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Objectives: We aim to assess the pooled incidence of immune e�ector

cell-associated neurotoxicity syndrome (ICANS) in clinical trials and real-world

studies of chimeric antigen receptor (CAR) T-cell therapy for hematologic

malignancy and compare the incidences among di�erent agents.

Methods: The PubMed, Embase, and Web of Science databases were searched

for clinical trials and real-world studies. An inverse-variance weighting model

was used to calculate pooled incidences and subgroup analyses. Multivariable

analysis was conducted using binomial-normal modeling.

Results: Seventy-five trials comprising 3,184 patients were included. The overall

pooled incidence was 26.9% (95% CI, 21.7–32.7%) for all-grade and 10.5%

(95% CI, 8.1–13.6%) for high-grade ICANS. In subgroup analysis, cohorts with

anti-CD19 drugs had significantly higher ICANS incidences than cohorts with

other agents. The multivariable analysis demonstrated higher odds of ICANS in

anti-CD19 drug studies for high-grade (OR, 4.6) compared to anti-BCMA drug

studies. In 12 real-world studies, studies used axicabtagene ciloleucel with CD28

(54.0% all-grade, 26.4% high-grade) exhibited significantly higher rates of all-

grade and high-grade ICANS than studies using tisagenlecleucel with 4-1BB

(17.2% all-grade, 6.1% high-grade).

Conclusions: The overall incidences of ICANS with CAR T-cell therapy were

26.9% for all-grade and 10.5% for high-grade. Compared with other agents,

patients with anti-CD19 drugs had a significantly increased risk of developing

high-grade ICANS. Therefore, careful monitoring of ICANS should be considered

for patients undergoing CAR T-cell therapy.
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Highlights

• The pooled incidence of ICANS with CAR T-cell therapy was

26.9% (95% CI, 21.7–32.7%) for all-grade and 10.5% (95% CI,

8.1–13.6%) for high-grade.

• Univariable meta-regression analysis showed that leukemia

patients (OR, 4.7; 95% CI, 1.5–14.2; P= 0.007) and lymphoma

patients (OR, 3.1; 95% CI, 1.1–9.1; P = 0.036) had higher

odds of all-grade ICANS compared with patients with

multiple myeloma.

• Multivariable meta-regression analysis showed that patients

treated with anti-CD19 drugs had higher odds for all-grade

(OR, 2.7; 95% CI, 1.0–7.7; P= 0.057) and high-grade (OR, 4.6;

95% CI, 1.5–13.7; P = 0.008) ICANS compared with patients

treated with anti-BCMA drugs.

Introduction

Chimeric antigen receptor (CAR) T-cell therapy is promising

immunotherapy for hematologic malignancies (1–3). Studies

have shown a high response rate to CAR T-cell therapy with

remission rates of up to 80% or more in patients with relapsed

or refractory hematologic malignancies (4–6). To date, six

CAR T-cell therapies targeting the CD19 antigen or B-cell

maturation antigen (BCMA) have received approval from

the United States Food and Drug Administration (FDA):

tisagenlecleucel, axicabtagene ciloleucel, brexucabtagene

autoleucel, lisocabtagene maraleucel, idecabtagene vicleucel,

and ciltacabtagene autoleucel (7–9). Toxicities associated with

CAR T-cell therapy, including cytokine-release syndrome (CRS)

and neurotoxicity, have been reported as adverse events in almost

all clinical trials (10–13).

Neurotoxicity, what is termed “immune effector cell-associated

neurotoxicity syndrome (ICANS),” is the second most common

adverse event following CRS. The incidence of ICANS has been

reported to range widely, from 5 to 42%, in clinical trials

(1, 14–20), but the exact incidence of ICANS among patients

undergoing CAR T-cell therapy has not been systematically

investigated in large-scale datasets. Furthermore, although it has

been assumed that incidences of ICANS differ according to the

type of agent used or other factors such as the co-stimulatory

domain or number of agents, there is no concrete evidence

to support this hypothesis or demonstrate the magnitude of

the differences.

We, therefore, performed a systematic review and meta-

analysis of the incidence of ICANS in clinical trials and real-world

studies of CAR T-cell therapies for hematologic malignancies. Our

aim is to determine if there are differences in the incidence of

ICANS among cohorts with various underlying diseases, treated

with agents targeting different antigens, and utilizing different co-

stimulatory domains. The null hypothesis was that there would be

no differences in the incidence of ICANS across these cohorts.

Clinical trials of CAR T-cell therapies for hematologic

malignancies, until May 28, 2022 were included in the study.

The pooled incidence of ICANS was calculated using the inverse-

variance weighting method.

Materials and methods

We followed the Preferred Reporting Items for Systematic

Reviews and Meta-Analysis (PRISMA) guidelines (21, 22); the

completed checklist is provided in Supplementary Table 1.

Search methods and study selection

The PubMed, Embase, and Web of Science databases were

searched for published clinical trials of CAR T-cell therapies

administered to patients with hematologic malignancies until May

28, 2022. The search terms were formulated using “car t cell

therapy” and “neurotoxicity” as keywords. Details and specific

search queries are described in the Supplementary Tables 2–4. This

study was registered in the international prospective register of

systematic reviews (PROSPERO; CRD4202233390960).

The inclusion criteria were as follows: (1) clinical trials

with patients treated with CAR T-cell therapies for hematologic

malignancies and (2) detailed data sufficient to assess the incidence

of ICANS. The exclusion criteria were as follows: (1) conference

abstracts, review articles, letters, editorials, comments, notes, short

surveys, or chapters; (2) studies other than clinical trials; (3) studies

not reporting on CAR T-cell therapy; (4) studies not discussing

ICANS; (5) studies with patient numbers below 10; (6) study

protocols; (7) studies with patient cohorts overlapping with those

of other studies; and (8) summaries of other studies.

For additional analysis of the incidence of ICANS in real-world

studies, an additional computerized search of the literature was

performed using the PubMed and Embase databases for published

real-world studies of CAR T-cell therapies until August 13, 2022.

The search terms and inclusion/exclusion criteria were identical

to the analysis for previous clinical trials. The added inclusion

criterion was (1) studies in the real-world clinical setting, and the

added exclusion criterion was (1) studies with patient numbers

below 100.

The 75 eligible studies of clinical trials comprised of 3,184

patients were included in our analysis (Figure 1), and 12 eligible

studies of real-world studies comprised of 3,403 patients were

included for additional analysis for real-world clinical settings.

Data extraction

From the each eligible article, we extracted data indicating

the numbers of patients who developed ICANS of all grade and

high-grade (grade 3 or higher), and the numbers of ICANS-

related deaths (grade 5). Different articles referred to ICANS in

varying ways; we included reports on “neurotoxicity,” “neurologic

events,” or “neurologic symptoms.” In addition, the phase of each

clinical trial, NCT numbers, types of specific CAR T-cells used,

and the included patients’ diseases were recorded. Specifically,

the CAR T-cell types included all landmark treatments with

FDA approval (axicabtagene ciloleucel, brexucabtagene autoleucel,

lisocabtagene maraleucel, tisagenlecleucel, idecabtagene vicleucel,

and ciltacabtagene autoleucel); we also included various types of

CAR T-cells currently waiting for FDA approval. We focused on
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FIGURE 1

Flow diagram of clinical trial study inclusion.

the targets of CAR T-cells rather than the brand of each drug.

Two reviewers (M.W.H and S.Y.J) performed the data extraction,

with an independent review by an additional reviewer (C.H.S);

when discrepancies were identified between the data extracted

by the two reviewers, they first engaged in a discussion to

understand the source of the disagreement and to try to resolve

it collaboratively. If the discussion did not lead to a consensus,

they referred to the predefined data extraction protocol to ensure

alignment with the study’s objectives and criteria. Throughout this

process, all discrepancies and their resolutions were thoroughly

documented to maintain transparency and ensure the integrity of

the review.

Quality assessment

We assessed the risk of bias for each study using the Cochrane

risk of bias tool for randomized controlled trials (23). The tool

evaluates seven domains including random sequence generation,

allocation concealment, blinding of participants and personnel,

blinding of outcome assessment, incomplete outcome data,

selective reporting, and others to assess selection, performance,

detection, attrition, and reporting biases. Based on available

information, two independent reviewers (M.W.H and S.Y.J) scored

each domain as high or low risk or unclear. Disagreements were

resolved by discussion.

In addition, the quality of evidence from the pooled results were

evaluated using the Grading of Recommendations Assessment,

Development, and Evaluation (GRADE) system (24).

Statistical methods

The pooled incidence of all-grade and high-grade ICANS

was obtained using an inverse-variance weighting model (25).

Heterogeneity was evaluated with Cochran’s Q test and Higgins

inconsistency index (I2) test, with values >50% indicating

substantial heterogeneity. Publication bias was evaluated and

recorded using Egger’s test and funnel plots (26).

The pooled incidence of ICANS was also obtained for

each subgroup classified according to CAR T-cell agent, patient

disease, trial phase, number of used drugs (monotherapy vs.

combination therapy), co-stimulatory domain, lymphodepletion

strategy, and involvement or non-involvement of the CNS.

Univariable meta-regression analyses were conducted to assess

the associations between each of the study-level covariates and

the incidence of ICANS. Multivariable analysis was performed

using binomial-normal modeling (27, 28). To test if study-level

Frontiers inNeurology 03 frontiersin.org

https://doi.org/10.3389/fneur.2024.1392831
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Han et al. 10.3389/fneur.2024.1392831

covariates as moderators had statistical effects in the meta-

regression, the regression coefficient was obtained to estimate the

intervention effect on each subgroup from a reference group. All

statistical analyses were performed using the “meta” package of

R version 4.0.4 (R Foundation for Statistical Computing, Vienna,

Austria) (29).

Results

Literature search

Initially, 222 articles from PubMed, 290 articles from Embase,

and 143 articles from Web of Science were screened using

keywords. Of the 655 articles, 249 were excluded by an automation

tool and by a review of the article titles to eliminate duplication,

conference abstracts, reviews, letters, editorials, comments, notes,

short surveys, and chapters. The complete texts of the remaining

406 articles were retrieved, and 331 studies were further excluded

after reviewing the full texts (188 articles were not clinical trials,

27 were summaries of other studies, six had partially overlapping

patient cohorts, 43 did not discuss ICANS, 24 enrolled fewer than

10 patients, 20 were not about CAR T-cell therapy, 16 presented

secondary analyses, and seven were about study protocols). The

remaining 75 eligible studies comprised of 3,184 patients were

included (1, 4, 5, 14–20, 30–94).

For an additional search for analysis of the incidence of

ICANS in real-world clinical settings, 12 studies comprised of 3,403

patients were included in the analysis for real-world studies (95–

106). The detailed literature search for analysis of real-world studies

is provided in Supplementary material.

Risk of bias

A risk of bias assessment was performed for each study

(Supplementary Figure 1). Based on available information, each

criterion was scored by two independent reviewers as high risk, low

risk, or unclear. Disagreements were resolved by discussion. Details

of trial evaluations are detailed in Supplementary Table 5.

Characteristics of the included studies

Table 1 summarizes the characteristics of the included studies.

Among the 75 eligible trial cohorts, 42 cohorts (1, 14, 16, 18–20, 30,

31, 33–36, 39, 40, 45, 47, 49, 50, 52, 53, 55, 56, 58, 60–64, 66, 69–81)

(56.0%) were phase 1 trials, 21 (4, 5, 15, 17, 42, 43, 51, 54, 57, 59,

65, 67, 68, 82–86, 88, 89, 91) (28.0%) were phase 2 trials, and one

(92) (1.3%) was a phase 3 trial. Nine studies (32, 37, 38, 41, 44, 46,

48, 87, 93) employed combined designs for phase 1/2 trials; these

studies (combined phase 1/2 or 1b/2 trials) were included in the

analysis as phase 2 trials. The remaining two studies (90, 94) (2.7%)

did not mention the trial phase. Different studies used different

types of CAR T-cells, and we classified each drug according to its

specific target. The FDA-approved agents all target CD19, except

idecabtagene vicleucel and ciltacabtagene autoleucel, which target

BCMA. Among the 75 cohorts, 47 (62.7%) (1, 4, 5, 14, 16, 17, 31,

TABLE 1 Characteristics of all eligible trial cohorts.

Study characteristics Cohorts (N = 75)

Phase I 42 (56.0%)∗

II 30 (40.0%)

III 1 (1.3%)

Unknown 2 (2.7%)

CAR T-cell targets CD19 47 (62.7%)

CD22 2 (2.7%)

BCMA 9 (12.0%)

Mixed/other 17 (22.7%)

Patient disease Leukemia 23 (30.7%)

Lymphoma 32 (42.7%)

Multiple myeloma 12 (16.0%)

Mixed/other 8 (10.7%)

Number of agents Single-agent 61 (81.3%)

Combination of

agent

14 (18.7%)

Co-stimulatory domain 4-1BB 43 (57.3%)

CD28 22 (29.3%)

Combination 4 (5.3%)

Mixed/other 6 (8.0%)

Lymphodepletion strategy Fludarabine+

cyclophosphamide

58 (77.3%)

Fludarabine only 1 (1.3%)

Cyclophosphamide

only

3 (4.0%)

BEAM protocol 2 (2.7%)

Others 11 (14.7%)

CNS involvement Included 25 (33.3%)

Included with no

actual involvement

4 (5.3%)

Excluded 25 (33.3%)

No information 21 (28.0%)

∗Nine phase I/II or phase Ib/II studies were included as phase II trials.

BCMA, B-cell maturation antigen; BEAM, carmustine, etoposide, cytarabine, and melphalan;

CAR, chimeric antigen receptor; CNS, central nervous system.

33, 35–38, 40, 41, 43, 47–50, 53–55, 57–63, 66, 68, 69, 72, 74, 75, 77,

78, 82–86, 88, 91–94) used agents that target CD19, nine (12.0%)

(20, 32, 34, 39, 42, 45, 52, 56, 71) used agents that target BCMA,

two (2.7%) (18, 44) used agents that target CD22, and 17 others

(22.7%) (15, 19, 30, 46, 51, 64, 65, 67, 70, 73, 76, 79–81, 87, 89, 90)

used agents that target various proteins, such as CD7, CD20, CD28,

CD30, or NKG2D. Moreover, 61 of the 75 cohorts (81.3%) used

single agents (anti-CD19, anti-BCMA, anti-CD22, anti-CD30, anti-

CD7, or anti-NKG2D), 14 (18.7%) used combinations of agents

(anti-CD19+anti-BCMA, anti-CD19+anti-20, anti-CD19+anti-

22, anti-CD19+anti-28, or anti-BCMA+anti-38). Additional

details about agents, doses and CD4:CD8 ratios for each cohort are

listed in Supplementary Table 6.
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Among the 75 trial cohorts, 24 (32.0%) included treatment for

leukemia, 32 (42.7%) for lymphoma, and 12 (16.0%) for multiple

myeloma. In seven articles (9.3%), patients with various diseases

were pooled or the diseases treated were not stated.

Four kinds of grading schemes of ICANS were used across

studies: the National Cancer Institute Common Terminology

Criteria for Adverse Events, the American Society for

Transplantation and Cellular Therapy scale, the American

Society for Blood and Marrow Transplantation consensus, and

the MD Anderson Cancer Center Scale CAR-T-cell-related

encephalopathy syndrome grading system. Additional details

about the ICANS grading schemes for each cohort are listed in

Supplementary Table 6.

Among the 12 included studies for additional analysis of the

real-world studies, seven studies included patients used agents

of axicabtagene ciloleucel and tisagenlecleucel, respectively (95,

96, 98, 99, 102, 105, 106). Three studies included patients who

used axicabtagene ciloleucel (100, 103, 104), and two had those

who used tisagenlecleucel (97, 101). All patients treated with

axicabtagene ciloleucel used CD28 as a co-stimulatory domain,

and all patients treated with tisagenlecleucel used 4-1BB as a co-

stimulatory domain.

Pooled incidence of neurotoxicity among
patients undergoing CAR T-cell therapy

We evaluated the incidence of all-grade and high-grade ICANS

after CAR T-cell infusion in a total of 75 cohorts of patients. The

overall pooled incidence, evaluated with a random effects model,

was 26.9% (95% CI, 21.7–32.7%; Figure 2) for all grades and 10.5%

(95% CI, 8.1–13.6%; Figure 3) for high-grade ICANS (Table 2).

Heterogeneity was observed in both all-grade and high-grade

ICANS (I2 = 84.1% and I2 = 73.3%, respectively). Publication bias

likely occurred in both all-grade and high-grade ICANS analyses (P

< 0.01; Supplementary Figures 2, 3). Three cases of grade 5 ICANS

were reported across cohorts, one in a study using a brexucabtagene

autoleucel agent in leukemia patients, one in a cohort of multiple

myeloma patients using a ciltacabtagene autoleucel agent, and one

in leukemia patients using an anti-CD19 agent.

To address the high heterogeneity observed in the incidence

of all-grade and high-grade ICANS, we conducted a sensitivity

analysis by removing ∼15% of the outlier studies (11 out

of 75 studies). This adjustment resulted in a substantial

reduction in heterogeneity, with the I2 for all-grade ICANS

decreasing from 84 to 67%, and for high-grade ICANS from

73 to 43%, while maintaining the overall trend of our results

(Supplementary Figure 4).

Subgroup analyses

We evaluated the incidence of ICANS classified according

to target agent (Table 2). The pooled incidences associated with

anti-BCMA agents were 15.1% (95% CI, 7.7–27.7%) for all-grade

and 5.2% (95% CI, 2.9–9.3%) for high-grade ICANS. The pooled

incidences associated with anti-CD22 agents were 25.8% (95% CI,

13.6–43.5%) for all-grade and 1.6% (95% CI, 0.3–7.6%) for high-

grade ICANS. The pooled incidences associated with anti-CD19

agents were 34.8% (95% CI, 27.2–43.2%) for all-grade and 14.7%

(95% CI, 10.9–19.5%) for high-grade ICANS. Agents targeting

CD19 showed significantly higher rates of both all-grade and high-

grade ICANS than agents targeting CD22 or BCMA (P < 0.05 for

all-grade and high-grade).

In subgroups classified by patient disease, the pooled incidences

for patients with multiple myeloma were 15.1% (95% CI, 9.1–

24.0%) for all-grade and 4.9% (95% CI, 3.0–8.1%) for high-grade

ICANS. For patients with lymphoma, the pooled incidences were

27.5% (95% CI, 18.9–38.2%) for all-grade and 11.3% (95% CI, 7.8–

16.1%) for high-grade ICANS. Finally, for patients with leukemia,

the pooled incidences were 36.5% (95% CI, 27.9–46.1%) for all-

grade and 15.5% (95% CI, 9.6–24.0%) for high-grade ICANS.

Patients with leukemia had significantly higher rates of both all-

grade and high-grade ICANS than patients with lymphoma or

multiple myeloma (P < 0.05 for all-grade and high-grade).

In subgroups classified according to the number of agents,

cohorts using a single agent exhibited higher rates of all-grade

ICANS (P = 0.05) than cohorts using combinations of agents.

In subgroups classified by co-stimulatory domain, the pooled

incidences for 4-1BB, evaluated with a random effects model, were

26.4% (95% CI, 21.0–32.5%) for all-grade and 10.1% (95% CI, 7.1–

14.0%) for high-grade ICANS. For CD28, the pooled incidences

were 29.6% (95% CI, 19.6–42.1%) for all-grade and 10.4% (95% CI,

6.2–17.0%) for high-grade ICANS.

Univariable and multivariable meta-
regression analyses

The univariable meta-regression analyses yielded significantly

higher odds for all-grade [odds ratio [OR], 3.7; 95% CI, 1.2–11.9;

P = 0.029] and high-grade (OR, 4.9; 95% CI, 1.6–14.7; P = 0.006)

ICANS for the cohorts treated with anti-CD19 drugs than for those

treated with anti-BCMA drugs (Tables 3, 4). The cohorts consisting

of leukemia patients had significantly higher odds for all-grade

(OR, 4.7; 95% CI, 1.5–14.2; P = 0.007) and high-grade (OR, 5.9;

95% CI, 1.8–19.0; P = 0.003) ICANS than those consisting of

multiple myeloma patients. The cohorts of lymphoma patients also

had significantly higher odds for all-grade (OR, 3.1; 95% CI, 1.1–

9.1; P = 0.036) and high-grade (OR, 3.9; 95% CI, 1.3–11.8; P =

0.017) ICANS than the cohorts of multiple myeloma patients. No

significant differences in ICANS incidences were observed between

cohorts with different trial phases, therapy types, co-stimulatory

domains, and CNS involvement or non-involvement.

The multivariable meta-regression analyses showed high levels

of coexistence and concurrence for types of drug agents and

diseases. Diseases were excluded from the multivariable analysis

to avoid multi-collinearity. The cohorts treated with anti-CD19

drugs had higher odds for all-grade (OR, 2.7; 95% CI, 1.0–7.7;

P = 0.057) ICANS than cohorts treated with anti-BCMA drugs,

with borderline significance. The cohorts treated with anti-CD19

drugs had significantly higher odds for high-grade (OR, 4.6; 95%

CI, 1.5–13.7; P = 0.008) ICANS than cohorts treated with anti-

BCMA drugs.
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FIGURE 2

Forest plots showing the pooled incidence of all-grade ICANS in clinical trials.
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FIGURE 3

Forest plots showing the pooled incidence of high-grade ICANS in clinical trials.
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TABLE 2 Results of the multiple subgroup analysis on the incidence of ICANS after CAR T-cell therapy.

All-grade ICANS High-grade ICANS (≥ grade 3)

Studies (N) Incidence (%) (95% CI) Studies (N) Incidence (%) (95% CI)

Overall 75 26.9 (21.7–32.7)∗ 72† 10.5 (8.1–13.6)∗

Subgroup

CAR T-cell targets BCMA 9 15.1 (7.7–27.7)∗ 9 5.2 (2.9–9.3)

CD22 2 25.8 (13.6–43.5)∗ 2 1.6 (0.3–7.6)

CD19 46 34.8 (27.2–43.2)∗ 44 14.7 (10.9–19.5)∗

Disease Multiple myeloma 12 15.1 (9.1–24.0)∗ 12 4.9 (3.0–8.1)

Lymphoma 32 27.5 (18.9–38.2)∗ 32 11.3 (7.8–16.1)∗

Leukemia 23 36.5 (27.9–46.1)∗ 20 15.5 (9.6–24.0)∗

Phase 1 40 24.6 (18.3–32.2)∗ 40 10.0 (6.8–14.4)∗

2 29 25.9 (18.4–35.0)∗ 27 10.1 (6.7–14.8)∗

Number of agents Single-agent 60 28.9 (22.6–36.1)∗ 58 11.2 (8.3–15.0)∗

Combination of agents 14 19.7 (14.4–26.4) 14 8.6 (5.7–12.8)

Co-stimulatory domain 4-1BB 42 26.4 (21.0–32.5)∗ 42 10.1 (7.1–14.0)∗

CD28 22 29.6 (19.6–42.1)∗ 20 10.4 (6.2–17.0)∗

Combination 4 14.8 (2.5–54.2)∗ 4 10.0 (2.4–33.6)

Lymphodepletion Fludarabine+ cyclophosphamide 57 25.5 (20.0–31.8)∗ 57 10.0 (7.3– 13.6)∗

BEAM 2 64.0 (46.2–78.7) 1 28.0 (14.0–48.2)

Cyclophosphamide 3 54.4 (28.0–78.6)∗ 2 23.5 (7.4–54.2)∗

Fludarabine 1 58.8 (50.7–66.4) 1 18.9 (13.4–26.0)

CNS involvement Included 25 30.9 (22.4–41.0)∗ 23 13.2 (9.0–19.0)∗

Included but no involvement 4 29.9 (8.2–67.0)∗ 4 15.5 (6.8–31.7)∗

Excluded 25 25.8 (17.3–36.6)∗ 25 10.6 (6.6–16.6)∗

No information 20 22.0 (13.7–33.5)∗ 20 6.5 (3.5–11.8)∗

CI, confidence interval; ICANS, immune effector cell-associated neurotoxicity syndrome.
∗I2 > 50% indicating substantial heterogeneity.
†Three studies not reporting on high-grade ICANS were excluded. BEAM: carmustine for day−6, etoposide from days−5 to−2, cytarabine from days−5 to−2, and melphalan for day−1.

Evidence of the critical outcomes

The GRADE system was used to assess the certainty of evidence

for the pooled incidence outcome (Table 5). Due to a high risk of

bias in the included studies and a strongly suspected publication

bias, the overall quality of evidence regarding the incidence of

ICANS in patients receiving CAR-T cell therapy for hematologic

malignancies was rated as moderate.

Analysis of real-world studies

We evaluated the incidence of ICANS in real-world clinical

data of 12 studies classified according to target agent (axicabtagene

ciloleucel and tisagenlecleucel) (95–106). The pooled incidences

for axicabtagene ciloleucel with CD28 were 54.0% (95% CI,

46.5–61.4%) for all-grade and 26.4% (95% CI, 21.3–32.2%) for

high-grade ICANS. The pooled incidences for tisagenlecleucel

with 4-1BB were 17.2% (95% CI, 13.7–21.4%) for all-grade and

6.1% (95% CI, 4.5–8.1%) for high-grade ICANS. Studies using

axicabtagene ciloleucel with CD28 exhibited higher rates of all-

grade and high-grade ICANS than studies using tisagenlecleucel

with 4-1BB (P < 0.001 for all-grade and high-grade ICANS;

Supplementary Figure 5). There were six deaths from ICANS

(grade 5), and all cases were treated with axicabtagene ciloleucel

with CD28 (95, 100, 102).

Discussion

In the present meta-analyses, the overall ICANS incidence

among patients undergoing CAR T-cell therapy for hematologic

malignancies was 26.9% for all-grade and 10.5% for high-grade

ICANS. In the subgroup analysis according to the type of agent,

the cohorts with anti-CD19 drugs had significantly higher ICANS

incidence than those with anti-BCMA drugs. The multivariable

analysis also demonstrated significant higher odds of ICANS in

anti-CD19 drug studies for high-grade (OR, 4.6; P= 0.008) ICANS

compared with studies on anti-BCMA drugs. In real-world studies,
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TABLE 3 Results of the univariable and multivariable meta-regression on the incidence of all-grade ICANS.

All-grade ICANS

Univariable meta-regression Multivariable meta-regression

Variable Odds ratio (95% CI) P-value Odds ratio (95% CI) P-value

Drug agents Anti-BCMA REF REF

Anti-CD22 2.6 (0.2–27.7) 0.428 2.3 (0.3–17.8) 0.423

Anti-CD19 3.7 (1.2–11.9) 0.029 2.7 (1.0–7.7) 0.057

Disease Multiple myeloma REF

Lymphoma 3.1 (1.1–9.1) 0.036

Leukemia 4.7 (1.5–14.2) 0.007

Phase 1 REF REF

2 1.2 (0.6–2.5) 0.603 1.3 (0.6–2.9) 0.448

Number of agents Single agent REF

Combination of agents 0.5 (0.2–1.3) 0.138

Co-stimulatory domain 4-1BB REF

CD28 1.2 (0.5–2.9) 0.609

Combination 0.5 (0.1–3.0) 0.426

CNS involvement Included REF

Included without actual involvement 0.9 (0.2–5.4) 0.927

Excluded 0.8 (0.3–2.0) 0.620

No information 0.7 (0.3–1.8) 0.450

REF, the reference group.

TABLE 4 Results of the univariable and multivariable meta-regression on the incidence of high-grade ICANS.

High-grade neurotoxicity

Univariable meta-regression Multivariable meta-regression

Variable Odds ratio (95% CI) P-value Odds ratio (95% CI) P-value

Drug agents Anti-BCMA REF REF

Anti-CD22 0.3 (0.01–4.8) 0.356 0.3 (0.01–4.7) 0.351

Anti-CD19 4.9 (1.6–14.7) 0.006 4.6 (1.5–13.7) 0.008

Disease Multiple myeloma REF

Lymphoma 3.9 (1.3–11.8) 0.017

Leukemia 5.9 (1.8–19.0) 0.003

Phase 1 REF REF

2 1.1 (0.5–2.4) 0.831 1.2 (0.6–2.5) 0.687

Number of agents Single agent REF

Combination of agents 0.5 (0.2–1.3) 0.158

Co-stimulatory domain 4-1BB REF

CD28 1.0 (0.4–2.4) 0.992

Combination 1.0 (0.2–5.9) 0.966

CNS involvement Included REF

Included without actual involvement 1.0 (0.2–5.1) 0.997

Excluded 0.7 (0.3–1.6) 0.366

No information 0.4 (0.1–1.0) 0.048
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TABLE 5 Certainty of evidence for the incidence of all-grade and high-grade ICANS.

No. of studies Certainty assessment E�ect Certainty Importance

Study
design

Risk of
bias

Inconsistency Indirectness Imprecision Other
considerations

No. of
events

No. of
individuals

Rate
(95% CI)

All-grade ICANS

75 Randomized

trials

Serious Serious∗ Not serious Not serious Publication bias

strongly suspected†

Strong association

All plausible

residual

confounding would

suggest spurious

effect, while no

effect was observed

1,034 3,184 Event rate

26.9 per 100

(21.7–32.7)

⊕⊕⊕©

Moderate∗†
Critical

High-grade ICANS

72 Randomized

trials

Serious Serious∗ Not serious Not serious Publication bias

strongly suspected†

Strong association

All plausible

residual

confounding would

suggest spurious

effect, while no

effect was observed

385 3,136 Event rate

10.5 per 100

(8.1–13.6)

⊕⊕⊕©

Moderate∗†
Critical

GRADE Working Group certainty of evidence. High: very condifent that the true effect lies close to that of the estimate of the effect. Moderate: moderately confident in the effect estimate; the true effect is likely to be close to the estimate of the effect, but there is a

possibility that it is substantially different. Low: our confidence in the effect estimate is limited; the true effect may be substantially different from the estimate of the effect. Very low quality: we have very little confidence in the effect estimate; the true effect is likely to

be substantially different from the estimate of effect.
∗Heterogeneity was observed in both all-grade and high-grade ICANS (I2 = 84.1 and 73.3%, respectively).
†Publication bias likely occurred in both all-grade and high-grade ICANS analyses (P < 0.01; Supplementary Figures 2, 3).

GRADE, grading of recommendations assessment, development, and evaluation.
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studies using axicabtagene ciloleucel with CD28 (54.0% for all-

grades, 26.4% for high-grades) exhibited significantly higher rates

of ICANS than studies using tisagenlecleucel with 4-1BB (17.2% for

all-grades, 6.1% for high-grades). The current study demonstrates

that ICANS is not uncommon among patients undergoing CAR

T-cell therapy, and our results provide further insights into risk

factors for ICANS.

In terms of risk factors associated with ICANS in CAR T-cell

therapies, previous studies reported that ICANS is significantly

correlated with a high pretreatment disease burden and a higher

peak CAR T-cell expansion (107, 108). However, it is difficult to

predict which patients will develop ICANS, the timing of their

symptoms, or their disease severity. Rubin et al. (103) developed a

predictive scoring system for ICANS, which includes age, histologic

subtype, maximum temperature, maximum C-reactive protein

level, ferritin level, minimum white blood cell count, CRS severity,

and CRS onset day. Our subgroup analysis by patient disease,

drug agent, and the number of agents showed that patients with

leukemia, and anti-CD19 drugs had significantly higher rates of

ICANS than patients with other diseases, and drugs that have

other targets. However, the high ICANS rate among leukemia

patients may be attributable to confounding factors, given that

CD19-targeting CAR T-cell drugs are more generally used to

treat leukemia. The risk of ICANS in patients with preexisting

neurologic comorbidities was controversial in previous studies

(76, 109). However, in our study, the risk did not appear to be

higher in groups with preexisting neurologic comorbidities.

On February 2022, the United States FDA approved

ciltacabtagene autoleucel for treating adults with relapsed or

refractory multiple myeloma, making it the sixth FDA-approved

CAR T-cell agent. The ciltacabtagene autoleucel trials had reported

atypical neurotoxicity (non-ICANS-related neurotoxicity) after

the resolution of ICANS. Symptoms associated with non-ICANS

neurotoxicity included parkinsonian symptoms, peripheral

motor neuropathy, and cranial nerve palsies. Van Oekelen et al.

(110) reported cases of multiple myeloma patients, enrolled

in the CARTITUDE-1 trial, who developed a progressive

movement disorder with features of parkinsonism 3 months after

ciltacabtagene autoleucel infusion. These findings indicate that

further research into non-ICANS-related neurotoxicity is needed.

Our multivariable analysis also demonstrated significantly

increased odds of ICANS in the cohorts treated with anti-CD19

drugs for high-grade (OR, 4.6; P = 0.008) ICANS compared with

cohorts treated with anti-BCMA drugs. These results indicate

that anti-CD19 drugs are an independent risk factor for high-

grade ICANS in patients undergoing CAR T-cell therapy. Multiple

studies have explored the biological mechanisms of neurotoxicity

in patients treated with CAR T-cells. The primary mechanism

currently suggested is endothelial dysfunction and increased blood-

brain barrier (BBB) permeability. Gust et al. (109) demonstrated

widespread endothelial activation and increased BBB permeability,

followed by leakage of systemic cytokines, including IFN-γ, into

the cerebrospinal fluid. A recent study by Parker et al. (111),

using single-cell RNA sequencing, revealed the expression of CD19

in brain mural cells surrounding the endothelium. This finding

indicates the potential for CD19-targeted CAR T-cells to recognize

CD19+ mural cells, leading to endothelial dysfunction and

subsequent neurotoxicity. Anti-BCMAdrugs, while associated with

clinically significant incidences of ICANS, have also been linked

to atypical neurotoxic events that appear distinct from ICANS in

several clinical studies, including tremor and hemiparesis (32, 42).

Although themechanisms underlying these atypical neurotoxicities

are not yet fully understood, the presence of BCMA expression

in the basal ganglia and cerebellum could potentially explain the

occurrence of atypical Parkinsonian symptoms associated with

anti-BCMA drugs (112).

Both axicabtagene ciloleucel and tisagenlecleucel are

anti-CD19 drugs but use different co-stimulatory domains.

Axicabtagene ciloleucel uses CD28 as the co-stimulatory domain,

and tisagenlecleucel uses 4-1BB as the co-stimulatory domain. In

real-world studies, studies using axicabtagene ciloleucel with CD28

exhibited higher rates of both all-grade and high-grade ICANS

than those using tisagenlecleucel with 4-1BB (both P < 0.001

for all-grade and high-grade ICANS). These differences in the

incidence of ICANS are possibly related to its CD28 co-stimulation

domain. In a previous study (113), CAR T-cells with CD28

co-stimulatory domains posed a greater risk for the development

of ICANS. CD28 and 4-1BB operate via different mechanisms

as co-stimulatory domains in CAR T-cells. The CD28-CD80/86

interaction enhances IL-2 activity, upregulates pro-survival gene

transcription, and promotes Th1 cytokine production. CD28

co-stimulation is generally believed to preferentially expand

CD4+ T cells. Conversely, 4-1BB, also known as CD137, is similar

in its upregulation of anti-apoptotic proteins and IL-2, but it

preferentially leads to CD8+ T cell expansion (114). Several

studies have demonstrated that T cell expansion occurs more

rapidly and with greater amplitude when stimulated by CD28

compared to 4-1BB in vivo. Salter et al. (115) observed significantly

increased kinetics and intensity of T cell phosphorylation via

mass spectrometry when stimulated by CD28/CD3ζ signaling

compared to 4-1BB/CD3ζ signaling. Similarly, Sterner et al. (116)

noted that CD28-stimulated CAR T-cells tend to differentiate

into central memory T cells and rely on aerobic glycolysis, which

may contribute to their faster onset and eventual exhaustion.

These findings, altogether provide a biological basis for the higher

incidence of ICANS observed in cohorts using axicabtagene

ciloleucel with CD28 in our real-world study.

Imaging findings related to ICANS among patients undergoing

CAR T-cell therapy have been variable and unspecific. The most

common imaging findings associated with ICANS are cerebral

vasogenic or cytotoxic edema, detected on T2-weighted and FLAIR

as hyperintensities with or without diffusion restriction (1, 117).

Reported locations of involvement include the bilateral thalami,

brainstem, and splenium of the corpus callosum (113, 117). In a

study by Santomasso et al. (113), brain MRI findings were normal

in all five patients with grade 1 and 2 ICANS as well as in four of 14

patients with severe ICANS (113). Other abnormalities, including

leptomeningeal enhancement and multifocal microhemorrhage,

have also been reported (5). These imaging abnormalities may

be explained by several potential pathophysiologic mechanisms:

endothelial cell damage, disruption of the BBB, and systemic

inflammation (117, 118).

The present study has, however, several limitations. First,

the present meta-analysis was limited to cohort-level data, as

patient-level data were not available. This restriction hindered

us to assess individual patient-level risk factors associated with
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ICANS, such as disease burden, number of previous lines of

treatment, age, and baseline cognitive function. Consequently,

these patient-level factors, which might influence the development

of ICANS, were not analyzed in our study. Second, there are a

number of previous systemic reviews and articles about the adverse

effects of CAR T-cell therapy. However, previous studies included

only patients with specific diseases and analyzed only specific

treatment agents. The advantage of this meta-analysis is that we

included a total of 75 recent papers, covered the entire range of

hematologic malignancies, and also performed multiple subgroups

and multivariable meta-regression analyses. Third, despite our

efforts to address heterogeneity through sensitivity analysis,

subgroup analyses and meta-regression, substantial heterogeneity

remained in some of the results. A relatively large sample size

(75 studies) contributed to substantial heterogeneity in our results.

Also, this heterogeneity reflects the diverse clinical settings and

methodologies of the included studies, and underscores the need

for cautious interpretation of our results. Lastly, the employed

grading systems of neurotoxicity were heterogeneous, and we did

not attempt to unify the schemes. There are, however, differences

between these grading methods, and more sophisticated studies

that correct for such differences are needed in the future. Overall,

the results of our study should be interpreted with caution due to

high levels of heterogeneity among the included studies.

Conclusion

In conclusion, an overall incidence of ICANS among patients

undergoing CAR T-cell therapy were 26.9% for all-grade and

10.5% for high-grade ICANS. Patients with anti-CD19 drugs had

a significantly increased risk of developing high-grade ICANS

compared to patients with anti-BCMA drugs. These results suggest

that careful monitoring of ICANS should be considered for patients

undergoing CAR T-cell therapy, particularly those treated with

anti-CD19 drugs and those with leukemia.
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