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Background: Ischemic stroke (IS) is a neurological disease with significant 
disability and mortality. MicroRNAs were proven to be associated with cerebral 
ischemia. Previous studies have demonstrated miR-122 downregulation in both 
animal models of IS and the blood of IS patients. Nonetheless, the role and 
mechanism of miR-122-5p in IS remain unclear.

Methods: We established primary human and mouse astrocytes, along 
with HT22 mouse hippocampal neuronal cells, through oxygen–glucose 
deprivation/reoxygenation (OGD/R) treatment. To assess the impact of miR-
122, we  employed CCK8 assays, flow cytometry, RT-qPCR, western blotting, 
and ELISA to evaluate cell viability, apoptosis, reactive oxygen species (ROS) 
generation, and cytokine expression. A dual-luciferase reporter gene assay was 
employed to investigate the interaction between miR-122 and sPLA2-IIA.

Results: Overexpression of miR-122 resulted in decreased apoptosis, reduced 
cleaved caspase-3 expression, and increased cell viability in astrocytes and 
HT22 cells subjected to OGD/R. RT-qPCR and ELISA analyses demonstrated 
a decrease in mRNA and cytokine levels of interleukin (IL)-6 and tumor 
necrosis factor (TNF)-α in both astrocytes and HT22 cells following miR-122 
overexpression. Moreover, miR-122 overexpression reversed OGD/R-induced 
ROS levels and 8-OHdG formation in astrocytes. Additionally, miR-122 
overexpression decreased the mRNA and protein expression of inducible nitric 
oxide synthase (iNOS). Furthermore, we found that miR-122 attaches to the 3′-
UTR of sPLA2-IIA, thereby downregulate its expression.

Conclusion: Our study demonstrates that miR-122-mediated inhibition of 
sPLA2-IIA attenuates OGD/R-induced neuronal injury by suppressing apoptosis, 
alleviating post-ischemic inflammation, and reducing ROS production. Thus, 
the miR-122/sPLA2-IIA axis may represent a promising target for IS treatment.
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Introduction

Stroke, characterized by its significant morbidity and disability 
burden, is one of the most devastating cerebrovascular diseases and 
the third leading cause of death worldwide, posing a significant public 
health concern. IS is an episode of neurological dysfunction caused by 
focal cerebral infarction resulting from arterial stenosis or occlusion. 
It represents for approximately 85% of all stroke cases (1). Despite 
significant advancements in treatment, devising an effective 
therapeutic strategy for mitigating ischemic brain damage remains a 
formidable challenge. A substantial induction of pro-inflammatory 
cytokines and chemokines (including IL-6, IL-1β, TNF-α, IFN-γ, 
CXCL1, MCP-1) were released within minutes after IS, which is a 
significant contributor to neuronal loss (2–5). Astrocytes, the most 
abundant cells in the central nervous system and crucial components 
of the blood–brain barrier (6). Induced by inflammatory factors (such 
as IL-1, TNF-α) and chemokines like CCL2 released by microglia, 
astrocytes polarize into A1 reactive astrocytes characterized by C3/
iNOS expression (7). Current understanding suggests that A1 reactive 
astrocytes exacerbate neuroinflammation by further releasing TNF-α, 
IL-6, while A2 reactive astrocytes exert neuroprotective effects by 
releasing neurotrophic factors and facilitating glutamate reuptake, 
thus playing a role in mitigating cytotoxicity (8, 9). Previous study 
have demonstrated a significant increase in IL-6, TNF-α, and iNOS 
expression in astrocytes following OGD, with iNOS(+) reactive 
astrocytes leading to increased neuronal apoptosis (10), suggesting the 
involvement of A1 astrocytes in post-IS inflammation and oxidative 
stress. Moreover, it has been found that edaravone inhibits the 
transformation of A1 astrocytes by suppressing the expression of 
inflammatory cytokines and chemokines (11). Additionally, astrocytes 
play a critical role in the redox homeostasis during ischemic stroke, as 
evidenced by the significantly higher glutathione (GSH) content in 
astrocytes compared to neurons during OGD, with mitochondrial 
transfer from astrocytes to neurons aiding in maintaining neuronal 
mitochondrial function (12). On the other hand, activated astrocytes 
further promote microglial activation and induce apoptosis of 
damaged cells by producing IL-1β (13). In summary, astrocytes play 
important roles in inflammation, oxidative stress, and cell apoptosis 
in ischemic stroke.

MicroRNAs (miRNAs) comprise a group of small RNAs that are 
highly conserved, endogenous, non-coding and widely distributed 
across eukaryotes. They function primarily in the post-transcriptional 
regulation of gene expression (14, 15). An expanding body of 
evidence underscores that miRNAs play a crucial role in the 
pathophysiology of IS. These miRNAs exert their influence by 
exaggerating inflammatory responses, impairing the BBB, and 
inducing cytotoxicity and apoptosis, alongside contributing to 
vascular injury and facilitating regeneration processes. IS, which 
arises from ischemia and hypoxia, may trigger alterations in miRNA 
expression levels (16). These alterations are implicated in the 
progression of IS as they govern the expression of cytokines and 
immunomodulatory factors. Previous studies have provided evidence 
indicating a significant decrease in the levels of miR-122 in both rat 
models of middle cerebral artery occlusion and reperfusion 
(MCAO/R), as well as the blood of patients with acute stroke (17–19). 
Our previous study revealed that treatment with miR-122-5p mimics 
reduces the volume of cerebral infarction in rats. Furthermore, 
we validated that miR-122-5p reduces iNOS expression in leukocytes 

and brain microvascular endothelial cells (BMVECs), suggesting a 
cerebroprotective role of miR-122 in IR injury following IS (20, 21). 
Nevertheless, the role and mechanism of miR-122-5p in IS 
remain unclear.

Phospholipase A2 (PLA2) superfamily is a group of enzymes that 
hydrolyze the ester bond at the second position on the glycerol 
backbone of phospholipid molecules (22). Previous studies have 
revealed the presence of PLA2s in the cerebral cortex following 
ischemia (23). PLA2s act as rate-limiting factors in the production of 
bioactive substances, such as arachidonic acid (AA), prostaglandins, 
and platelet-activating factor (PAF). Therefore, both the concentration 
and activity of PLA2s are considered independent biomarkers of IS 
(23). Utilizing predictive analysis software such as TargetScan and 
miRanda, we suggest that miR-122-5p may exert a regulatory effect 
on the target gene, secreted PLA2 group IIA (sPLA2-IIA) (20). 
Therefore, the aim of this study was to examine the regulatory 
influence of miR-122 on sPLA2-IIA expression and elucidate the 
protective effects and underlying mechanism of miR-122 in astrocytes 
subjected to OGD/R-induced injury.

Materials and methods

Cell culture

This study was approved by the Ethics Committee of Guangdong 
Provincial People’s Hospital (Grant No. KY2020-563-01). Primary 
human astrocytes (CP-H122), mouse astrocytes (CP-M157), mouse 
hippocampal neuronal cell line (HT22, CL-0697) were all obtained 
from Wuhan Procell Life Science and Technology Co., Ltd. (Wuhan, 
China). The cells were all cultured in Dulbecco’s Modified Eagle 
Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) 
and a 1% mixture of penicillin and streptomycin. All cell cultures were 
maintained in an incubator with constant temperature and carbon 
dioxide levels, specifically at 37°C and 5% CO2.

Cell transfection

The miR-122-5p mimic and its corresponding negative control 
(NC) were chemically synthesized by Guangzhou RiboBio Co., Ltd. 
(Guangzhou, China), following established protocols. The miR-122-5p 
mimic and its NC were transfected into the cells using Lipofectamine 
3,000 (Invitrogen, Thermo Fisher Scientific Inc.) according to the 
manufacturer’s instructions.

OGD/R cell model

The vitro cerebral I/R injury was simulate utilizing OGD/R-
treated cells. To induce OGD stimulation, the cells were cultured in 
hypoxic incubator with 5% CO2, 1% O2, and 94% N2 for 12 h, using 
DMEM medium devoid of glucose and serum. Following OGD 
stimulation, the cells were subsequently incubated under normoxic 
conditions (5% CO2 and 95% air) for 24 h using DMEM medium 
supplemented with 10% FBS and glucose to simulate reperfusion. The 
control group was defined as cells cultured in normal DMEM medium 
under normoxic conditions in an incubator.
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CCK-8 assays

According to the manufacturer’s instructions for the Counting 
Kit-8 assay (APExBio Technology), cell viability measurements were 
performed by seeding 2 × 104 cells in 100 μL of complete culture media 
mixed with 10 μL CCK8 reagent per well in 96-well plates, after 
transfection with miR-122 or its NC for the specified duration.

Cell apoptosis assay

Perform cell apoptosis detection according to the instructions 
provided in the Annexin V-FITC/PI Cell Apoptosis Detection Kit 
(TransGen Biotech, Beijing, China). Collect the treated cells from each 
group as instructed, followed by a thorough washing step utilizing 
PBS. Subsequently, resuspended the cells in the Annexin V Binding 
buffer, then proceed to stain the cells with Annexin V-FITC and PI 
and incubate the mixture in a light-protected environment for 15 min 
at room temperature. Next, combine the cell suspension with Annexin 
V Binding buffer, place it on ice, and finally, determine the apoptosis 
rate by flow cytometry within 1 h.

Real-time quantitative RT-PCR

Total RNA was extracted using the E.Z.N.A. HP Total RNA kit 
(Omega Bio-tek, United States). The cDNA synthesis was carried out 
using 0.5 μg of RNA with the Prime Script RT master mix (Perfect 
Real Time; TaKaRa, Japan). Quantitative real-time PCR analysis was 
conducted in triplicate on LightCycler 480 (Roche, Mannheim, 
Germany) using SYBR Premix Ex Taq (TaKaRa, Japan) and the datas 
were normalized based on the expression of GAPDH RNA. The 
results were calculated utilizing the ΔΔCT methods. The primers for 
selected genes were as follows:

h-iNOS: 5′-AGCTGAACTTGAGCGAGGAG-3′, 5′-GGAAA 
AGACTGCACCGAAGA-3′;

h-TNF-α: 5′-GTGCTTGTTCCTCAGCCTCTT-3′, 5′-ATGGGC 
TACAGGCTTGTCACT-3′;

h-IL-10: 5′-ACCTGCCTAACATGCTTCGAG-3′, 5′-CTGGGT 
CTTGGTTCTCAGCTT-3′;

h-sPLA2-IIA: 5′-TGACGACAGGAAAGGAAGCC-3′, 5′-CTGC 
TCCCCGAGTTGCTAAA-3′;

h-GAPDH: 5′-GCACCGTCAAGGCTGAGAAC-3′, 5′-TGGT 
GAAGACGCCAGTGGA-3′;

m-IL-6: 5′-CCAAGCCTTATCGGAAATGA-3′, 5′-TTTTCACA 
GGGGAGAAATCG-3′;

m-TNF-α: 5′-CGGTGCCTATGTCTCAGCCT-3′, 5′-GAGGG 
TCTGGGCCATAGAAC-3′;

m-sPLA2-IIA: 5′-CTGTTGCTACAAGAGCCTGG-3′, 5′-GCCG 
TTTCTGACAGGAGTTC-3′;

m-GAPDH: 5′-TGTGTCCGTCGTGGATCTGA-3′, 5′- TTGC 
TGTTGAAGTCGCAGGAG-3′.

Western blotting

Cell lysis was performed using Radioimmunoprecipitation assay 
buffer (Beyotime Biotechnology, China) to disrupt cellular membranes 

and release intracellular components. The concentration of total 
protein was detected using the BCA Protein Assay Kit (Thermo Fisher, 
Waltham, MA, United States). The proteins were then separated by 
8–12% Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 
using an electric current, and subsequently transferring them to 
polyvinylidene fluoride (PVDF) membranes. The PVDF membranes 
were blocked with 5% skim milk, and then incubated with primary 
antibodies overnight at 4°C. Following primary antibody incubation, 
the membranes were washed to remove unbound antibodies and then 
incubated with the secondary antibodies for an hour at room 
temperature. Bound antibodies were visualized by ECL reagents 
(Thermo Fisher). In this study, the primary antibodies consist of anti-
β-Actin antibody (#3700, Cell Signaling Technology), anti-iNOS 
(#68186, Cell Signaling Technology), sPLA2-IIA (sc-58363, Santa 
Cruz Biotechnology), anti-caspase-3 antibody (#9661, Cell 
Signaling Technology).

Measurement of cytokine production

The supernatants were collected after the aforementioned steps 
and stored at −80°C. The levels of TNF-α and IL-10 were measured 
utilizing sandwich ELISA with an ELISA kit (eBioscience, San Diego, 
CA, United States), according to the manufacturer’s protocols.

Measurement of intracellular ROS

The ROS expression were detected utilizing the fluorescent probe 
2,7-dichlorodihydrofluorescein diacetate (DCFH-DA; Beyotime 
Institute of Biotechnology, Beijing, China) following the 
manufacturer’s protocols. Intracellular ROS could oxidize 
non-fluorescent DCFH, the hydrolysis product of DCFH-DA upon 
cellular entry, to green fluorescent 2,7-dichlorofluorescein, with 
fluorescence intensity directly proportional to the cellular ROS levels. 
Subsequently, the treated cells were incubated with DCFH-DA at a 
temperature of 37°C for 20 min, and then the fluorescence was 
detected using flow cytometry.

Measurement of 8-hydroxy-2′-
deoxyguanosine

The oxidative stress-associated marker 8-OHdG was assessed 
utilizing the OxiSelect™ Oxidative DNA Damage ELISA Kit 
(8-OHdG Quantitation, Trial Size) (Cell Biolabs Inc., United States). 
After the indicated treatments, cell supernatants were collected,  
and the 8-OHdG levels were quantified following the 
manufacturer’s protocol.

Luciferase reporter assay

sPLA2-IIA containing the predicted miR-122-5p binding site were 
cloned into pGL3-sPLA2-IIA-Wt (wild-type) and pGL3-sPLA2-
IIA-Mut (mutant type) (RiboBio Co., Ltd. Guangzhou, China), 
respectively. The Wt or Mut 3′-UTR of sPLA2-IIA vector and 
miR-122-5p mimic or its NC were co-transfected into 293 T cells 
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utilizing Lipofectamine 3000 (Invitrogen, Thermo Fisher Scientific 
Inc.). The luciferase activity within the cells was measured 48 h post-
transfection utilizing the luciferase assay system (Ambion, Austin, TX, 
United States).

Statistical analysis

Results were expressed as mean ± SD based on three independent 
experiments unless except where noted differently. Formal analysis 
between two groups were performed using a two-tailed unpaired 
Student’s t-test, with SD denoted by bars. All statistical analyses were 
conducted using GraphPad Prism 5.0 (GraphPad Software Inc., La 
Jolla, CA, United  States). A p-value of <0.05 was considered to 
be statistically significant.

Results

MiR-122 decreases astrocyte apoptosis 
following an IS in vitro

Astrocytes play a pivotal role in maintaining brain homeostasis, 
with their activation marking an early response to ischemia–
reperfusion IR injury. Apoptosis serves as a major mechanism 
contributing to neuronal loss after an IS. We therefore explored the 
impact of miR-122 on the apoptosis response of astrocyte in vitro. 
RT-qPCR analysis demonstrated that miR-122 mimic transfection 
successfully resulted in significant overexpression of miR-122  in 
astrocytes (Figure 1A). Importantly, treatment with miR-122 mimics 
promoted the survival of primary human astrocytes subjected to 
OGD/R (Figure  1B). Concurrently, miR-122 mimics significantly 
decreased apoptosis among astrocytes cultured under OGD/R 
conditions (Figures  1C,D), indicating that miR-122 might 
be implicated in astrocyte apoptosis triggered by ischemic conditions. 
Similar results were observed with primary mouse astrocytes and 
HT22 mouse hippocampal neuronal cells treated with miR-122 
mimics (Figures 1E–G). Moreover, we evaluated the expression of 
cleaved caspase-3, an apoptosis indicator, in primary astrocytes and 
HT22 cells through western blot analysis. In this study, we found that 
treatment with miR-122 mimics markedly reversed the expression of 
cleaved caspase-3 induced by OGD/R in both primary astrocytes and 
HT22 cells (Figures 1H–J).

MiR-122 inhibits pro-inflammatory

Previous studies have suggested that strokes can trigger an 
inflammatory response that promotes astrocyte activation. Thus, 
we  evaluated the effects of miR-122 on the expression of 
pro-inflammatory factor. We  found a significant reduction in the 
mRNA expression of the IL-6 and TNF-α in astrocytes and HT22 cells 
overexpressing miR-122 (Figure  2A). ELISA showed a significant 
reduction in IL-6 and TNF-α following miR-122 treatment in both 
astrocytes and HT22 cells (Figure  2B). We  further examined the 
impact of miR-122 on pro-inflammatory effects induced by 
OGD/R. The results showed that OGD/R resulted in a significant 
increase in the expression of IL-6 and TNF-α, whereas treatment with 

miR-122 mimics significantly reduced IL-6 and TNF-α expression in 
both astrocytes and HT22 cells (Figures 2C,D).

MiR-122 inhibits oxidative responses

ROS production serves as an initial trigger for ischemic brain 
injury. Consequently, this study examined the impact of miR-122 on 
oxidative damage induced by OGD/R in astrocytes. We found that 
OGD/R resulted in a significant upsurge in ROS production, 
whereas treatment with miR-122 mimics significantly reduced ROS 
production in both primary human and mouse astrocytes 
(Figures  3A,B). Moreover, treatment with miR-122 mimics 
significantly attenuated the generation of 8-OHdG, thereby 
attenuating oxidative stress injury (Figure 3C). Furthermore, we also 
assessed the impact of miR-122 mimics on iNOS expression levels, 
a critical enzyme involved in the synthesis of ROS and nitric oxide. 
We observed a significant attenuation of both mRNA and protein 
expression of iNOS upon miR-122 overexpression in astrocytes and 
HT22 cells (Figures  3D,E). These results indicate that miR-122 
diminishes ROS production, alleviates oxidative stress, and 
consequently inhibits astrocyte apoptosis in response to the 
OGD/R challenge.

sPLA2-IIA is a direct target of miR-122

Previous studies have suggested that human group sPLA2-IIA 
induces neuronal cell death via apoptosis. Exploratory Gene 
Association Networks have elucidated sPLA2-IIA as a prospective 
target of miR-122. To ascertain the direct interaction between miR-122 
and the 3′-UTR of sPLA2-IIA, we  performed the dual-luciferase 
reporter assay as a further investigation. The results demonstrated that 
miR-122 overexpression inhibited luciferase activity of the reporter 
gene in the WT construct, while it had no effect on the sPLA2-
IIA-MUT construct (Figure 4A). To explore the potential impact of 
miR-122 on sPLA2-IIA regulation, we further examined sPLA2-IIA 
expression in cells following transfection with either miR-122 or NC 
mimics. Our findings demonstrate that upregulation of miR-122 
markedly reduced the sPLA2-IIA expression at both mRNA and 
protein levels in astrocytes, as well as HT22 cells (Figures  4B,C), 
suggesting that sPLA2-IIA might be  a direct target of 
miR-122 in astrocytes.

Discussion

IS ranks among the leading causes of adult mortality globally. 
Despite significant breakthroughs in diagnostic technologies and 
novel clinical therapies for IS (24–26), the prognosis remains 
suboptimal, and the mechanisms underlying IS remain a subject of 
controversy. MiRNAs are emerging as key molecular mediators in IS 
and are considered potential diagnostic and therapeutic agents for this 
condition (27). Earlier research has indicated a significant reduction 
in miR-122 levels in animal models of ischemic cerebral reperfusion 
and the blood of patients with acute stroke (18). Our previous study 
demonstrated that treatment with miR-122-5p mimics reduces the 
volume of cerebral infarction in rats underwent 
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MCAO/R. Furthermore, it validated that miR-122-5p reduces iNOS 
expression in leukocytes and BMVECs, suggesting a cerebroprotective 
role for miR-122 in IR injury following IS (21, 28). We have indicated 
that overexpression of miR-122 reverses cell apoptosis and cleaved 
caspase-3 level resulting from OGD/R in primary astrocytes and 
HT22 cells. Furthermore, our research has shown that overexpression 
of miR-122 results in decreased levels of IL-6, TNF-α, and 

ROS. Moreover, we found that overexpression of miR-122 leads to its 
direct binding to sPLA2-IIA 3′-UTR and the inhibition of 
sPLA2-IIA expression.

The PLA2 superfamily of enzymes comprises six subfamilies: 
cytosolic PLA2s, calcium-independent PLA2s, sPLA2s, lysosomal 
PLA2s, PAF acetylhydrolases, and adipose-specific PLA2s. These 
subfamilies play crucial roles in maintaining cellular membrane 

FIGURE 1

MiR-122 decreases astrocyte apoptosis after IS in vitro. (A) Primary human astrocytes were transfected with miR-122 mimics and NC, the expression of 
miR-122 was measured by qRT-PCR. (B) Primary human astrocytes transfected with miR-122 mimics and NC were treated with OGD, cell viability was 
measured by CCK8 assay. (C,D) Primary human astrocytes transfected with miR-122 mimics and NC were treated with OGD, cells were then stained 
with Annexin V-APC and propidium iodide, cell apoptosis was analyzed by flow cytometry. (E) Primary mouse astrocytes and HT22 mouse 
hippocampal neuronal cells were transfected with miR-122 mimics and NC, the expression of miR-122 was measured by qRT-PCR. (F,G) Primary 
mouse astrocytes and HT22 mouse hippocampal neuronal cells transfected with miR-122 mimics and NC were treated with OGD, (F) cell viability was 
measured by CCK8 assay, (G) cell apoptosis was analyzed by flow cytometry. (H) Primary human astrocytes transfected with miR-122 mimics and NC 
were treated with OGD, the expression of cleaved caspase-3 were by western blot. (I) Primary mouse astrocytes transfected with miR-122 mimics and 
NC were treated with OGD, the expression of cleaved caspase-3 were by western blot. (J) HT22 mouse hippocampal neuronal cells transfected with 
miR-122 mimics and NC were treated with OGD, the expression of cleaved caspase-3 were by western blot. Each point represents the mean  ±  SD. 
Data show a representative of three independent experiments. **p  <  0.01, ***p  <  0.001.
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homeostasis under physiological conditions. Among them, sPLA2 
play a pivotal role in inflammation-related diseases. sPLA2 
hydrolyzes oxidized phospholipids in LDL cholesterol, generating 
oxidized free fatty acids. These fatty acids are precursors to the 
production of inflammatory substances such as AA, which is 
assumed to be  associated with neuronal apoptosis (29). Also 
damages the vascular endothelium. Therefore, sPLA2 has been 
suggested as a vasculature-specific marker of inflammation (22). 
In the early stage after MCAO/R, a notable increase in sPLA2-IIA 

mRNA expression has been observed in the cerebral cortex of rats, 
which is attributed to the activation of astrocytes (30). However, 
Wang’s study has also indicated that the autocrine levels of 
sPLA2-IIA possibly has a protective effect in maintaining the 
integrity of BMVECs and reducing the increased permeability 
induced by lipopolysaccharide (31). These findings suggest a close 
association between sPLA2-IIA and IS. Importantly, a previous 
study has demonstrated that in the MCAO/R rat model, the levels 
of sPLA2-IIA in the penumbra did not increase in the early stage 

FIGURE 2

MiR-122 inhibits pro-inflammatory responses. (A) Primary human and mouse astrocytes, and HT22 mouse hippocampal neuronal cells were 
transfected with miR-122 mimics and NC, the expression of IL-6 and TNF-α were measured by qRT-PCR. (B) Primary human and mouse astrocytes, 
and HT22 mouse hippocampal neuronal cells were transfected with miR-122 mimics and NC, the expression of IL-6 and TNF-α were measured by 
ELISA. (C) Primary human and mouse astrocytes, and HT22 mouse hippocampal neuronal cells transfected with miR-122 mimics and NC were treated 
with OGD, the expression of TNF-α were measured by ELISA. (D) Primary human and mouse astrocytes, and HT22 mouse hippocampal neuronal cells 
transfected with miR-122 mimics and NC were treated with OGD, the expression of IL-6 was measured by ELISA. Each point represents the mean  ±  SD. 
Data show a representative of three independent experiments. *p  <  0.05, **p  <  0.01.
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of ischemia, but an elevation in sPLA2-IIA levels was observed in 
the later stage (30). Therefore, sPLA2-IIA inhibitors, which can 
halt the reversible pro-apoptotic state in the penumbra, hold 
promise for reducing ischemic damage and facilitating the 
successful treatment of stroke.

At present, the standard recommended treatment for IS 
involves intravenous thrombolysis or interventional methods 
aimed at achieving vascular recanalization (32–34). These 
treatments are bound by strict time window requirements and 
carry the risk of secondary cerebral hemorrhage and reperfusion 

injury (24, 35). Owing to the BBB, antioxidant drugs are unable to 
reach the ischemic injury site, thereby limiting their biological 
impact. Consequently, the efficacy of existing drug therapies is 
limited. MiRNAs are implicated in various human disorders. 
Possessing high stability in human fluids, miRNAs are promising 
biomarkers for disease diagnosis and prognosis. Additionally, 
miRNA-based therapeutics hold the potential to revolutionize the 
treatment of diverse human pathologies (14, 36, 37). Emerging 
evidence suggests that miRNA expression is upregulated during 
stroke and is crucial in regulating the prognosis of stroke patients 

FIGURE 3

MiR-122 inhibits oxidative responses. (A) Primary human astrocytes transfected with miR-122 mimics and NC were treated with OGD, the levels of ROS 
were analyzed by flow cytometry. (B) Primary mouse astrocytes transfected with miR-122 mimics and NC were treated with OGD, the levels of ROS 
were analyzed by flow cytometry. (C) Primary human and mouse astrocytes transfected with miR-122 mimics and NC were treated with OGD, 
8-OHdG contents were measured. (D,E) Primary human and mouse astrocytes, and HT22 mouse hippocampal neuronal cells were transfected with 
miR-122 mimics and NC, (D) the expression of iNOS were measured by qRT-PCR, (E) the expression of iNOS were measured by western blot. Each 
point represents the mean  ±  SD. Data show a representative of three independent experiments. *p  <  0.05, **p  <  0.01.
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(21, 28). Therefore, therapeutic and diagnostic methods in stroke 
management can potentially gain valuable insights from the 
stroke–miRNA system. Previous studies have demonstrated a 
significant reduction in miR-122 levels in both animal models of 
ischemic cerebral reperfusion and the blood of patients with acute 
stroke (17, 19). Our previous study demonstrated that treatment 
with miR-122-5p mimics effectively reduces the volume of cerebral 
infarction in rats subjected to MCAO/R (20, 21). In line with these 
important observations, we  validated that miR-122 mitigates 
astrocyte apoptosis following IS. Moreover, we  elucidated 
sPLA2-IIA as a novel target gene of miR-122 and demonstrated 
that the upregulation of miR-122 markedly inhibits sPLA2-IIA 
expression, thereby suggesting a cerebroprotective role for the 
miR-122/sPLA2-IIA axis in IR injury following IS.

Emerging evidence suggests that astrocyte-mediated 
inflammatory responses play a vital role in IS and have emerged as a 
prime target for novel therapies for stroke (2, 20, 38). Astrocytes, the 
predominant cell type in the brain in terms of both quantity and 
volume, are responsible for regulating neuronal cell development and 
maintaining extracellular environmental homeostasis. In pathological 

conditions, including IS, astrocytes become activated and release 
adhesion molecules, chemokines, and other inflammatory factors into 
the affected areas. This secretion directly or indirectly contributes to 
the exacerbation of brain damage, neuronal dysfunction, microglial 
activation, and the recruitment of peripheral immune cells. Previous 
studies have demonstrated that sPLA2-IIA serves as an inflammatory 
mediator, stimulating the generation of pro-inflammatory cytokines 
and chemokines. Our results further validate that overexpression of 
miR-122 significantly decreases the expression of TNF-α and IL-6 in 
astrocytes. This finding suggests a cerebroprotective role for 
miR-122 in IS. However, additional investigations are necessary to 
explore the impact of miR-122 on post-ischemic inflammation, long-
term survival, and functional recovery outcomes in an animal model 
of MCAO/R.

ROS have traditionally been considered as harmful byproducts 
of mitochondrial metabolic activities and a primary injury factor 
contributing to macromolecular damage in various inflammatory-
related diseases, including IS. ROS production has been 
demonstrated to remarkably increase during IR injury (15). 
Although the sources of these ROS remain a subject of debate, IR 

FIGURE 4

miR-122 directly targeted sPLA2-IIA 3′UTR to suppress its expression. (A) HT22 mouse hippocampal neuronal cells were co-transfected with wild-type 
(WT) or mutant (mut) sPLA2-IIA 3′-UTR-luciferase reporter constructs and miR-122 mimics or NC, respectively, the relative luciferase activities were 
measured. (B,C) Primary human and mouse astrocytes, and HT22 mouse hippocampal neuronal cells were transfected with miR-122 mimics and NC, 
(B) the expression of sPLA2-IIA were measured by western blot, (C) the expression of sPLA2-IIA were measured by qRT-PCR. Each point represents the 
mean  ±  SD. Data show a representative of three independent experiments. *p  <  0.05, **p  <  0.01.
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injury arises from the interruption and subsequent restoration of 
blood supply to an organ, resulting in an increase in mitochondrial 
ROS production. Moreover, the aberrant accumulation of ROS can 
induce mitochondrial dysfunction, promote the generation of 
pro-apoptotic proteins, and trigger apoptosis, underscoring the 
pivotal role of ROS in reperfusion damage (39). Based on this 
research, we have revealed that miR-122 overexpression effectively 
reduces ROS production in astrocytes. Moreover, our findings 
demonstrate that the upregulation of miR-122 also decreases both 
the mRNA and protein expression of iNOS in astrocytes. Previous 
studies have suggested that iNOS is induced after 12 h, in the later 
phases of cerebral ischemia. The neurotoxic nitric oxide 
synthesized by iNOS has been implicated in impeding the delayed 
recovery from neuronal damage in the brain (40). Therefore, 
miR-122 may be involved in mitigating oxidative stress through 
multiple mechanisms, thereby exerting cerebroprotective 
effects in IS.

In summary, this particular research demonstrated that 
overexpression of miR-122 diminishes astrocyte apoptosis 
following an IS. Furthermore, we have identified sPLA2-IIA as a 
novel target gene of miR-122, with miR-122 directly binding to the 
3′-UTR of sPLA2-IIA, leading to the inhibition of sPLA2-IIA 
expression. This inhibition, in turn, mitigates post-ischemic 
inflammation and reduces the production of ROS. Our research 
suggests an innovative function for miR-122  in IS, as well as 
highlights its potential utility in intervention strategies for 
IS. Nevertheless, further study utilizing animal models is warranted 
to contribute to a thorough comprehension of the vital effects of 
miR-122  in IS, particularly in relation to post-ischemic 
inflammation, long-term survival, and functional 
recovery outcomes.
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