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Objectives: This study proposed an outcome prediction method to improve

the accuracy and e�cacy of ischemic stroke outcome prediction based on the

diversity of whole brain features, without using basic information about patients

and image features in lesions.

Design: In this study, we directly extracted dynamic radiomics features (DRFs)

fromdynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI) and

further extracted static radiomics features (SRFs) and static encoding features

(SEFs) from the minimum intensity projection (MinIP) map, which was generated

from the time dimension of DSC-PWI images. After selectingwhole brain features

Ffuse from the combinations of DRFs, SRFs, and SEFs by the Lasso algorithm,

various machine and deep learning models were used to evaluate the role of

Ffuse in predicting stroke outcomes.

Results: The experimental results show that the feature Ffuse generated from

DRFs, SRFs, and SEFs (Resnet 18) outperformed other single and combination

features and achieved the best mean score of 0.971 both on machine learning

models and deep learning models and the 95% CI were (0.703, 0.877) and (0.92,

0.983), respectively. Besides, the deep learning models generally performed

better than the machine learning models.

Conclusion: The method used in our study can achieve an accurate assessment

of stroke outcomes without segmentation of ischemic lesions, which is of great

significance for rapid, e�cient, and accurate clinical stroke treatment.

KEYWORDS

acute ischemic stroke, outcome prediction, whole brain, deep learning, machine

learning

1 Introduction

Worldwide, ∼13.7 million people endure stroke annually, leading to ∼5.8 million

deaths, while approximately one-third of survivors will be present with varying degrees of

disability (1, 2). Acute ischemic stroke is the primary type of stroke, with a prevalence ratio

of 85–90% (3). With the continuous progress of medical imaging methods and analysis

technology, the mortality rate of stroke has been reduced, but the disability rate has not

been effectively improved (4). Assessing the rehabilitation ability of patients in advance

would be beneficial for devising clinical therapy plans, disease detection, and therapeutic

management in the treatment of stroke disease (5).
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In most well-developed countries, stroke outcomes have

been greatly improved. These advancements have been achieved

depending on the highly effective recanalizing therapies, high-

resolution imaging technology, and standardized care for patients

across medical departments (6). With the evolution of medical

technology, significant progress has been achieved in outcome

prediction (7–11). However, most of these methods require clinical

physicians to collect basic information about patients, evaluate their

status, and score them beforehand, wherein the National Institutes

of Health Stroke Scale (NIHSS) has become a widely used indicator

of stroke severity (12), and modified Rankin Scale (mRS) has been

used as the most common score to evaluate patient outcomes (13).

Most clinical scores have the same common limitations in that

their evaluation usually depends on clinicians’ judgment of the

patient’s expression, but the subjective expressions and judgments

may influence treatment planning and patient prognosis. Although

clinical scores and basic patient information have been proven to

express prognosis to a certain extent, it is difficult to improve when

using them to predict stroke outcomes significantly.

As medical imaging provides more intuitive and abundant

image data, research studies are gradually proposed based on

clinical scores, basic information about patients, and medical

images. Various studies (14–18) explored the role of medical images

in predicting rehabilitation levels, but the overall performance

failed to outperform the non-imaging data. With the advent of

radiomics technology, the detailed quantification of medical images

has been achieved, promoting an in-depth analysis of medical

imaging in disease diagnosis, treatment, and prevention (19–23).

Inspired by this technology, the radiomics features calculated from

the diseased regions were used in the outcome prediction task,

but it is challenging to outperform the non-imaging data (14, 24–

26). Then, the combination of non-imaging data and radiomics

features was proposed. Zhou et al. (27) proposed a predictionmodel

based on essential clinical information of patients and radiomics

features calculated from the diffusion-weighted imaging (DWI)

and apparent diffusion coefficient (ADC) maps, outperforming the

models based on individual, clinical, or radiomics features. Quan

et al. (28) proved that the predicting ability of the model would be

improved after introducing the radiomics feature. It can be seen

that the fusion of clinical information improved the prediction of

patients’ recovery levels and the emergence of new technologies.

Different from the above feature analysis of three-dimensional

(3D) images, studies (29, 30) found that the novel dynamic

radiomics features (DRFs) extracted from dynamic susceptibility

contrast perfusion-weighted imaging (DSC-PWI) can characterize

blood flow transmission status and effectively enhance the

expression ability of medical images in outcome prediction tasks

by combining with clinical text information. Furthermore, a

prediction model (31) using the combined features of ischemic

lesions and whole brain tissue was proposed and achieved similar

accuracy to the models based on non-imaging data and lesion

tissue. However, timely treatment for stroke was an essential

condition to improve the rehabilitation of patients (32). The

basic information about patients and lesion characteristics used

in the above-mentioned prognostic studies require extra time for

consultation and lesion segmentation, reducing the efficiency of

clinical treatment.

Previous works to predict stroke outcomes can be divided into

classical machine learningmethods (7–11) and deep learning-based

methods (10, 14). It is comprehendible that training a deep learning

model requires a large amount of clinical data. Due to the privacy

protection policy and limited labeled data in the healthcare unit, it

is challenging to collect abundant samples. Transfer learning was

proposed to solve this issue in small data scenarios (33). Then,

some studies used the transfer learning theory to diagnose stroke

(34, 35), stroke risk prediction (36), and stroke outcome prediction

(37–39). Among present pre-trained models, Med3D, which is pre-

trained by eight different datasets, was regarded as a trusted feature

extractor in multiple medical scenarios (40–42). However, most of

these studies only took medical images or physiological data as

the input data, lacking complete information, and it has not been

carried out in stroke prognosis.

Based on the above, this study proposed a stroke outcome

prediction method based on the combined strategy of dynamic

and static features extracted from the whole brain. The features in

multiple dimensions and states were calculated through in-depth

mining of features in the whole brain, and the prediction accuracy

was improved. The significant contributions and innovations of

this study are listed below.

a) This study proposed a rapid and efficient stroke outcome

prediction model. According to this model, segmenting ischemic

lesions or presenting basic patient information is unnecessary. The

method used in our study is only dependent on the image features

extracted from the brain parenchyma to predict the recovery level

of patients, thus saving time for segmentation and consultation.

b) This study used diversity methods to extract the whole

brain features, including DRFs obtained from DSC-PWI images,

the static radiomics features (SRFs) extracted from the minimum

intensity projection (MinIP) map of DSC-PWI images in time

direction, and static encoding features (SEFs) extracted from the

MinIP map by the pre-trained Med3D model. The complete and

comprehensive feature extraction from the whole brain provides

more research basis for clinical practice.

c) This study compared the performance of the deep learning

and machine learning models in predicting ischemic stroke

outcomes, demonstrating the advantages of the deep learning

models. In addition, due to the introduction of the pre-training

model, the requirement for datasets is reduced.

2 Materials and methods

2.1 Materials

The datasets used in this study were collected from Shanghai

Fourth People’s Hospital Affiliated with Tongji University School of

Medicine and exempted from informed consent. The datasets were

collected from 2013 to 2016 and included 161 DSC-PWI images

collected from 88 hospitalized patients.

The inclusion criteria for this study are as follows: (1) all

patients were adults and scanned for DSC-PWI and DWI images

within 24 h of admission and (2) the patients lacking basic or

imaging information were removed from the queue. Finally, 156
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TABLE 1 The basic information of datasets in our study.

Items Value

Patients number 88

Volumes of datasets 156

Female (%) 39 (44.3%)

Age (mean± Std) 69.67± 11.02

Income NIHSS score (mean± Std) 8.62± 6.69

Outcome NIHSS score (mean± Std) 4.07± 5.29

90-day mRS 1.91± 2.13

Onset time (hour) 7.05± 10

Patients with left limb weakness (%) 36 (40.9%)

Patients with right limb weakness (%) 38 (43.2%)

Patients with lisp out (%) 58 (65.9%)

Patients with confused (%) 10 (11.4)

Patients with hypertension (%) 59 (67%)

Patients with diabetes (%) 26 (29.5%)

Patients with atrial fibrillation 22 (25%)

DSC-PWI images were selected to be used in our study. The DSC-

PWI images in our datasets were collected on a 1.5-T Avanto

scanner (Siemens, Erlangen, Germany). The imaging parameters

were listed as follows: Slices = 19, TH = 5mm, TR = 1,520ms,

TE = 32ms, measurements = 50, FOV = 230 mm2, matrix size =

128 × 128, and band width = 1,346 Hz/pixel. The gadopentetate

dimeglumine (Gd-DTPA) (Shanghai Pharmaceutical Corporation,

Shanghai, China) was injected at a dose of 0.2 mmol/kg body

weight and a saline flush of 30ml at the same injection flow rate

of 4 ml/s.

Among the datasets, the ratio of male to female samples was

25%, and the mean ± variance of age, income NIHSS score,

outcome NIHSS, modified Rankin scale (mRS) score within 90

days, and the onset time were 69.67 ± 11.02, 8.62 ± 6.69, 4.07 ±

5.29, 1.91 ± 2.13, and 7.05 ± 10, respectively. The mRS score is

widely used to evaluate the disability of stroke patients. Regarding

patients’ basic information, the ratio of patients with left and

right limbs weakness, lisp out, confusion, hypertension, diabetes,

and atrial fibrillation were 40.9, 43.2, 65.9, 11.4, 67, 29.5, and

25%. The basic statistics for datasets used in this study are shown

in Table 1.

2.2 Methods

Figure 1 shows the flowchart of the stroke outcome prediction

proposed in this study. As shown in Figure 1, the stroke

outcome prediction method mainly includes (a) constructing the

MinIP map on the time dimension of DSC-PWI images, (b)

multidimensional whole brain features quantification, (c) feature

dimension reduction, and (d) stroke outcome prediction.

2.2.1 Construction of the MinIP map on the time
dimension of DSC-PWI images

DSC-PWI image comprises 50 three-dimensional (3D) images

scanned in continuous moments, and the time-intensity curve of

each voxel in the DSC-PWI image represents the change in gray

level before, during, and after the arrival of the contrast agent.

Notably, when the contrast agent arrives, the gray level of abnormal

ischemic tissue exhibits a lesser and slower decrease than the

normal tissue and may even remain unchanged (43, 44). Therefore,

the minimum gray level of voxels in the time dimension provides

the blood flow condition of brain tissue. Based on this insight, this

study performed MinIP processing of the DSC-PWI image on the

time dimension and obtained the MinIP map.

Before the MinIP processing, the preprocessing of datasets

should be performed to remove position deviation. In this step, the

rigid registration of 3D images in the time dimension of the DSC-

PWI image was followed by the simple-elastix package in Python

(45). Then, the software FSL (46) was used to segment the skull and

brain tissue regions.

After image preprocessing, the MinIP map of the voxels in the

brain tissue was obtained by executing the MinIP processing on the

time dimension of the DSC-PWI image. The expression to obtain

theMinIPmap is shown in Equation (1). In this way, the blood flow

transmission ability of different tissues in the DSC-PWI image can

be preserved, and the image was reduced from four dimensions to

three dimensions, saving the operation cost of subsequent work and

improving the calculation speed.

MinIP (x, y, z) = min intensity (x, y, z, :) (1)

Items x, y, and z represent the coordinate values in three-

dimensional space, respectively, and the minimum function min()

was used to obtain the minimum value in the time-intensity

sequence of (x, y, z) of the DSC-PWI image.

2.2.2 The quantification of multidimensional
whole brain features quantification

The DSC-PWI image and the MinIP map reflect the different

aspects of the blood flow transmission of brain tissue. The DSC-

PWI image shows the gray level changes in brain tissue at different

times and then shows the dynamic transmission process of cerebral

blood flow. The MinIP map represents the response of different

brain tissues to the contrast agent. Through the complete feature

extraction of DSC-PWI and the MinIP map, brain tissue’s current

state and recovery ability may be fully characterized.

This study used diverse methods to quantify the whole

brain features and achieve the multidimensional quantification of

dynamic and static features. For the dynamic features, this study

used radiomics technology to extract the whole brain dynamic

radiomics features (DRFs) from DSC-PWI images. For the static

features, this study used radiomics technology and the pre-trained

model Med3D to calculate the whole brain static features from the

MinIP maps.

(a) Extracting DRFs of the whole brain

Figure 2 shows the process of extracting DRFs. First, the brain

tissue region can be segmented based on the preprocessing step

mentioned above. Then, this study divided the DSC-PWI image
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FIGURE 1

The flowchart of the stroke outcome prediction. (A) Constructing the MinIP map on the time dimension of DSC-PWI images; (B) multidimensional

whole brain features quantification; (C) feature dimension reduction; (D) stoke outcome prediction using deep learning models.
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FIGURE 2

The process of extracting DRFs.

into N (N = 50) 3D brain images and calculated the radiomics

features of the whole brain region in each 3D image. The feature

calculation was implemented with the PyRadiomics package in

Python. Then, the DRFs were obtained by combining the radiomics

features of each 3D image according to the time order.

When calculating the radiomics features, six feature groups

can be found in the DRFs, including First-Order Statistics (First-

order), Gray-Level Co-Occurrence Matrix (GLCM), Gray-Level

Run-Length Matrix (GLRLM), Gray-Level Dependence Matrix

(GLDM), Gray-Level Size-Zone Matrix (GLSZM), and Gand

Neighboring Gray-Tone Difference Matrix (NGTDM). In detail,

the DRFs had 84,400 features, including First-Order features,

GLCM features, GLRLM features, GLSZM features, NGTDM

features, and GLDM features.

(b) Static encoding features of the whole brain

As shown in Figure 3, this study used the Med3D model to

analyze theMinIP image and calculated the static encoding features

(SEFs) of whole brain tissue. In detail, this study used the MinIP

map as the input of the encoder of Med3D to extract the SEFs.

The output of the last layer of the encoder was performed with

average pooling and feature expansion, and then one-dimensional

features were obtained. Considering that the gray value of voxels in

the MinIP map was the response to the arrival of contrast agents on

brain tissue, the extracted SEFs can be used to evaluate the state of

blood flow propagation.

(c) Static radiomics features of the whole brain

To extract the whole brain static feature information more

comprehensively, this study further applied radiomics technology

to extract the radiomics features of the whole brain in the MinIP

map. In contrast to the DRFs obtained based on DSC-PWI images

directly, the whole brain static radiomics features (SRFs) can only

provide information when the gray level of all the voxels was the

lowest, thus it only included the radiomics feature information of

one 3DMinIP map. Notably, the SRFs had a total of 1,688 features,

including First-order features, GLCM features, GLRLM features,

GLSZM features, NGTDM features, and GLDM features.

2.2.3 Feature dimension reduction and
combination

(a) Feature dimension reduction

Since the dynamic and static features (DRFs, SRFs, and

SEFs) extracted from the whole brain include excessive redundant

information, an effective feature dimensionality reduction is

necessary to find the most relevant features (47). This study

used multilevel feature dimension reduction methods to compress

the original features, including the significant feature selection

and outstanding feature selection. Before the reduction of feature

dimension, the samples should be divided into patients with good

outcomes (mRS ≤ 2) and poor outcomes (mRS > 2). Among the

156 samples, 65 samples showed poor outcomes while 91 showed

good outcomes.

In the process of feature dimension reduction, the first step was

normalizing the datasets with mean-variance normalization (48),

which was used to eliminate the influence of dimension and value-

range differences between features. Then, the t-test algorithm and

the absolute shrinkage and selection operator (Lasso) method were

executed for feature dimension reduction (49). Both these methods

can compass the original features. Depending on the previous study

(50) in which multiple feature selection methods were used and

compared, it can be found that features extracted from the Lasso

algorithm could accurately reflect cerebral blood flow changes and

improve the classification ability of models. Based on this reason,

this study applied the Lasso algorithm to extract efficient features.

In detail, the t-test algorithm was used to extract the significant

features, namely, significant DRFs, significant SEFs, and significant

SRFs. The Lasso algorithm selected the critical features with non-

zero coefficients from significant features. We defined the selected

features as DRFs, SRFs, and SEFs. The original features were named

original DRFs, original SRFs, and original SEFs, respectively.

(b) Feature combination

In this step, the three features selected by the Lasso algorithm

were concatenated. Since features from different images and

methods may have redundancy, this study used the Lasso algorithm

to optimize our study’s combined features. Finally, this study

obtained the combined features depending on the Equation (2).

Ffuse = LASSO (concat (DRFs, SRFs, SEFs)) (2)

where concat means concatenation of the three groups of

selected features.

2.2.4 Stroke outcome prediction
After obtaining the combination features Ffuse from original

dynamic and static features (DRFs, SEFs, and SRFs), this study

used four deep learning networks LSTM, CNN, RNN, and linear

network (LN) to predict the stroke outcomes (90 days mRS). The

input of the deep learning network was Ffuse, and the output

was the possibility of either a good outcome or a poor outcome.

The training parameters of networks are shown in Table 2. To

obtain a reliable result, a mean score (MS), calculated from five
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FIGURE 3

The flow chart of extracting SEFs.

TABLE 2 The training parameters of deep learning networks.

Items Value

Epoch 500

Batch size 20

Optimizer Adam

Loss function Cross entropy

Learning rate 0.01

Stop condition The loss value was higher than the minimum loss 10 times

mean indexes, namely, mean area under the curve (mAuc), mean

precision score (mPre), mean accuracy score (mAcc), mean F1

score (mF1), and mean Recall (mRecall), was used to evaluate the

ability to predict stroke outcomes. The five indexes were obtained

through a 10-fold cross-validation method, which was achieved

using the StratifiedKFold function in the sklearn package. This

function can ensure the balance of the ratio between positive and

negative samples in the training set and the test set, improving

the reliability of the prediction results. In detail, this study used

the 10-fold cross-validation to evaluate the obtained features. We

randomly and uniformly divide the data into 10 equal parts based

on the labels before the experiment. Each iteration used one part

as the test set and the remaining four parts as the training set. This

process was repeated 10 times independently. For example, the data

for one patient in the datasets would be used as the test set in

one of the ten iterations and as the training set in the remaining

nine iterations, and the parameters of the same model would be re-

initialized and trained at each iteration independently of each other.

This implies that the 10 iterations are independent, and the data

for the same patient will not be used as a test sample and training

sample at the same iteration. Using the 10-fold cross-validation,

the bias of results due to patient differences can be reduced, and

a reliable result can be obtained.

After performing the 10-fold cross-validation operation, ten

groups of Auc scores, Acc scores, Pre scores, F1 scores, and Recall

scores can be obtained from each prediction model, and the mean

score, mAuc, mAcc, mPre, mF1, and mRecall can be calculated

using Equation (3). The Acc, Pre, F1, and Recall were calculated

using Equation (4), Auc was the area under the curve obtained

by the sklearn.metrics package. The obtained mean scores were

used to further calculate the MS score according to Equation (5). In

Equation (4), TP and TN represent the number of positive samples

predicted to be positive, and the number of negative samples

predicted to be negative, while FP and FN represent the number

of positive samples predicted to be negative, and the number of

negative samples predicted to be positive. In Equation (3), the index

represents the Auc, Acc, Pre, F1, and Recall, and k is the number of

folds (10-fold in our study).

m (index) =
1

k

k∑

i = 0

index (3)

ACC =
TP + TN

TP + FP + TN + FN
, (4)

pre =
TP

TP + FP
,

Rcall =
TP

TP + FN
,

F1 = 2∗
Pre ∗ Recall

Pre+ Recall
.

MS = (mAuc +mPre +mAcc + mF1 +mRecall)/5 (5)

In our study, nine machine models were selected to make

a competitive result. The machine learning models included

support vector machine (SVM), decision tree (DT), AdaBoost

classifier (Ada), random forest (RF), k-nearest neighbors (KNN),

logistic regression (LR), linear discriminant analysis (DA), gradient

boosting classifier (GBDT), and GaussianNB (NB).

Besides, to thoroughly verify the role of SEFs extracted from

Med3D, this study conducted comparative experiments with four

encoders, namely, ResNet10, ResNet18, ResNet34, and ResNet50,

of the pre-trained Med3D model. Thus, a comparison between the

encoder and feature dimensions can be made.

3 Results

3.1 The performance of Ffuse

As shown in Table 3 and Figure 4, the performance of Ffuse on

the DL models was better compared to the ML model. In detail,

Ffuse based on Resnet-10 achieved the best MS scores of 0.893
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TABLE 3 The MS scores of Ffuse obtained from four encoders of Med3D on nine ML models and four deep learning models.

Models Resnet10 Resnet18 Resnet34 Resnet50

MLmodels SVM 0.871 0.885 0.865 0.877

RF 0.735 0.718 0.735 0.691

DT 0.610 0.664 0.639 0.615

KNN 0.751 0.711 0.724 0.771

Ada 0.766 0.757 0.729 0.723

LR 0.893 0.971 0.875 0.890

NB 0.771 0.784 0.711 0.862

GBDT 0.706 0.685 0.750 0.729

DA 0.889 0.933 0.803 0.900

95% CI (0.705, 0.849) (0.703, 0.877) (0.70, 0.817) (0.706, 0.863)

DL models CNN 0.898 0.937 0.868 0.920

LSTM 0.899 0.932 0.862 0.898

RNN 0.888 0.971 0.856 0.911

LN 0.910 0.966 0.853 0.914

95% CI (0.884, 0.913) (0.92, 0.983) (0.849, 0.87) (0.896, 0.925)

and 0.91 on the ML models and the DL models, and the 95%

confidence interval (95% CI) were (0.705, 0.849) and (0.884, 0.913),

respectively. Besides, Ffuse based on Resnet 18 achieved the best

performance in this experiment. The best MS score for both ML

and DL groups was 0.971, and the 95% CI values were (0.703,

0.877) and (0.92, 0.983), respectively. For Ffuse based on Resnet 34,

the best MS scores on the ML models and the DL models were

0.875 and 0.868. Although the best MS score of the ML model was

better compared to the DL model, the overall MS scores of the DL

models [CI 95% (0.849, 0.87)] were higher than that of the ML

models [CI 95% (0.70, 0.817)]. For Ffuse based on Resnet 5, the best

MS scores for ML and DL groups were 0.9 and 0.92, respectively,

and the 95% CI for both groups were (0.706, 0.863) and (0.896,

0.925), respectively.

3.2 The performance of DRFs, SEFs, and
SRFs and their combinations

This study further concluded the performance of DRFs, SRFs,

and SEFs extracted by the Lasso algorithm. As shown in Table 4

and Figure 5, except for SEFs-18 (the SEFs obtained from encoder

Resnet 18), the best MS scores of the other five features on the

DL models were lower than those on the ML models in general.

The SEFs-18 achieved the best score of 0.936 in the ML model

and 0.942 in the DL model. Besides, almost all four types of SEFs

outperformed SRFs and DRFs. In detail, the SEFs-18 performed

best among the four types of SEFs and achieved the best MS score

of 0.936 on the ML model (LR) and 0.942 on the DL model (CNN),

and the 95% CI were (0.678, 0.852) and (0.897, 0.955), respectively.

SEFs-10 and SEFs-50 achieved an even result, wherein the SEFs

achieved the best scores of 0.89 [95% CI (0.671, 0.835)] and 0.864

[95% CI (0.687, 0.845)] on the ML models and the DL models,

respectively, while that of SEFs-50 was 0.885 [95%CI (0.687, 0.845)]

and 0.857 [95% CI (0.836, 0.859)]. In addition, SEFs-34 achieved

the same best score of 0.782 on the ML models and the DL models,

and the 95% CI for both models were (0.696, 0.755) and (0.76,

0.787), respectively.

Table 5 shows the MS scores of the four combined features. The

DL models still achieved better results in this experiment. Among

the four combined features, combine-50 including DRFs, SRFs, and

SEFs (Resnet 50) and combine-18 including DRFs, SRFs, and SEFs-

18 were the two best performers. The combine-50 achieved the best

MS score of 0.866 on the ML model (NB) and 0.912 on the DL

model (CNN), and the 95% CI for both models were (0.696, 0.827)

and (0.857, 0.923), respectively. The combine-18 achieved the best

MS score of 0.891 [95% CI (0.696, 0.823)] on the ML models

and 0.897 [95% CI (0.889, 0.898)] on the DL models. Besides, the

combine-10 including DRFs, SRFs, and SEFs-10 and combine-34

including DRFs, SRFs, and SEFs-34 obtained a similar score, where

the best MS scores on the ML models were 0.862 (95% CI [0.722,

0.817)] and 0.831 [95% CI (0.7, 0.8)], and the best MS scores on the

DL models were 0.876 [95% CI (0.819, 0.892)] and 0.853 [95% CI

(0.767, 0.883)].

4 Discussion

Previous studies (8–13) have used the image features of

stroke lesions region and patients’ basic information alone or in

combination to predict patient stroke outcomes, resulting in excess

time to segment stroke lesions and difficulty in improving accuracy.

Some studies (29–31) have demonstrated the role of DRFs extracted

from DSC-PWI images in predicting stroke outcomes. However,

there is potential for improvement in stroke prediction accuracy

based on a single whole brain DRFs. Considering that single DRFs

may cause information loss, this study intended to process and
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FIGURE 4

The scores of five indexes of Ffuse on the four DL models and nine ML models.

extract whole brain images from other dimensions, aiming to

obtain whole brain features of multidimensional and multi-state

to save time for segmenting lesions and improve the accuracy

of prognosis prediction. Based on the experimental results, the

method proposed in this study successfully fused the whole brain

dynamic and static features, and the combination of DRFs, SRFs,

and SEFs achieved the best MS score of 0.971 both in machine

learning models and deep learning models. The following four

aspects discuss the methods used in this study, including the

performance of DRFs, SRFs, SEFs, and their combinations, the

effectiveness of the combined effect of whole brain dynamic and

static features, the influence of different encoders on the prediction
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TABLE 4 The MS scores of DRFs, SEFs, and SRFs.

Models SRFs DRFs SEFs-10 SEFs-18 SEFs-34 SEFs-50

MLmodels SVM 0.684 0.823 0.838 0.858 0.744 0.822

RF 0.673 0.716 0.719 0.696 0.729 0.760

DT 0.505 0.604 0.549 0.622 0.667 0.561

KNN 0.664 0.721 0.794 0.676 0.689 0.795

Ada 0.697 0.695 0.692 0.723 0.763 0.667

LR 0.744 0.793 0.859 0.936 0.782 0.845

NB 0.714 0.812 0.756 0.762 0.688 0.844

GBDT 0.674 0.678 0.677 0.691 0.716 0.717

DA 0.666 0.679 0.890 0.923 0.751 0.885

95% CI (0.618, 0.72) (0.669, 0.78) (0.671, 0.835) (0.678, 0.852) (0.696, 0.755) (0.687, 0.845)

DL models CNN 0.735 0.800 0.864 0.942 0.776 0.841

LSTM 0.721 0.797 0.842 0.929 0.782 0.857

RNN 0.728 0.808 0.839 0.933 0.774 0.850

LN 0.671 0.778 0.862 0.900 0.762 0.842

95% CI (0.667, 0.761) (0.776, 0.816) (0.831, 0.873) (0.897, 0.955) (0.76, 0.787) (0.836, 0.859)

results, and the comparison with the results of the methods as

mentioned above.

4.1 The performance of DRFs, SRFs, SEFs,
and their combinations

The whole brain features extracted from different methods may

provide different information and play their roles in predicting

outcomes. This study concluded by comparing the performance

of DRFs, SRFs, four types of SEFs, and their combinations. First,

for the single DRFs, SRFs, and the four types of SEFs, the SEFs

extracted fromMinIP maps were more capable of predicting stroke

outcomes (as shown in Table 4). The best MS scores of SEFs

(Resnet-10), SEFs (Resnet-18), SEFs (Resnet-34), and SEFs (Resnet-

50) were 0.89, 0.942, 0.782, and 0.885, respectively. All SEFs

exhibited better scores compared to the best performance of SRFs

(0.782) and DRFs (0.823). The SEFs and SRFs were extracted from

the MinIP map, while DRFs were extracted from the PWI image.

In contrast to the PWI image, which can directly characterize the

dynamic blood flow of brain tissue, the MinIP map represents the

lowest gray value of each voxel in the brain image when the contrast

agent arrives, which can also be regarded as the static response

of each voxel in the brain tissue. When the gray value is low, it

indicates that the blood flow at this point is relatively rich and the

blood volume is high. Thus, the transmission ability of brain tissue

at the voxel can be reflected in the MinIP map, and the overall

analysis of MinIP maps can express the static state of cerebral

blood flow transmission and the state of brain injury. For the two

static feature extractionmethods, theMed3Dmodel is a pre-trained

network model, which can extract the global and local details of

the MinIP map from the overall perspective, and the obtained

SEFs can evaluate the whole brain tissue state relatively accurately.

On the contrary, the SRFs extracted by radiomics are the overall

analysis of the image’s grayscale, texture, and shape. In terms of

results, SEFs can provide more abundant prognostic information.

In addition, dynamic blood flow information from DRFs may be

more valuable than static information from SRFs. Although these

extracted qualitative features fully represent the feature information

of the brain image, it is not easy to establish a close correlation

with the prognostic state due to the limitation of fixed features,

and the prediction ability is lower than that of the whole brain

coding features.

The direct combination of the three original whole brain

features (combine-10, combine-18, combine-34, and combine-50)

has a slight advantage over the single features. In detail, the best

MS scores of combine-10, combine-18, combine-34, and combine-

50 were 0.876, 0.897, 0.853, and 0.912, respectively, which were

better compared to DRFs (0.823), SRFs (0.744), SEFs (Resnet-34)

(0.782), but lower than that of SEFs (Resnet-18) (0.942). Thus, it can

be concluded that the direct combination of primitive whole brain

features failed to stably increase the predicting ability of the model,

and even if it did, the improvement may not be large. Furthermore,

this study further selected important features Ffuse from combined

features in Table 5 and achieved a better score. Four groups of Ffuse
achieved the best MS scores ranging from 0.868 to 0.971, which

were better than the four types of combined features. Therefore,

in the process of feature combination, it is necessary to perform

feature screening, which is of great value to model optimization.

4.2 The performance of machine learning
models and deep learning models

Since different models have their individual characteristics

and suitable tasks, to fully verify the performance of the
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FIGURE 5

The scores of five indexes of SRFs, SEFs, and their combinations on the four DL models and nine ML models.

obtained features on different types of models, this study

selected models from multiple perspectives of linear, non-linear,

time characteristics, and feature dimensions for validation. The

following models are commonly supervised ML models: SVM,

DT, RF, LR, NB, and DA, while KNN is an unsupervised ML

model. Besides, GBDT and Ada are the reinforcement ML models.

For deep learning models, LN is the most traditional neural

network model. Compared with CNN, RNN is more suitable for

processing time series data based on its convolution characteristics

and can achieve time memory and prevent the disappearance of

the gradient. By adopting these 13 models, a reliable evaluation

experiment can be conducted.

In general, the MS scores of the DL models were better

compared to the ML models among the 13 models used in this
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TABLE 5 The MS scores of combinations of DRFs, SEFs, and SRFs.

Models Combine-10 Combine-18 Combine-34 Combine-50

MLmodels SVM 0.840 0.858 0.810 0.861

RF 0.724 0.746 0.754 0.716

DT 0.674 0.636 0.653 0.650

KNN 0.794 0.777 0.754 0.742

Ada 0.752 0.692 0.777 0.708

LR 0.862 0.891 0.831 0.844

NB 0.781 0.789 0.778 0.866

GBDT 0.706 0.676 0.758 0.661

DA 0.793 0.772 0.636 0.804

95% CI (0.722, 0.817) (0.696, 0.823) (0.7, 0.8) (0.696, 0.827)

DL models CNN 0.876 0.897 0.827 0.912

LSTM 0.856 0.895 0.847 0.881

RNN 0.823 0.891 0.772 0.866

LN 0.866 0.892 0.853 0.901

95% CI (0.819, 0.892) (0.889, 0.898) (0.767, 0.883) (0.857, 0.923)

study. Among the 9ML models, the performance of LR was

better compared to other models in most of the experiments. It

achieved the best MS scores when input features were Ffuse based

on Resnet 10, Resnet 18, and Resnet 34 (as shown in Table 3);

SRFs, SEFs-18, and SEFs-34 (Table 4); and combine-10, combine-

18, and combine-34 (Table 5). By introducing a non-linear sigmoid

activation function, the LR model shows a significant advantage

compared with single linear classification models. Among DL

models, the CNN model achieved a better performance by not

only exhibiting a better MS score than most of the ML models

but also outperforming other DL models. Although RNN and

LSTM provided the predictive ability of time dimension, they have

not achieved effective results in this study. Therefore, it can be

concluded that a model selection step is necessary when using

different features as input for the model.

4.3A comparison with the results of the
previous methods

With the continuous innovation and development of medical

technology, many stroke outcome prediction algorithms based on

texture features (7, 10), multi-modal brain images (11, 14), and

a combination of both (9) have been proposed. Since the text or

image information is used directly in singular, the improvement

of prediction accuracy is limited. Studies (30, 32) extracted DRFs

from PWI images to supplement the dynamic information of blood

flow and strengthen the characterization of the blood flow status

of brain tissue. The results of these methods were compared and

discussed here.

For the methods using patient basic information, this study

collected the age, gender, NIHSS, onset time, lisp out, confusion,

hypertension, diabetes, and atrial fibrillation as input data and

utilized the model introduced in the study (7). The Auc score

of 0.867 and the MS score of 0.831 were obtained. For the

methods using DRFs to predict outcomes in studies (30, 32),

the Auc scores of 0.828 and 0.934 were obtained. When using

fusion strategies of focal and whole brain features, the best Auc

score was 0.971, which is the same as our methods. It can be

seen that the outcome prediction method based on the combined

dynamic and static features of the whole brain proposed in this

study can achieve the same score as the method based on the

fusion features of the local and the whole brain. It means that

the whole brain features from different methods may provide

local information on ischemic lesions and supplement the features

of local lesions. However, since the method used in our study

does not require a quantitative analysis of the ischemic region,

there is no need to perform the lesion segmentation process. In

practical application, the lesion segmentation process is reduced,

the efficiency of outcome prediction will be accelerated, and the

clinical demand for rapid treatment and precision medicine for

stroke can be better met.

4.4 The limitations and prospects of this
study

The reliability of models presents a challenge as a larger dataset

is needed to provide a better guarantee. Although the sample size

of our study is relatively small which may lead to the vibration

of experimental results, this study adopted several measures to

reduce its influence. To reduce the confusion caused by the small

sample size, we performed 10-fold cross-validation method to

calculate five evaluation indexes (Auc, Acc, Pre, F1, and Recall)

and obtained their MS scores on multiple models. Thus, a more

reliable and equilibrium result can be obtained. Besides, we have
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also continued to collect new and external datasets to validate the

methods presented in this study. Furthermore, we found that the

performance of the different models varied widely. Some features

performed better on one or more models, but when the features

changed, the order of the models also changed. Therefore, we will

carry out further work on the proposed stable performance model

in the future.

Although the segmentation of stroke lesions was removed in

our study, a skull step was needed to be performed. However,

since the segmentation of stroke lesions needs to train models

depending on a large number of datasets, it is more difficult and

more time-consuming to accurately segment the stroke lesions.

Moreover, inaccurate segmentation will seriously affect the results

of feature analysis. In contrast, the skull step is easier to perform

and consumes less time. Eventhough partial skull segmentation

becomes wrong, it will not cause significant deviation in results due

to a minor effect on the characteristics of the whole brain region.

Furthermore, since the size of the whole brain region is bigger

than that of stroke lesions, it may need more time (several seconds)

to extract features from the whole brain region than from stroke

lesions. In general, the time difference only exists in the feature

extraction stage. After determining the key feature Ffuse, these

features can be extracted directly in the practical application. In

this case, the effect of time is negligible. Thus, even though multiple

methods (Radiomics, Med 3D) were used for feature extraction in

this study, it will not consume much time in practical application.

Typically, at least 10 samples can be processed per minute.

Indeed, our method is proposed to predict the prognostic status

of stroke patients, to assist clinicians in selecting more accurate

treatment options and reducing the incidence of poor prognosis.

However, before entering the clinic, we need to conduct further

validation of the prediction model, such as adding multi-source

external validation sets to verify the reliability of the model. This

is one of our follow-up works.

5 Conclusion

This study proposed an outcome predictionmethod to improve

the accuracy and efficacy of ischemic stroke outcome prediction

based on the combined strategy of diverse whole brain features.

From the experiments, the feature Ffuse generated fromDRFs, SRFs,

and SEFs (Resnet 18) achieved the best MS score of 0.971 both on

machine learning models and deep learning models, and the 95%

CI were (0.703, 0.877) and (0.92, 0.983), respectively. Besides, the

deep learning models generally performed better than the machine

learning models. The method used in our study can accurately

assess stroke outcomes without segmenting ischemic lesions, which

is of great significance for rapid, efficient, and accurate clinical

stroke treatment.
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