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KANNO is a new human blood group that was recently discovered. The KANNO 
antigen shares the PRNP gene with the prion protein and the prion protein E219K 
polymorphism determines the presence or absence of the KANNO antigen and 
the development of anti-KANNO alloantibodies. These alloantibodies specifically 
react with prion proteins, which serve as substrates for conversion into 
pathological isoforms in some prion diseases and may serve as effective targets 
for resisting prion infection. These findings establish a potential link between 
the KANNO blood group and human prion disease via the prion protein E219K 
polymorphism. We  reviewed the interesting correlation between the human 
PRNP gene’s E219K polymorphism and the prion proteins it expresses, as well 
as human red blood cell antigens. Based on the immune serological principles 
of human blood cells, the prion protein E219K polymorphism may serve as a 
foundation for earlier molecular diagnosis and future drug development for 
prion diseases.
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1 Introduction

The KANNO blood group system was confirmed as the 37th classification of the 
International Society of Blood Transfusion in August 2019 (1). The KANNO antigen is a 
human erythrocyte membrane protein that shares the encoding gene PRNP with prion protein 
(PrP) (2). The PrP E219K polymorphism is a variant discovered in the PRNP coding region 
(3). The PrP E219K homozygote leads to the loss of antigenic epitopes in PrP, which is defined 
as the KANNO-negative phenotype. KANNO-negative individuals may develop anti-KANNO 
alloantibodies upon pregnancy or transfusion (4, 5). Anti-KANNO can specifically recognize 
the KANNO antigen and wild-type (wt) PrP (2).

The PrP is the coding product of the PRNP gene in normal humans and animals (6, 7). It 
has been proposed to be involved in several cellular functions, such as circadian rhythm, 
calcium metabolism, tumor progression, myelin homeostasis, and immune modulation, but 
its importance still needs to be confirmed (8). Both normal and abnormal isoforms of PrP 
exist, and the latter is the main component leading to prion diseases (PrDs) (9, 10). Studies on 
the epidemiology (11–15) and spatial conformation (16–18) of PrP have suggested that the 
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heterozygosity of the PrP E219K may influence the susceptibility to 
and phenotype of some forms of PrD. Nonetheless, the question of 
whether heterozygous inhibition can be used to resist prion infections 
remains unresolved.

There are no effective and noninvasive diagnostic or therapeutic 
strategies for human PrDs currently available in nonexperimental 
settings. The consideration of whether anti-KANNO antibodies 
specifically recognize prions provides new insight for intervention in 
PrDs. The PrP E219K polymorphism thus initially established an 
association between the KANNO blood group and human PrDs. Here, 
we review the KANNO blood group on a serological and molecular 
basis and discuss the moderation effect and possible mechanisms of 
the PrP E219K polymorphism on PrDs. We also explored the potential 
clinical application of the KANNO blood group in the diagnosis, 
prevention, and treatment of human PrD. We consider unanswered 
questions in the prion field that could contribute to methodological 
advances in our understanding of PrD.

2 The discovery of the KANNO blood 
group

2.1 Serological characteristics

The anti-KANNO antibody, named for the proband’s surname, 
was first discovered in the blood of a 49-year-old Japanese woman 
who underwent her first blood transfusion after hysterectomy in 1991 
(4). The patient’s serum, containing anti-KANNO, reacted with 44 
panel red blood cells (RBCs) lacking high-frequency antigens (HFAs) 
but did not aggregate with autologous RBCs; moreover, her RBCs 
were reactive with 48 other antisera against HFAs, which distinguishes 
this antibody from all known antibodies against HFAs (4, 5). 
Furthermore, an investigation of a total of 28 collected cases from 
Japan showed that anti-KANNO is an RBC alloantibody against 
nonself antigens and rarely occurs in the natural state but may develop 
in response to pregnancy or transfusion containing the KANNO 
antigen, where pregnancy may be  the main stimulus (4, 5). Anti-
KANNO antibodies are usually IgG, including IgG1 or the coexistence 
of IgG subsets, and react only in the indirect antiglobulin test (IAT) 
(5). Anti-KANNO produces weak reactions of similar strength from 
no dilution to higher titers in the IAT, which is characteristic of a high-
titer, low-avidity (HTLA) antibody (19). However, anti-KANNO was 
distinguished from other HTLA antibodies through the examination 
of Kanno’s sera reacting with nonautologous RBCs that had been 
treated with enzymes, chemical reagents, complement sensitization, 
or serum neutralization (5). In addition, there were no reports of 
severe hemolytic transfusion reactions after transfusion with 
IAT-positive RBCs and no signs of hemolytic disease in the fetus or 
newborn caused by anti-KANNO in these patients, revealing limited 
clinical significance except for the slight impact on pretransfusion 
testing (4, 5). However, additional cases need to be tested to determine 
the diagnostic significance of anti-KANNO.

2.2 KANNO antigen and prion protein

To date, only one antigen molecule in the KANNO blood group 
system has been identified (2). The results of the monoclonal antibody 

(mAb)-specific immobilization of erythrocyte antigens (MAIEA) assay 
(20) indicate that the epitopes recognized by anti-KANNO and the 
known anti-human PrP mAb are located on the same membrane 
component but in distinct regions. This finding supports the notion 
that PrP is a cell membrane protein carrying the KANNO antigen. PrPs 
carry KANNO antigens but are not expressed only on the erythrocyte 
surface. PrPs are primarily active in the central and peripheral nervous 
systems and the lymphoreticular system. In particular, they are 
expressed at high levels by neurons in the brain and spinal cord and at 
comparatively low levels by neuroglial cells and numerous peripheral 
cell types, including peripheral blood cells. Most blood PrP is found in 
the plasma and platelet fractions (21, 22). PrP has been detected in all 
major human blood cell types, except for eosinophils (23), and humans 
express PrP at the highest levels on leukocytes and at medium levels on 
erythrocytes and platelets (24). One study estimated that approximately 
half of the PrP in blood cells is associated with RBCs and platelets, 
while less than 2% is associated with leukocytes, based on 
approximately 20 times and 2000 times more RBCs than platelets and 
leukocytes, respectively, in a given volume of blood (25). Human 
peripheral erythrocytes are reported to express as few as a median of 
290 molecules but detectable amounts of PrP per cell, which makes 
them major contributors to the pool of PrP in blood due to the high 
number of RBCs (26). The results of flow cytometry indicate that 
lymphocytes and monocytes maintain PrP expression throughout their 
differentiation process, while PrP is downregulated upon differentiation 
into erythroid and granulocyte lineages (27, 28). PrP is a highly 
conserved membrane-bound protein across mammals, most of which 
are tethered by a glycosylphosphatidylinositol (GPI) anchor to the 
extracellular face of the plasma membrane (29). PrP is linked to the 
plasma membrane of peripheral blood leucocytes and platelets via a 
GPI anchor (30, 31). However, the trafficking of PrP in erythrocytes is 
not typical of GPI-linked proteins. PrP is reported to assemble on the 
cell surface of cultured human erythroblasts in tetraspanin-enriched 
microdomains and is then rapidly internalized into endosomal vesicles 
(28). The recycling process of PrP mediated by endosomes to the 
plasma membrane may also lead to the release of exosomes containing 
PrP molecules. The mechanism of PrP cycling in erythroblasts is 
similar to that in neuronal cells (32).

The human PrP (huPrP) has a canonical sequence of 253 amino 
acids1 and a molecular weight of approximately 33 ~ 35 kDa (6, 7). The 
precursor protein of huPrP consists of three characteristic regions: an 
N-terminal fragment (NTF) signal peptide with a nonapeptide region 
followed by 4 or 5 octapeptide repeat regions (OPRRs), a highly 
conserved hydrophobic region in the center of the protein, and a 
C-terminal fragment (CTF) hydrophobic region (6, 33). Nascent PrP 
is imported into the endoplasmic reticulum (ER) for partial folding and 
the formation of a disulfide bond between residues Cys179 and Cys214, 
which creates a loop of 36 amino acids containing both sites and 
further stabilizes the C-terminal structure (33). During translocation 
to the Golgi, PrP undergoes non, mono-, or di-glycosylation at two 
potential sites for N-linked glycosylation, namely, Asn181 and Asn197 
(33). PrP was present mainly in its diglycosylated form on erythrocytes 
(26). After the release of 22 amino acid residues (ER signal peptide) at 
the NTF and 23 residues (GPI anchor signal peptide) at the CTF, the 

1 https://www.ncbi.nlm.nih.gov/nuccore/NG_009087.1
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mature PrP, which consists of 208 amino acids and contains GPI 
anchors, is transported from the Golgi to the cell outer surface (33, 34). 
The final conformation of huPrP was primarily an N-terminal flexible 
tail with an irregular structure and an ordered C-terminal globular 
structure. The former contains a nonapeptide and OPRRs (residues 
51 ~ 91), the latter contains two antiparallel β-sheets (residues 128 ~ 131 
and 161 ~ 164), three α-helices (residues 144 ~ 154, 173 ~ 194, and 
200 ~ 228), and a single Cys179-Cys214 disulfide bond linking the α2- 
and α3-helices (33, 35) (Figure 1).

PrP molecules are mainly classified into two forms: the host-
encoded normal cellular isoform (PrPC) and the abnormal pathogenic 
“scrapie” isoform (PrPSc). In general, PrPC is monomeric, soluble in 
aqueous solution, and protease sensitive under physiological conditions 
(36). The physiological role of the PrPC is not fully understood. Limited 
studies have demonstrated that the expression of PrPC appears to 
be essential for the self-renewal, activation and developmental status 
of hematopoietic stem cells (37–39). Additionally, PrPC expression on 
RBCs has been shown to correlate with their recovery and survival in 
circulation (40). A deficiency in PrPC expression may lead to harm to 
the structure and function of RBCs, such as paroxysmal nocturnal 
hemoglobinuria (41) and acute anemia (42). PrPC is also a component 
of plasma membrane microclusters and is involved in T lymphocyte 
signaling and activation (43). These findings suggest an important 
functional role of PrPC in the hemopoietic system. In contrast, PrPSc 
displays insolubility against detergents, resistance to limited proteolysis, 
a high aggregation propensity, and a self-perpetuating characteristic 
relevant to PrDs (9, 10). Despite having obvious differences in their 
physicochemical and biological properties, the two PrP isoforms were 
confirmed by nucleotide sequencing to share the same DNA sequence 
(44). Analyses of PrP from various species using Fourier-transform 
infrared spectroscopy, mass spectrometry, and Edman sequencing 
revealed that the two isoforms had the same protein primary structure 
but distinct secondary structures characterized by significant changes 
in the proportions of α-helices and β-sheets; that is, α-helices were 
dominant in PrPC, while β-sheets with little, if any, α-helices were 
enriched in PrPSc (45–49). The formation of a misfolded, β-sheet-rich 
conformation has been proven to be  the key mechanism of the 
pathogenicity of PrPSc (50). Understanding the structure of PrPSc is 
critical for elucidating its infectivity and toxicity. However, the high-
resolution conformational characteristics of natural huPrPSc have not 
yet been characterized. The published molecular models suggest a 
diverse range of folds regarding the nature of the infectious conformer 
(51). Two primary near-atomic models were proposed for the core 
structure of highly infectious rodent brain-derived prions based on 

cryo-EM analysis and three-dimensional reconstruction experiments, 
as well as all other available experimental data (52). Among these, a 
parallel in-register intermolecular β-sheet-based architecture 
completely devoid of α-helices comprises stacked PrP monomers in the 
core of fibrils. Fibrils with single protofilaments coexist with twisted 
pairs of the same protofilaments (53, 54). Some fibrils show an 
asymmetric fibril cross-section without paired protofilaments (52). 
Each rung of the protofilament is formed by a single PrP monomer 
with an ordered core comprising PrP residues 94–225 (RML) or 
95–227 (263 K), which folds and displays N-linked glycans and the GPI 
anchor of the C-terminus (52, 53, 55). In addition, these ex vivo prion 
strains share several structural motifs, including an N-terminal steric 
zipper and three β-arches, despite the disparate quantities of β-sheets 
identified in β-arches of different strains (55). A similar parallel, 
in-register architecture was observed in the fibril core derived from a 
huPrP mutation, which was associated with familial PrD. According to 
its near-atomic model, the fibril core maps to residues 108–141, where 
each subunit encompasses three relatively short β-strands (residues 
109–112, 133–135, and 138–140) and the 113–125 region is rich in 
rigid turns (56). Another key model for the architecture of infectious 
mammalian prions is the four-rung β-solenoid structure (4RβS). This 
model is based on full-length PrPSc (57) and GPI-anchorless 
N-terminally truncated PrP 27–30 (58). The majority of fibrils observed 
in 4RβS were single-protofilament fibrils, accounting for nearly three-
quarters of the total fibrils, and the remainder were two-protofilament 
fibrils that are twice as wide as single-protofilament fibrils (57). Some 
studies suggest that PrPSc is composed of a complex and heterogeneous 
ensemble of poorly defined conformations and quaternary 
arrangements (59, 60). This remains an important challenge for 
exploring its structural characteristics in the future.

2.3 Molecular basis: the PRNP codon 219 
polymorphism

The KANNO antigen is encoded by the PRNP gene (NC_000020.11) 
(2), which maps to chromosome 20p13 (4,686,456 ~ 4,701,588) (61) and 
contains a 16-kb chromatin domain with two exons and one intron (7). 
The first exon acts as a transcription initiation site; the second exon 
contains the open reading frame that encodes huPrP (6, 7). The PRNP 
codon 219 polymorphism is one of more than 60 variants and 
polymorphisms discovered in the PRNP coding region (3). The presence 
of the PRNP codon 219 polymorphism is closely related to the 
seropositivity of the KANNO antigen. When the PRNP gene is affected 

FIGURE 1

Sequence alignment of the full-length huPrPC (23–230) monomer with three α-helices, two short β-sheets, and a single disulfide bond between 
Cys179 in the α2-helix and Cys214 in the α3-helix. Regions corresponding to α-helices, β-sheets and released amino acid residues in the protein 
monomer are indicated below the sequence (color bars covered). The C-terminal region of the α3-helix contains a polymorphism at codon 219, 
represented by a red E. A single disulfide bond is represented by S–S. The N-terminal fragment (NTF) and C-terminal fragment (CTF) are indicated in 
the sequence.
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by a homozygous missense polymorphism resulting in a G-to-A 
transition at the first position of codon 219 (c.655G > A, rs1800014) in 
the minor allele, a Glu to Lys substitution (E219K) in the amino acid 
sequence occurs, contributing to the loss of the antigenic epitopes of 
huPrP on the cell membrane (2). In contrast, PRNPs harboring 219E in 
the major alleles form antigenic epitopes of PrP (2). The available 
evidence suggests that anti-KANNO antibodies are capable of binding 
directly to in vitro cultured cells that possess wt PrPs but not to cells that 
have the 219 K/K homozygote or GPI anchor. Furthermore, sera 
obtained from KANNO-positive donors did not show any reactivity 
toward cells expressing wt PrPs. These findings, in conjunction with the 
results of previously mentioned serological tests, indicate that the 
KANNO-negative phenotype leads to the generation of anti-KANNO 
antibodies against Glu-type PrP (wt PrP) but not Lys-type PrP (2, 4, 5). 
However, there is currently no study that specifies which segment of PrPC 
the anti-KANNO targets. Considering the location of this polymorphic 
locus, it is reasonable to assume that the antigenic determinants 
recognized by anti-KANNO are located within the C-terminal α3-helix 
region of PrP, including the 219E site (Figure 1). It remains uncertain 
whether the sequence epitopes of the KANNO antigen are either linear 
or discontinuous. Notably, several established techniques may 
be available for the characterization of KANNO epitopes, including 
mutagenic library sorting, peptide arrays, alanine scanning, and 
co-crystallization (62). In addition, the 219 K allele acts as a recessive 
trait. However, family studies of four KANNO-negative patients showed 
that all the immediate family members, including the proband, observed 
in independently recruited families had no close relatedness in their 
genotyped samples (2). The genetic characterization of the KANNO 
blood group requires further clarification in additional cases.

The naturally occurring E219K polymorphism of PRNPs in 
humans was first discovered in the genomes of Japanese patients with 
schizophrenia and was found to carry 6% of the 219 K allele frequency 
in the Japanese general population (63). Worldwide, the distribution 
of allele frequencies of this polymorphism in the general population 
was found to show west–east gradient-raised patterns (2, 64–68), as 
shown in Table 1. Furthermore, E/K heterozygosity at codon 219 was 
reported only in East Asian populations (Table  2). The general 
population in Japan has a slightly greater genotype frequency of 
219E/K than that in South Korea and China (11, 63, 69–75). In the 
healthy Chinese population, the genotype frequency of the E219K 
polymorphism differed according to ethnicity and region (71). 
Notably, homozygous 219 K/K PRNPs with a low but appreciable 
genotype frequency (approximately 0.3 ~ 0.9%) were discovered only 
in Japanese and South Korean native populations (2, 73, 75), as well as 
Punjabi from Lahore, Pakistan and Gujarati Indians from Houston, 
Texas, based on the 1,000 Genomes database and the gnomAD 
database (2). This finding also represents the distribution of the 
KANNO-negative phenotype in the general population.

3 The impact of the PrP E219K 
polymorphism on prion diseases

3.1 Genetic susceptibility of E219K to 
different forms of human PrD

PRNP was established as the only causative gene for PrDs (76), 
and polymorphisms in human PRNPs were found to modify 

susceptibility to and the phenotype of PrDs. E219K, which has an 
undefined pathogenic nature, is by far the most important human 
PRNP polymorphism except M129V, that is, a Met to Val substitution 
at codon 129 (77, 78). The nature of M129V and E219K is complicated, 
and both are suggested to play neutral or protective roles but may also 
be  risk- or disease-modifying factors for different forms of 
PrD. Human PrDs can be categorized into three forms according to 
their etiology: sporadic, genetic, and acquired (3). PrP E219K may 
influence susceptibility to sporadic Creutzfeldt–Jakob disease (sCJD), 
which accounts for more than 90% of all cases of sporadic PrDs. 
Cohort studies from East Asian countries reported that patients with 
dementia of non-CJD origin had similar genotypes and allele and/or 
haplotype frequencies of E219K to those of the general population (12, 
69, 70, 73, 74, 79), whereas the K allele and E/K heterozygosity at 
codon 219 appeared in general controls (4 ~ 6% and 8 ~ 12%, 
respectively) but were not found or had a very low frequency (0% and 
0 ~ 0.53%, respectively) of sCJD patients in these countries, revealing 
a significant discrepancy (11–15). Limited studies from European 

TABLE 1 Allele frequencies of the PrP E219K polymorphism in global 
populations.

Population Allele frequency (%) References

E K

Asian 97.4 2.6 (64)

East Asian 90.6 ~ 96.5 3.5 ~ 9.4 (2, 65)

Central-East Asian 97.46 2.54 (66)

South Asian 87.2 ~ 99.1 0.9 ~ 12.8 (2, 65, 66)

Pacific 88.2 ~ 90.6 9.4 ~ 11.8 (65, 66)

Melanesian 81 ~ 90 10 ~ 19 (64, 66)

Oceanian 94.4 5.6 (64)

Middle East/African 99.4 0.6 (64)

African 100 0 (65)

Subsaharan African 100 0 (64)

Latin American 100 0 (64)

South American 100 0 (65)

European 100 0 (64)

TABLE 2 Genotype frequencies of the PrP E219K polymorphism in the 
general population.

Population Genotype frequency (%) References

E/E E/K K/K

Japanese 85.6 ~ 88.0 12.0 ~ 14.4 0 ~ 0.7 (2, 63, 69)

South Korean 90.32 ~ 92.06 7.82 ~ 8.76 0 ~ 0.92 (2, 11, 70~73)

Chinese 84.2 ~ 97.8 2.2 ~ 15.8 0 (70, 71)

Punjabi from 

Lahore

NAa NAa 1.04 (2)

Gujarati Indians 

from Houston

NAa NAa 1.94 (2)

Serbian 100 0 0 (67)

Italian 100 0 0 (68)

aNot available.
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countries have shown that only the wt PRNP sequence, not the K 
allele, is present at codon 219 in both sCJD patients and in the general 
population (68, 80, 81). There are no reports of PrP E219K in other 
regional populations. It is not feasible to establish a correlation 
between the E219K polymorphism and sCJD in these countries or 
regions lacking the K allele. Therefore, the protective effect of E219K 
heterozygosity against sCJD has been limited to East Asian 
populations to date.

Data from Japanese CJD surveillance showed that the frequencies 
of the K allele and the heterozygous genotype at codon 219 of PRNPs 
in genetic CJD (gCJD) patients (0 ~ 1.3% and 0 ~ 2.2%) were 
significantly lower than those in the general controls (14). Four cases 
of gCJD in China (82, 83) and 50 individuals from four families 
affected by gCJD in Chile (84) were also detected with only 219E/E 
homozygosity. The codon 219 polymorphism, harboring Methionine 
homozygosity at codon 129, appears to have a protective effect against 
both gCJD and Gerstmann-Straussler-Scheinker disease (GSS), 
according to a Japanese population dataset (78). E219K also affects the 
pathogenicity of gPrD-related mutations. There is potential protection 
of E219K against gCJD-V180I onset based on tested cases with V180I 
carrying the 219E/E homozygote (15). The coexistence of E219K with 
the E200K mutant in the same allele prolonged the duration of mild 
clinical symptoms of gCJD, which differs from the clinical phenotype 
of typical E200K gCJD (85, 86). A genotype pattern with 219 K present 
in the P102L mutant allele also seems to be  an important factor 
alleviating neurological and pathological symptoms in Japanese 
patients with GSS compared with patients carrying P102L and E219K 
in different alleles (63, 87, 88). Similarly, one of 12 Chinese patients 
with GSS-P102L was heterozygous for E219K, and this patient 
appeared to have less severe symptoms than other patients (89). 
However, in contrast to the potential heterozygous inhibition of 
E219K in the clinical course of GSS, the presence of 219 K within the 
P102L mutant allele may permit the formation of abnormal PrP, 
indicating a risk- or disease-modifying factor (90). Moreover, reports 
on PRNP 219 K/K homozygotes are also extremely limited. Among 
Japanese gCJD patients, 219 K/K homozygotes had a genotype 
frequency of 0.52% (14), similar to that in the general population of 
Japan. Only one case report described a Japanese patient with probable 
familial CJD (fCJD) carrying an OPRR insertion and homozygous 
codon 219 K (91). The latter may be more prone to modification of the 
clinical course and pathologic features of disease by unknown 
mechanisms and may not offer sufficient protection against gCJD (91), 
although there is insufficient information to demonstrate that 219 K/K 
promotes gCJD. In addition, the E219K polymorphism may not 
influence susceptibility to fCJD/GSS in Caucasians because of the 
absence of the K allele in both patients and healthy people (68, 92).

Reports about the PrP E219K polymorphism in acquired PrD 
have rarely been published. Dura mater graft-associated CJD (dCJD), 
which is of iatrogenic origin, has a relatively high incidence among 
patients with acquired PrD. The frequencies of the K allele and 219E/K 
heterozygosity of PRNPs in dCJD (1.95 and 3.9%, respectively) were 
not significantly different from those in the Japanese general 
population (14). Two Japanese cases indicated that the codon 219 K 
allele may be  associated with mild clinicopathological features in 
dCJD, such as a long incubation period, atypical periodic sharp-wave 
complexes (PSWCs), and nonplaque type (93, 94). However, other 
scattered cases have shown that 219E/K heterozygosity may not 
influence the disease processes of dCJD and may not render humans 

sufficiently resistant to direct invasion of infectious prions into the 
brain from dura mater grafts (12). In addition, few systematic studies 
of the E219K polymorphism have been reported to date for another 
subtype of acquired PrD, variant CJD (vCJD). There is a relatively low 
incidence of vCJD in Asia. During 10 years of surveillance, only one 
patient with vCJD was reported in Japan, and the patient did not carry 
the PRNP 219 K allele (14). Although the incidence of vCJD in 
Caucasians is significantly greater than that in East Asians (95), 
Caucasians have rarely been reported to carry the PrP E219K. In a UK 
study, a total of two vCJD patients harboring E219K heterozygosity 
were found to be  of non-Caucasian origin and had no 
clinicopathological differences from classical vCJD patients (80). Two 
other UK cases suggested that the heterozygous genotype at codon 219 
was not resistant to vCJD and might even increase susceptibility and 
risk (96). It remains challenging to delineate the correlation between 
E219K and the acquired PrD based on the extremely limited data 
at present.

Overall, the PrP E219K polymorphism affects susceptibility to 
PrDs and the clinical course and pathological features of patients, 
which is restricted by etiology- and race-related patterns. However, 
some studies have examined only a limited number of patients, 
especially those with genetic and acquired PrDs, and may 
be considered too preliminary. The findings regarding the role of PrP 
E219K in modifying the genetic susceptibility of humans to PrD 
necessitate verification in studies involving larger sample sizes or in 
regional populations other than Asia.

3.2 Conformational properties and effects 
of E219K on prion infection models

Prion conversion is regarded as a method of protein self-
replication in which PrPSc acts as a template that converts PrPC, as a 
substrate, into a nascent PrPSc molecule (3, 76). Codon 219 of huPrP 
is at the C-terminal end of the α3-helix (Figure 1), which is part of the 
globular domain, the core region of the PrP conformation (33, 35). 
The E219K polymorphism affects the flexibility of the core structures 
based on models constructed by multiple methods (97). Further 
examination revealed elongation of the E219K-associated helix and 
increases in the overall flexibility and stabilizing interactions of the 
hydrophobic core (98). The structural and kinetic information from 
Markov state model analyses also suggested that the heightened 
stability of the E219K mutant was associated with an increase in the 
level of native contacts and robust salt bridges and a decrease in 
random motions (99). In E219K huPrP, strong hydrophobic contacts 
are present between residues from the β2-α2 loop and the C-terminal 
segment of the α3-helix (17). The E219K polymorphism reduced the 
backbone flexibility and/or conformational exchange processes of 
huPrP, indicating a tendency toward a rigid β2-α2 loop conformation 
that has been shown to be resistant to prion infections and to not 
cause spontaneous PrDs to develop (100–102). However, another 
study involving molecular dynamics simulations demonstrated that 
increased flexibility in the β2-α2 loop can be  observed in E219K 
huPrP compared with wt huPrP (103). The disagreement between the 
various modeling solutions indicates the limitations of each method. 
Moreover, 219 K huPrPs in homozygous or hemizygous forms are 
PrPSc conversion competent and can pile up into amyloid fibrils in 
knock-in mouse models expressing chimeric human/mouse PrP (16). 
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The structure–function inconsistency observed in 219 K huPrP may 
be explained to some extent by a variable transmission barrier that 
can be  assessed by the degree of permitted sequence and 
conformational overlap of PrP between the pathogen and the host 
(96), reflecting the importance of homology (104). The β2-α2 loop 
within PrP varies substantially between species, and similar loop 
structures correlate with efficient conversion, whereas dissimilar loops 
correlate with strong transmission barriers (100). Additionally, 
solution nuclear magnetic resonance (NMR) studies suggested that 
the E219K substitution caused severe perturbation of the surface 
electrostatic potential and subtle local structural rearrangements 
within the key epitopes of PrP molecule conversion (17). The E219K 
PrP exhibited large areas of positive charge around the site of 
substitution, extending to regions of the β2-α2 loop and α3-helix, 
whereas the corresponding regions of the wt protein were negatively 
charged or neutral (17, 18). Differences in the distribution of charges 
and incompatible structures and dynamics in the core regions of PrP 
may promote intermolecular interference between the 219E and 219 K 
PrPs, thus sequestering each other in the early stages of the 
fibrillization and stacking process, referred to as heterozygous 
inhibition (16, 18).

The corresponding E219K huPrP homolog, a Gln to Lys 
substitution at codon 218 (Q218K) of mouse PrP (moPrP), has been 
shown to inhibit both the conversion and stacking of PrPSc via the 
conversion-incompetent 218 K PrP, referred to as dominant-negative 
inhibition (105, 106). Combined mutagenesis and structural studies 
suggested that the β2-α2 loop and α3-helix together form a 
discontinuous epitope on the protein surface that has been proposed 
to constitute the binding site for “protein X” (107), a putative yet 
unidentified chaperone-like molecule that was proposed to exhibit 
greater affinity for homologous PrPC by species specificity to confer 
more efficient binding to PrPSc (108). Consistently, studies have 
demonstrated that inhibition of prion propagation in vivo may occur 
through the binding of drugs to residues within the C-terminal 
α3-helix of human recombinant PrP (rPrP), which is situated near the 
“protein X” epitope (109). Within this epitope, 218 K moPrP was 
demonstrated to prevent pathological conversion of its own and even 
wt PrPC by binding tightly to protein X and segregating it from the 
PrPSc replication process, acting as a dominant-negative inhibitor in 
in vitro or in vivo prion models (105–107). Furthermore, kringle and 
other domains have been identified as potential epitopes for the 
specific, high-affinity binding of 218 K moPrP to protein X and the 
binding of other PrPs to it (110). However, it is frustrating that the role 
of any protein in PrP conversion has not been well established, despite 
many proteins being known to bind to PrPC. Moreover, in cell-free 
conversion reactions in the absence of a PrPSc template or an external 
cofactor, 218 K mouse rPrP also showed dominant-negative inhibition 
by reducing the formation of amyloid fibrils and the yield of 
polymerization of wt rPrP (111). This finding indicates that “protein 
X” is not essential for mediating dominant inhibition of prion 
propagation. In addition, in serial protein misfolding cyclic 
amplification reactions, the 219 K hamster rPrP molecule, as a 
substrate, readily converts into self-propagating PrPSc and inhibits wt 
rPrP conversion but not vice versa (112), displaying trans-dominant 
inhibitory activity. This effect can be explained by the fact that the 
219 K mutant has a greater affinity than wt PrPC for binding to the 
nascent seeding site on the growing PrPSc polymer (112).

Despite the observation that 219 K huPrP and its homologs can 
inhibit the conversion of wt PrPC to PrPSc, the underlying mechanisms, 

such as rigid conformations, incompatible structures or competitive 
binding, are different. These mechanisms require further clarification, 
but it can be  inferred that they are closely associated with the 
conformational properties of PrP strains harboring these 
polymorphisms from different species. Notably, based on the 
heterozygous inhibition of PrP E219K, several low-molecular-weight 
compounds have been designed to develop therapeutic strategies to 
inhibit prion infections (113). Unfortunately, none of these 
compounds has yet been successfully translated into effective therapies 
for PrDs in nonexperimental settings. Lentiviral gene transfer of 
E219K was shown to abolish the conversion and replication of 
endogenous wt PrPC into PrPSc in vitro only, although this method has 
been shown to transduce cells in brain tissues in vivo (114). Therefore, 
the impacts and mechanisms of the PrP E219K polymorphism on 
human PrDs still need to be clarified by further improving the fine 
structural models of the essential entities of PrD (fibril PrPSc) and 
219 K PrP molecules derived from humans and analyzing their 
characteristics (115).

4 Potential clinical applications of the 
KANNO blood group

Given the limited progress in the use of E219K heterozygous 
inhibition for the treatment of PrDs, we attempted to discuss the 
application of new biological functions of this polymorphism in PrDs. 
Currently, no studies have evaluated the effect of KANNO on human 
disease-associated PrP. However, the discovery of the KANNO blood 
group based on the genetic association between the KANNO antigen 
and the huPrP molecule can provide new insight for prion 
intervention. The KANNO antigen carrying the 219E allele on RBCs 
may immunize KANNO-negative individuals harboring the 219 K/K 
homozygote to generate anti-KANNO alloantibodies that are 
specifically reactive to the native conformation of wt huPrP (2, 4, 5) 
(Figure 2A). The structural domain constructed by the huPrP codon 
219E is immunogenic in KANNO-negative individuals, although the 
immune response caused by anti-KANNO is very slight, with no 
clinical symptoms (4, 5). This phenomenon provides an anti-KANNO 
therapeutic strategy with potential application for inhibiting the 
conversion to disease-related PrPSc by targeting wt PrPC during prion 
infection (Figure 2B). Experimental studies on therapeutic strategies 
for PrD demonstrated that mAbs reacting to at least four domains of 
moPrP seem to effectively clear prion infection and abrogate nascent 
PrPSc formation in a cell-free or cell culture system, including OPRR, 
spanning residues 90–110, α1-helix region residues 145–160, and 
extreme C-terminal residues 210–220 (116–119). Furthermore, it has 
been shown that peptides and antibodies corresponding to the 
C-terminus prevent the formation of PrP amyloid fibrils in vivo (120). 
We speculate that anti-KANNO may inhibit PrP fibril stacking by 
targeting 219E between two β-sheet regions within the β-sheet 
conversion core of rPrP aggregates (121, 122). In addition, mAbs 
confer anti-prion potency in vivo, inhibiting prion transport from 
peripheral sites to the central nervous system (CNS), prolonging the 
incubation period and delaying disease onset (123–125), but only after 
peripheral infection with prions, not after intracerebral infection 
(116). Even when the mAb at a much higher dosage were first 
administered at the point of near maximal accumulation of peripheral 
PrPSc, it showed markedly inhibitory effects on peripheral PrPSc levels 
and completely prevent disease onset (125), but has not been found to 
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be effective late in the incubation period or closer to the clinically 
symptomatic stages of prion infection, and also has not showed effects 
on disease progression or mortality (126, 127). Limitation of treatment 
time-window is probably due to relatively large molecules of anti-PrP 
with the blood–brain barrier (BBB) impermeability (128, 129). To 
achieve effective CNS delivery of full-length IgG antibodies, such as 
anti-KANNO, transport across the BBB is a major challenge. One 
approach to improving delivery efficiency is to design an anti-
KANNO Fc domain to target an epitope on the extracellular domain 
of the endogenous BBB receptor (130, 131). Furthermore, despite their 
high invasiveness, BBB avoidance strategies, including the intrathecal 
or intracerebroventricular delivery of anti-KANNO into the 
cerebrospinal fluid circulation (132), may effectively deliver anti-
KANNO to the brain extracellular space. Considering these 
perspectives, this approach will show the advantages of anti-KANNO, 
a genuine human antibody, in delaying or inhibiting the progression 
of PrDs, at least as prophylaxis in the presymptomatic phase. The 

efficacy of anti-KANNO antibodies is anticipated to be determined by 
the outcome of future clinical trials. A comparison of anti-KANNO 
with a mouse mAb raised against huPrP known as PRN100 (an IgG4κ 
isotype), which was successfully developed as a clinical candidate 
designed to bind and stabilize huPrPC, was recommended, and this 
study was conducted in a first-in-human trial of patients with CJD 
(133, 134).

Notably, peripheral blood is considered a possible reservoir of 
prion infectivity in PrPSc-affected individuals. It has been 
demonstrated that PrD can be transmitted through transfusion of 
whole blood or buffy coats obtained during the presymptomatic and 
symptomatic phases of infection from either natural or experimental 
PrPSc-infected mammalian species (135–137). Furthermore, native 
PrPSc was detected in fresh whole blood from vCJD patients and 
scrapie-infected animals by using specific antibodies that selectively 
recognize PrPSc in distinct immunoassays (138–140). Similarly, PrPSc 
was found to be a key membrane fraction isolated from whole blood 

FIGURE 2

Potential application of the KANNO blood group in interventions for human prion diseases. (A) The anti-KANNO alloantibody is produced in patients 
with the KANNO-negative phenotype and may develop in response to pregnancy or transfusion with KANNO antigens. (B) The degree of anti-KANNO 
recognition of cell-surface PrP on peripheral blood cells from PrD patients is determined by an immunoassay and compared to that on peripheral 
blood cells from healthy individuals. The table lists several theoretically plausible outcomes regarding the possibility of anti-KANNO binding to PrPSc 
(w/: with; w/o: without). Additionally, anti-KANNO may bind selectively to PrPC to inhibit its conversion into PrPSc in vivo. The solution NMR spectra of 
219E huPrP (90  ~  231; PDB ID: 2LSB) and 219  K huPrP (90  ~  231; PDB ID: 2LFT) reveal an N-terminal flexible tail with an irregular structure (yellow) and 
an ordered C-terminal globular structure. The latter contains three α-helices (blue) and two antiparallel β-sheets (red). Codon 219 of huPrP is in the 
C-terminal secondary structure of the α3-helix (green). Glu-type PrP expresses at least one E version at codon 219 in the PRNP alleles, and Lys-type 
PrP is homozygous for E219K. The cryo-EM structure of human rPrP fibrils shows enrichment of β-sheets in the C-terminal domain (170  ~  231; PDB ID: 
6LNI).
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in naturally affected scrapie animals (141). The PrP molecules on the 
surface of peripheral blood mononuclear cells from scrapie-infected 
animals also showed structural changes that may be relevant to PrD, 
as demonstrated by alterations in the recognition of the anti-PrP mAb 
(142). Moreover, hematogenous transmission of infection between 
different peripheral lymphatic reticular sites is a recognized 
characteristic of the preclinical stage of PrD in experimental rodent 
infection following nonneural inoculation (143–145). However, 
investigations conducted on both exogenous and endogenous prions 
affecting rodent and human blood have shown that infectivity in RBC 
preparations is not intrinsic to the RBCs themselves but rather occurs 
within the suspending medium, where it can be easily removed by 
filtration (146–149). The opposing perspective posits that while there 
is no direct evidence that PrPSc is anchored on RBCs, according to the 
“protein-only” theory, PrPSc serves as a template for converting the 
host’s native PrPC by physical interaction. Therefore, any cell 
expressing PrPC could theoretically serve as a receptor, a site for 
propagating infectivity, or both (25, 150). The conversion of PrPC to 
PrPSc is believed to occur at the cell surface or during the endocytosis 
cycle (151). RBCs and platelets may bind to PrPSc introduced through 
a peripheral infection (152). Taken together, these findings suggest 
that peripheral blood cells, particularly mononuclear cells, may 
be  suitable targets for early screening, diagnosis or monitoring of 
PrP-related diseases. Furthermore, we  also aimed to determine 
whether anti-KANNO antibodies may be  effective in targeting 
disease-associated PrP present on the surface of blood cells. Briefly, 
plasma/sera containing natural anti-KANNO are collected from 
KANNO-negative individuals who have received transfusion or are 
pregnant, and peripheral blood cells are collected from KANNO-
positive patients in the suspected presymptomatic or symptomatic 
phase of PrDs. The degree of anti-KANNO recognition of cell-surface 
PrP is then determined by performing an immunoassay on peripheral 
blood cells from PrD patients and compared to those from healthy 
individuals, with or without the use of proteinase K (PK) digestion as 
a criterion (Figure 2B). Antibody affinity and efficacy are epitope-
dependent. Notably, whether anti-KANNO recognizes PrPSc depends 
on whether the epitope recognized by anti-KANNO is altered upon 
the conversion of PrPC to PrPSc. It is crucial to address the following 
questions for this proof-of-concept study: first, whether pathogenic 
PrP on the surface of peripheral blood cells from prion-infected 
patients shares epitopes mapped to the Glu residue at position 219 of 
huPrP with PrPC; second, whether the abnormal protein contains a 
C-terminal PK-resistant core with the aforementioned epitopes; and 
third, whether the accessibility of the C-terminal region of the α3-helix 
increases due to increased solvent exposure in PrPSc on peripheral 
blood cells from PrD patients, leading to an increase in anti-KANNO 
recognition of these epitopes.

Thorough characterization of the dynamic conformational 
landscapes of huPrPSc will be helpful for identifying physiologically 
relevant and druggable transitions of anti-KANNO. The original 
insight into the clinical application of the KANNO blood group 
highlights unique features that make anti-KANNO targeting PrP an 
attractive and rational approach for developing therapeutic reagents 
for PrDs and alternative diagnostic strategies. Anti-KANNO may also 
be  used in blood-detection procedures in humans, which may 
improve the safety of blood products and reduce the risk of further 
spread of PrDs. The practical application of the KANNO blood group 

must be tested experimentally before any practical conclusions can 
be drawn.

5 Conclusion

Our current understanding indicates that there are two 
important clinically significant effects of the PrP E219K 
polymorphism. First, this polymorphism is a genetic factor that 
modifies susceptibility to human PrDs and the phenotype of human 
PrDs, especially sCJD, in Asia. Although E219K heterozygous 
inhibition is reflected in genetic susceptibility to human PrDs and 
changes in the conformational properties of PrP, methods for 
preventing or treating prion infection based on this mechanism have 
yet to be developed. Second, it is the molecular basis of the KANNO 
blood group. Since the KANNO blood group was confirmed, it is 
considered to have a minimal impact on the safety of blood 
transfusions and limited clinical significance. However, based on the 
conformational properties of the E219K polymorphism in the 
PRNP, the determinant gene of the KANNO blood group, we suggest 
that this blood group has potential new applications in 
PrD intervention.

The PRNP gene encodes both PrPC and PrPSc. Regardless of 
whether they share epitopes constructed by the Glu residue of codon 
219, it is possible to distinguish alterations in anti-KANNO 
recognition of cell-surface PrP on peripheral blood cells from PrD 
patients. Anti-KANNO may serve as a noninvasive auxiliary 
immunoassay tool for the diagnosis of certain human PrDs. Anti-
KANNO may also play an important role in inhibiting the conversion 
of PrPSc by directly targeting PrPC. Future studies should focus on 
improving the delivery of anti-KANNO to the CNS and assessing its 
safety in the brain, as well as investigating its potential roles in PrD 
diagnosis and treatment. This bona fide human antibody is expected 
to prevent or treat human PrD at least at an early stage.
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