.50

Follow-up imaging

Attending 

vs. Fellow

Agreement rate 91 100 98 87 100 39 93 74

Kappa 0.55 1 0.90 0.62 1 0.71 0.38 0.73

Attending 

vs. 

Resident

Agreement rate 98 93 91 83 100 53 91 74

Kappa 0.87 0.76 0.55 0.53 1 0.46 0.30 0.73

Fellow vs. 

Resident

Agreement rate 93 93 93 91 100 33 91 33

Kappa 0.63 0.76 0.63 0.75 1 0.23 0.30 0.49
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non-MCA to MCA territories. As a result, the MC-ASPECTS scores 
did indicate a greater injury degree among ICA patients than MCA 
occlusion patients. Nonetheless, adding scores reflecting injury or 
sparing of non-MCA fields would, on physiologic grounds, 
be expected to further improve scale performance in predicting 
prognosis and responsiveness to thrombectomy. Moreover, the 
H-ASPECTS scale has the potential to improve the identification of 
patients who may benefit from hemicraniectomy, as ACA region 
infarction accompanying MCA infarction in patients with ICA 
occlusion is an established risk factor for the development of 
malignant cerebral infarction and the need for surgical intervention 
(12–14).

This study has limitations. First, the investigation was performed 
retrospectively at a single academic medical center in a cohort of 
moderate size. Larger, prospective, multicenter, confirmatory studies 
are desirable. Second, the current study analyzed patient functional 
outcomes and vital status at discharge. Long-term outcome studies, 
especially through 3 months, are needed. Third, while the current 
study assessed inter-rater reliability among three raters with a wide 
range of scan assessment experience, performance characterization 
by more raters, including community practitioners, is recommended. 
In addition, in consensus discussions to resolve rating differences, 
the more senior rater(s) may have had greater influence than the 
more junior rater(s), but there were cases in which the final 
consensus was in favor of the readings by the more junior 
reviewer(s). Fourth, large ischemic core patients in the current study 
were generally not treated with endovascular thrombectomy, 
reflecting extant national guideline recommendations during the 
study period that preceded the completion of recent large core 
randomized trials. Furthermore, as in usual practice, the proportion 
of patients for whom hemicraniectomy was performed was low. 
Studies in larger and randomized trial populations are advised to 
confirm that and to characterize by how much the more 
encompassing H-ASPECTS, may better aid decision-making 
regarding these treatments than the MC-ASPECTS alone. Fifth, to 
match the validation approach of the original MC-ASPECTS study, 
the population in this initial study of the expanded ASPECTS scale 
constituted consecutive patients with anterior circulation IS. Further 
studies in larger numbers of patients, specifically with ICA and ACA 
occlusions, in whom scale performance would most differ, are 
desirable. Sixth, the current study assessed as scan raters a broad 
range of neurologic clinicians with three levels of neurologic 
training. Further inter-rater reliability studies are needed that 
encompass a wider range of physicians who perform acute stroke 
care, including more interventional neuroradiologists, endovascular 
neurosurgeons, interventional neurologists, diagnostic 
neuroradiologists, and additional non-interventional 
stroke neurologists.

Conclusion

AC-ASPECTS, ACh-ASPECTS, and H-ASPECTS expand the 
scope of AIS imaging scores and increase correlation with 
presenting deficits and functional outcomes. This additional 
information may improve decision-making in patients with large 
ischemic cores, including endovascular thrombectomy 
and hemicraniectomy.

FIGURE 2

Illustrative cases. First row: Isolated A2 ACA region abnormality. A 
64-year-old man presented with right leg sensory changes and 
severe aphasia, initial NIHSS 3, and CTA showing left ACA occlusion. 
He was treated with IV alteplase. (A) Initial non-contrast CT shows 
no area of hypodensity (AC-ASPECTS 3 and MC-ASPECTS 10). 
(B) Follow-up DWI MRI shows an abnormality in the left A2 ACA 
region (AC-ASPECTS 2 and MC-ASPECTS 10). Second row: Isolated 
A3 ACA region abnormality. (C) A 60-year-old woman presented 
with sudden onset left lower extremity weakness, initial NIHSS 3, and 
MRA showing right ACA occlusion. She was treated with IV alteplase. 
Initial DWI MRI shows right A3 ACA region abnormality region (AC-
ASPECTS 2 and MC-ASPECTS 10). (D) Follow-up DWI MRI also shows 
right A3 ACA region abnormality (AC-ASPECTS 2 and MC-ASPECTS 
10). Third row: Extensive hemispheric abnormality. An 88-year-old 
man presented with altered mental status, right-sided weakness, left-
sided forced gaze deviation, aphasia, and dysarthria, initial NIHSS 18, 
and CTA showing left ICA occlusion. He was treated with supportive 
care. (E) Initial non-contrast CT shows abnormal hypodensity in the 
left A1 region (arrow), as well as three MC-ASPECTS regions 
(H-ASPECTS 12 and C-ASPECT 7). (F) Follow-up DWI MRI shows an 
abnormality in all three AC-ASPECTS regions (A1, A2, and A3) as well 
as eight MC-ASPECT regions (H-ASPECTS 5 and MC-ASPECTS 2). 
Fourth row: AChA region abnormality. An 81-year-old woman was 
transferred from another hospital after intubation for aphasia and 
right-sided weakness, initial NIHSS 21, and MRA shows left internal 
carotid artery T occlusion. She was treated with supportive care. 
(G) Initial DWI MRI shows left AChA region abnormality (arrow), as 
well as 10 MC-ASPECTS regions and 1 PC-ASPECTS region 
(thalamus) (H-ASPECTS 4 and MC-ASPECTS 0). Follow-up imaging 
was not obtained.
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TABLE 3  ASPECTS regions involvement by site of occlusion.

ASPECTS scale Region Site of occlusion

ACA MCA M1 ICA

First 
scan 

N =  4 (%)

Second 
scan N =  4 

(%)

First scan 
N =  29 (%)

Second 
scan 

N =  26 (%)

First scan 
N =  17 (%)

Second 
scan N =  15 

(%)

H-ASPECTS AC-ASPECTS A1 1 (25) 2 (50) 0 0 2 (11.8) 2 (13.3)

A2 0 3 (75) 0 0 2 (11.8) 2 (13.3)

A3 1 (25) 2 (50) 0 0 1 (5.9) 3 (20)

ACh-ASPECTS ACh 0 0 0 0 1 (5.9) 0

MC-ASPECTS C 0 0 8 (27.5) 15 (57.7) 10 (58.8) 11 (73.3)

IC 0 0 3 (10.3) 4 (15.4) 6 (35.3) 6 (40)

L 0 0 8 (27.5) 17 (65.4) 12 (70.6) 11 (73.3)

Ins 0 0 12 (41.3) 16 (61.5) 10 (58.8) 10 (66.7)

M1 0 0 2 (6.9) 4 (15.4) 5 (29.4) 8 (53.3)

M2 0 0 5 (17.2) 11 (42.3) 4 (23.5) 8 (53.3)

M3 0 0 2 (6.9) 2 (7.7) 1 (5.9) 3 (20)

M4 0 0 2 (6.9) 4 (15.4) 4 (23.5) 7 (46.7)

M5 0 0 5 (17.2) 12 (46.2) 6 (35.3) 9 (60)

M6 0 0 0 4 (15.4) 1 (5.9) 3 (20)

PC- ASPECTS Thalamus 0 0 0 0 1 (5.9) 1 (6.7)

Occipital 0 0 0 1 (3.8) 0 0
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