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Objectives: Cardiogenic cerebral embolism (CCE) poses a significant health risk; 
however, there is a dearth of published prognostic prediction models addressing 
this issue. Our objective is to establish prognostic prediction models (PM) for 
predicting poor functional outcomes at 3 months in patients with acute CCE 
associated with non-valvular atrial fibrillation (NVAF) and perform both internal 
and external validations.

Methods: We included a total of 730 CCE patients in the development cohort. 
The external regional validation cohort comprised 118 patients, while the external 
time-sequential validation cohort included 63 patients. Multiple imputation by 
chained equations (MICE) was utilized to address missing values and the least 
absolute shrink and selection operator (LASSO) regression was implemented 
through the glmnet package, to screen variables.

Results: The 3-month prediction model for poor functional outcomes, denoted 
as N-ABCD2, was established using the following variables: NIHSS score at 
admission (N), Age (A), Brain natriuretic peptide (BNP), C-reactive protein (CRP), 
D-dimer polymers (D), and discharge with antithrombotic medication (D). The 
model’s Akaike information criterion (AIC) was 637.98, and the area under Curve 
(AUC) for the development cohort, external regional, and time-sequential 
cohorts were 0.878 (95% CI, 0.854–0.902), 0.918 (95% CI, 0.857–0.979), and 
0.839 (95% CI, 0.744–0.934), respectively.

Conclusion: The N-ABCD2 model can accurately predict poor outcomes at 3 
months for CCE patients with NVAF, demonstrating strong prediction abilities. 
Moreover, the model relies on objective variables that are readily obtainable in 
clinical practice, enhancing its convenience and applicability in clinical settings.
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FIGURE 1

The flowchart of recruitment of the development cohort.

Introduction

Cardiogenic cerebral embolism (CCE) accounts for 20 to 30% 
of all ischemic strokes (1). Furthermore, up to 60% of patients 
with embolic stroke of undetermined source (ESUS), constituting 
30% to 40% of ischemic strokes (IS), were identified as having 
cardiogenic origin during follow-up (2), making the cardioembolic 
stroke population extremely large. Additionally, among all 
subtypes of IS, CCE is suspected to cause the most significant 
harm, resulting in an approximate 60% disability and a 20% 
mortality rate (3).

Numerous prediction models and risk-scoring scales have been 
developed and validated to predict short or long-term functional 
outcomes after acute stroke. However, most of these models were 
established based on the general IS population (4–10), without 
distinguishing between stroke subtypes, potentially affecting the 
accuracy of predictions. Meanwhile, as research progresses on 
cardiogenic cerebral embolism, new biomarkers have been identified 
as risk factors affecting the prognosis of CCE patients (11, 12). 
Regrettably, only a few of these new biomarkers have been 
incorporated into existing stroke prognostic models. It is worth 
mentioning that whether receiving anticoagulant therapy also has a 
certain impact on prognosis, but so far, no relevant prognostic model 
studies have included this variable.

Therefore, there is an urgent need to establish an up-to-date 
prognostic prediction model for cardiogenic stroke.

Methods

Patients

The development cohort consisted of 793 patients with acute CCE 
who were hospitalized in the Department of Neurology, Suzhou Ninth 
Hospital affiliated with Soochow University. These patients were 
retrospectively identified from January 2016 to December 2020. Thirty 
patients with missing outcome variables, 19 patients without a 
National Institute of Health stroke scale score (NIHSS) at admission,12 
patients with valvular heart disease, and 2 patients with dilated 
cardiomyopathy were excluded. Finally, 730 patients with acute CCE 
related to nonvalvular atrial fibrillation (NVAF) were included in the 
development cohort (Figure 1).

The external regional validation cohort consisted of 118 patients 
with acute CCE admitted to the Department of Neurology, Changshu 
No.1 People’s Hospital, from January 2019 to December 2020. The 
external time-sequential validation cohort comprised 63 CCE patients 
with NVAF who were hospitalized in the Department of Neurology at 
Suzhou Ninth Hospital affiliated with Soochow University and were 
retrospectively identified from January 2021 to July 2021.

Inclusion criteria: (1) Age > 18 years; (2) New infarction confirmed 
by head computed tomography (CT) or head magnetic resonance 
(MR)-diffusion-weighted imaging (DWI) within 7 days of onset; (3) 
History of atrial fibrillation (AF), consistent with acute CCE diagnostic 
criteria (13); and (4) Provided informed consent.
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Exclusion criteria: (1) Patients unable to undergo head CT or MR 
examination; (2) Those with laboratory and imaging findings meeting 
the diagnostic criteria for other subtypes of IS; (3) Severe heart valve 
disease, including rheumatic mitral stenosis, mechanical or biological 
valve replacement, mitral valve repair, and dilated cardiomyopathy; 
(4) Patients without NIHSS scores or with missing outcome variables; 
(5) Participation in other interventional clinical studies within 
3 months prior to the date of informed consent or ongoing 
participating in other interventional clinical research studies; and (6) 
Patients unwilling to sign the informed consent form.

Variables selection

The selection of variables was based on indicators related to stroke 
prognosis as mentioned in previous research and literature, which can 
be obtained from the electronic medical record system. Variables with 
a missing proportion exceeding 50% were excluded from candidate 
predictors. Selected variables included age, sex, history of hypertension 
or diabetes mellitus, previous stroke or coronary heart disease, 
peripheral vascular disease, neurological symptoms, initiative blood 
pressure, ventricular rate, B-type natriuretic peptide (BNP), d-dimer 
polymers (D-Dimer), C-reactive protein (CRP), serum creatinine 
(Scr), cardiac troponin I  (cTn-I), low-density lipoprotein (LDL), 
triglycerides, total cholesterol (TC), high-density lipoprotein 
cholesterol (HDL), left atrial diameter (LAD), left ventricular end 
systolic diameter (LVDs), left ventricular end diastolic diameter 
(LVDd), interventricular septal thickness (IVST), left ventricular 
ejection fraction (LVEF), cranial CT, cranial DWI, chest CT (used to 
measure left ventricular volume), and three antithrombotic strategies 
at discharge: no drugs (no oral antithrombotic drugs), oral 
anticoagulation drugs (oral antiplatelet drugs). Additionally, severity 
and risk indicators included NIHSS score at admission, CHADS2 
score, CHA2DS2-VASc score, and HAS-BLED score.

Statistical analysis

The event-per-variable approach was employed to assess data 
sufficiency. All available data from electronic medical record 
systems were utilized to maximize the statistical power and 
generalizability of the results. Patient characteristics were 
summarized as M (IQR) or Mean ± SD for continuous variables 
and as counts and percentages for categorical variables. Multiple 
imputation by chained equations (MICE) based on R software was 
used to supplement missing values of baseline variables and 
parameters (Supplementary Tables 1–3). The distribution of all 
candidate variables after multiple imputations was comparable to 
that before imputation. Data cleaning and abnormal value 
processing were conducted in accordance with the reference 
ranges provided by each hospital’s testing center.

Binary logistic regression was performed to explore the factors 
affecting the outcome (mRS > 2). Prior to the regression analysis, all 
features were standardized to ensure comparability and to mitigate the 
scale sensitivity inherent in LASSO regression. The least absolute 
shrinkage and selection operator (LASSO) regression, implemented 
using the glmnet package, was then employed to screen variables 
effectively. This approach involved a cross-validation procedure to 
identify the optimal regularization parameter (λ), thereby balancing 

the bias-variance tradeoff and enhancing the model’s 
predictive accuracy.

The final prediction model was derived by refitting the selected 
variables into a multifactor logistic regression model. Model 
performance was assessed through measures of discrimination and 
calibration. Internal validation was performed using a bootstrap 
procedure (100 resamples) to account for optimism. Discrimination 
was calculated using the area under Curve (AUC), and calibration 
accuracy was evaluated using the prognostic index (PI) value 
calculated by the model.

Statistical analyses were performed using R version 4.0.2, along 
with packages MICE, rms, and glmnet. The final model was presented 
in the form of nomographs and a web calculator was developed based 
on R shiny to facilitate clinical application.

Results

Baseline characteristics

The flow diagram illustrating patient selection is shown in 
Figure 1, and a summary of patient characteristics is presented in 
Table 1. Within the development cohort, 429 (58.8%) cases, 40 (33.9%) 
cases in the regional validation cohort, and 23 (36.5%) cases in the 
time-sequential validation cohort experienced poor functional 
outcomes (mRS > 2 points) at 3 months. Notably, the proportion of 
patients with poor functional outcomes in the development cohort 
was higher than that of the other two cohorts. Correspondingly, there 
were significant differences in the proportion of patients receiving 
anticoagulant treatment at discharge among the three cohorts. 
Specifically, the proportions were as follows: development cohort 
16.3% (119/730), regional cohort 14.4% (8/118), and time-sequential 
validation cohort 46% (29/63) (p < 0.001). The proportion of patients 
receiving anticoagulant therapy in the time-sequential validation 
cohort was significantly higher than that in the other two cohorts.

Regarding missing data, there were 49 cases lacking D-dimer 
values in the development cohort but not in the regional and time-
sequential cohorts. The deficiency of BNP data was higher in the 
development cohort (11%) compared to the regional (4.8%) and time-
sequential cohorts (1.7%). Regarding the absence data of cTn-I data, 
the rates of missing values differed among the cohorts: development 
cohort (15.5%), regional validation cohort (4.8%), and time-sequential 
cohort (16.9%). Among all clinical data, the most serious deficiency 
was found in cardiac ultrasound indicators (LAD, LVDs, LVDd, IVST, 
LVEF) (46.7%). After imputing missing values, all eligible patients 
were included for model development or validation. Eight variables 
(D-dimer, cTn-I, Scr, CRP, BNP, LVDs, IVST, LAV) did not conform 
to a linear distribution and were logarithmically processed.

A total of 29 variables [gender, age, hypertension, diabetes 
mellitus, previous stroke history, compliance coronary artery disease 
(CAD), heart rate at admission, systolic blood pressure (SBP) at 
admission, diastolic blood pressure (DBP) at admission, log D-dimer, 
log cTn-I, log serum creatinine, log CRP, log BNP, LVDd, log LVDs, 
log IVST, log LAV, LAD, LVEF, NIHSS score group (<8 points, 8–15 
points, >15 points), CHADS2 score, HAS-BLED score, CHA2DS2-
VASC score, and discharge medication (no antithrombotic drugs, 
antiplatelet drugs, and oral anticoagulant drugs)] were used to 
construct the LASSO logistic regression model (Supplementary  
Figure 1).
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TABLE 1 The comparison of clinical data between development cohort and validation cohorts.

Characteristics Development cohort External 
regional cohort

External time 
sequential cohort

P1-value P2-value

N  =  730 N  =  118 N  =  63

Gender, n(%)

  Female 367 (50.3) 58 (49.2) 29 (46.0) 0.899 0.607

  Male 363 (49.7) 60 (50.8) 34 (54.0)

Age, mean ± SD 78.8 ± 8.9 77.2 ± 8.5 76.4 ± 8.0 0.076 0.044

Hypertension, n(%)

  No 170 (23.3) 16 (13.6) 18 (28.6) 0.024 0.344

  Yes 560 (76.7) 102 (86.4) 45 (71.4)

Diabetes mellitus, n(%)

  No 608 (83.3) 100 (84.7) 55 (87.3) 0.793 0.482

  Yes 122 (16.7) 18 (15.3) 8 (12.7)

Previous stroke, n(%)

  No 555 (76.0) 89 (75.4) 46 (73.0) 0.979 0.592

  Yes 175 (24.0) 29 (24.6) 17 (27.0)

CAD, n(%)

  No 570 (78.1) 97 (82.2) 46 (73.0) 0.335 0.354

  Yes 160 (21.9) 21 (17.8) 17 (27.0)

Heart rate, mean ± SD 91.8 ± 20.9 81.5 ± 15.7 83.4 ± 15.2 <0.001 0.002

SBP at admission, mean ± SD 150.2 ± 24.6 148.7 ± 22.1 151.1 ± 23.9 0.534 0.774

DBP at admission, mean ± SD 86.6 ± 15.5 83.8 ± 15.7 85.1 ± 13.0 0.062 0.455

D-dimer, median (P25, P75) 0.8 (0.4, 1.8) 1.11 (0.72, 1.81) 0.25 (0.09, 0.75) <0.001 <0.001

cTn-I, median (P25, P75) 0.02 (0.01, 0.04) 0.01 (0.01, 0.02) 0.01 (0.00, 0.04) 0.171 0.223

Scr, median (P25, P75) 70.0 (58, 90) 77.5 (62, 88) 67 (57, 85) 0.070 0.839

CRP, median (P25, P75) 4.4 (1.6, 12.9) 1.9 (0.5, 13.0) 3.4 (2.2, 6.9) <0.001 0.317

BNP, median (P25, P75) 280.3 (161.8, 481.3) 260.5 (155.2, 419.5) 243.0 (150.9, 369.5) 0.394 0.078

LAD, mean ± SD 44.7 ± 6.5 44.8 ± 6.9 44.5 ± 6.9 0.904 0.780

LVDd, mean ± SD 50.5 ± 6.9 45.6 ± 7.0 50.0 ± 6.0 <0.001 0.589

LVDs, median (P25, P75) 34 (31, 39) 29 (26, 32) 33 (30, 36) <0.001 0.091

IVST, median (P25, P75) 8 (8, 9) 10 (9, 11) 8 (8, 9) <0.001 0.066

LVEF, mean ± SD 54.1 ± 15.7 63.1 ± 7.8 60.3 ± 7.0 <0.001 0.002

LAV, median (P25, P75) 135.2 (106.1, 167.3) N/A 153.0 (122.7, 180.7) N/A 0.006

NIHSS score group

  <8 points 433 (59.3) 81(68.6) 43 (68.3) 0.071 0.379

  8–15 points 182 (25.0) 10 (8.5) 12 (19.0)

  >15 points 115 (15.7) 27(22.9) 8 (12.7)

CHADS2, mean ± SD 3.9 ± 0.9 2.7 ± 1.8 3.7 ± 0.8 <0.001 0.088

HAS-BLED, mean ± SD 3.1 ± 0.7 3.0 ± 0.5 3.6 ± 1.0 0.059 <0.001

CHA2DS2-VASc, mean ± SD 5.5 ± 1.2 4.1 ± 1.9 4.7 ± 1.5 <0.001 <0.001

Discharge medication, n(%)

  None 267 (36.6) 31 (26.3) 9 (14.3) 0.041 <0.001

  Antiplatelet drugs 344 (47.1) 70 (59.3) 25 (39.7)

  Anticoagulant drugs 119 (16.3) 17 (14.4) 29 (46.0)

mRS <0.001 0.001

  ≤2 points 301 (41.2) 78 (66.1) 40 (63.5)

  >2 points 429 (58.8) 40 (33.9) 23 (36.5)

SBP, Systolic blood pressure; DBP, Diastolic blood pressure; Scr, Serum creatinine; BNP, Brain natriuretic peptide; CRP, C-reactive protein; SD, Standard deviation; cTn-I, Cardiac troponin I; 
LAD, Left atrial diameter; LAV, Left atrial volume; LVDs, Left ventricular end systolic diameter; LVDd, Left ventricular end diastolic diameter; IVST, Interventricular septal thickness; LVEF, 
Left ventricular ejection fraction; NIHSS, National Institute of Health stroke scale; CHADS2, congestive heart failure, hypertension, age, diabetes, prior stroke are each assigned 1 point; 
CHA2DS2-VASc, congestive heart failure, hypertension, diabetes, 65–74 years of age, female sex, and vascular disease are each assigned 1 point, and prior stroke or transient ischemic attack 
and being 75 years of age or older are assigned 2 points; HAS-BLED, hypertension, abnormal renal/liver function, stroke, bleeding history or predisposition to bleeding, labile international 
normalized ratio, elderly, and drugs/alcohol concomitantly are each assigned 1 point; mRS, Modified Rankin Scale; N/A, Not Applicable.
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Based on the results of variable screening using LASSO and 
clinical practice, six predictors, including age, log D-dimer, log CRP, 
log BNP, NIHSS score group (< 8 points, 8–15 points, > 15 points), 
and discharge medication (no antithrombotic drugs, antiplatelet 
drugs, or oral anticoagulant drugs) were selected to construct the 
N-ABCD2 model (N-NIHSS at admission; A-Age; B-BNP; C-CRP; 
D-D-dimer; D-Discharge medication; Table 2; Figure 2). The Akaike 
information criterion (AIC) of the N-ABCD2 model was 637.98. 
Additionally, we established a free web page for model calculation.1 By 
entering relevant variable information on the web page, users can 
quickly obtain the risk prediction value for the case.

Prognostic index PI Age

D im

( ) = − + ∗ + ∗
−

6 06216 0 06013 0 08389. . .

log d eer CRP

BNP

If NIHSS score wa

+ ∗ +
∗ +

0 23877

0 22598 2 38593

. log

. log .

ss points

If NIHSS score points

If 

8 15

4 06893 15

0 93617

−( ) +
>( ) −.

.
ddischarge medication 

was antiplatelet drugs







 −

1 32821.
IIf discharge medication 

was anticoagulant drugs









 
Event probability =

+

e
e

PI

PI1

In this formula, NIHSS score and discharge medication were 
considered dummy variables, with a value of 1 indicating satisfaction 
with the condition and 0 indicating no satisfaction.

Evaluation of N-ABCD2 model

The receiver operating characteristic curve (ROC curve; 
Figure 3A) and the calibration curve (Figure 3B) for the development 

1 https://prediction1.shinyapps.io/mrsprediction/

cohort were constructed. The AUC for the development cohort was 
0.878 (95% CI, 0.854–0.902), indicating high discrimination. The 
p-value of the Hosmer-Lemeshow (H-L) test was 0.714, and the Brier 
score was 0.139, suggesting that the model did not exhibit overfitting 
and had good extrapolation performance. Decision curve analysis 
(DCA) was employed to assess the net benefit, as shown in 
Figure 3C. The threshold probability range for patient net benefit 
essentially covered 0–1.0, signifying that the N-ABCD2 model 
provided high net benefit.

Validation of N-ABCD2 model

In the external regional validation cohort, the AUC of the 
model remained high at 0.918 (95% CI, 0.857–0.979), with 
discrimination slightly higher than that of the development cohort 
(Figure 3D). The p-value of the H-L test was 0.106, indicating no 
statistical significance between predicted and actual observations. 
The Brier score was 0.124 (Figure  3E), suggesting that the 
predicted probability from the N-ABCD2 model was somewhat 
higher than the actual probability for this validation set, indicating 
a tendency to overestimate the risk of poor function when using 
this model.

Compared to the development cohort, the DCA curve of the 
regional validation cohort is presented in Figure 3F. The situation was 
essentially the same as that of the time-sequential validation cohort. 
After the threshold probability exceeded 0.7, patients failed to obtain 
net benefit from a model evaluation, and the degree of net benefit was 
significantly lower than that of the development cohort.

The ROC curve and a calibration curve of the time-sequential 
validation cohort are shown in Figure  3G. In the external time-
sequential validation cohort, the AUC of the model was 0.839 (0.744–
0.934), with discrimination not significantly lower than that of the 
development cohort. The p-value of the H-L test was 0.159, indicating 
no statistically significant difference between predicted and actual 
observations. The Brier score was 0.182. However, the prediction 
probability distribution of the validation set was imbalanced, with the 
model slightly inaccurate when the prediction probability was lower 
than 0.1 or higher than 0.8 (Figure 3H). Compared to the development 

TABLE 2 Fitting results of the N-ABCD2 model.

Intercept and predictors β OR 95%CI P-value

Intercept −6.062

Age 0.060 1.062 1.036–1.090 <0.001

Log D-dimer 0.084 1.088 0.907–1.303 0.363

LogCRP 0.239 1.270 1.102–1.467 0.001

LogBNP 0.226 1.254 0.980–1.608 0.073

NIHSS score

  <8 points 1.00

  8–15 points 2.386 10.869 6.479–19.095 <0.001

  >15 points 4.069 58.494 1.725–366.942 <0.001

Discharge medication

  None 1.00

  Antiplatelet drugs −0.936 0.392 0.243–0.625 <0.001

  Anticoagulant drugs −1.328 0.264 0.142–0.486 <0.001

BNP, Brain natriuretic peptide; CRP, C-reactive protein; OR, Odds ratio; CI, confidence interval.
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cohort, the DCA curve for the period validation cohort is shown in 
Figure 3I. Beyond a probability threshold of 0.7, did not benefit from 
the model evaluation, and the degree of net benefit was also 
significantly lower than that observed in the development cohort. 
Nevertheless, when considering the external time-sequential cohort 
as a whole, the N-ABCD2 model continued to exhibit a high degree 
of discrimination and calibration. Patients could derive a net benefit 
from the model evaluation within the probability range of 0.1–0.7.

Discussion

Different subtypes of IS have distinct pathogenesis and outcomes, 
necessitating more refined prediction models for stroke prognosis to 
accurately predict outcomes in different IS populations.

Our study significantly differs from previous research on stroke 
prognosis. Firstly, our study focuses on acute CCE patients related to 
NVAF rather than a general ischemic stroke population. The 
N-ABCD2 model includes six variables: NIHSS score at admission, 
age, BNP, CRP, D-Dimer polymers, and antithrombotic selection at 
discharge. Of these, only age is a traditional risk factor, with the others 
being new risk factors mentioned in the literature (14–17). Some of 
these new risk factors have been reported in previous models, 
emphasizing their importance (9, 11, 18–21). Beatty’s study (22) 
compared traditional and new risk factors as predictors of 
cardiovascular events in patients with stable coronary artery disease 
(CAD). The top 4 predictors were N-terminal proBNP, high-sensitivity 
cardiac troponin T (hs-cTnT), urinary albumin to creatinine ratio, and 
smoking, outperformed traditional risk factors (age, sex, body mass 
index, hypertension, dyslipidemia, and diabetes) in predicting 5-year 

risk of secondary events in patients with stable coronary heart disease 
(CHD). In comparison to the variables in the Framingham secondary 
events model, the Heart and Soul risk model yielded a net 
reclassification improvement of 0.47 (95% CI, 0.25–0.73) in the 
derivation cohort and 0.18 (95% CI, 0.01–0.40) in the validation 
cohort. Furthermore, as reported in a separate study (23), there exists 
a clear gradient relationship between the number of elevated novel 
biomarkers and the risk of major disability, mortality, and vascular 
events. The incorporation of a combination of multiple biomarkers 
substantially improved the risk stratification for adverse outcomes in 
IS patients, reaffirming the importance and necessity of including 
various novel biochemical markers in prognostic prediction models.

GPS-GF score (24) was the first predictive model for the 30-day 
death of patients with AF related CCE in China, which includes five 
predictors: gender, Glasgow coma scale (GCS) score, complicated 
pneumonia, midline shift of head imaging examination (CT or MR) 
of 10 mm, and blood glucose level. Different from the N-ABCD2 
model, GPS-GF score included patients with AF related ischemic 
stroke, including valvular AF and NVAF (accounted for 65%), while 
in the N-ABCD2 model, all patients related with NVAF. Interestingly, 
the variables of the two models were completely different, which may 
be related to the composition of study population, sample size, the 
predicted outcome variables are different.

The N-ABCD2 model is based on age and NIHSS score at 
admission, supplemented by four biochemical indicators, BNP, CRP, 
and D-Dimer from distinct pathways to predict outcomes. Notably, 
the N-ABCD2 model also incorporates a unique variable: 
antithrombotic strategy at discharge, a feature rarely reported in 
previous stroke prognosis models. It is widely acknowledged that 
timely and standardized anticoagulant treatment is a vital factor in the 

FIGURE 2

A nomogram predicting the probability of poor functional outcomes (mRS  >  2) in CCE patients related to NVAF. Draw an upward vertical line to the 
“Points” bar to calculate points. Based on the sum, draw a downward vertical line from the “Total Points” line to calculate.
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prognosis of CCE patients. In clinical practice, many factors such as 
efficacy, cost, availability of drugs, patients’ compliance with treatment, 
bleeding risk, whether anticoagulants exist reversal agents and 
comorbidity should be  considered when selecting anticoagulant 
therapy, and patients’ options should also be considered. In this study, 
the development cohort consisted of patients with NVAF-related CCE 
who were hospitalized between January 2016 and December 2020, and 
the data showed a lower proportion (16.3%) of the development 
cohort received anticoagulant therapy at discharge, the rate of 16.3% 
only represented the anticoagulation situation at the time of discharge, 
some patients with delayed anticoagulation (due to acute hemorrhage 
transformation or complicated bleeding events) or subsequent 
adjustment from antiplatelet to anticoagulation strategy were not 

included. The N-ABCD2 model had showcased good ability to adapt 
to the current landscape while exhibiting strong predictive 
performance, discrimination, and calibration. Importantly, a good 
prediction model should be easily applicable. The variables in the 
N-ABCD2 model are typically collected as part of routine clinical 
practice, resulting in minimal associated costs. Theoretically, this 
model holds great potential for widespread use. Through the 
N-ABCD2 model, medical professionals, patients, or their families can 
accurately calculate the probability of a poor prognosis within 
3 months using our online computing tools, facilitating more informed 
medical decisions in the future.

There are still some limitations in this study: First of all, IS is a 
dynamic condition, and blood markers change accordingly over time, 

FIGURE 3

Model evaluation of development and validation cohort. (A) Receiver Operating Characteristic (ROC) Curve for the development cohort; (B) Calibration 
curve for the development cohort; (C) Decision curve analysis for the development cohort; (D) ROC Curve for the external regional validation cohort; 
(E) Calibration curve for the external regional validation cohort; (F) Decision curve analysis for the external regional validation cohort; (G) ROC Curve 
for the time sequential validation cohort; (H) Calibration curve for the time sequential validation cohort; (I) Decision curve analysis for the time 
sequential validation cohort.
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this study included patients with cardiogenic stroke whose onset 
occurred within 1 week, potentially introducing variability due to 
variations in blood-related indicators collected at different time 
points. Secondly, our study primarily focused on biochemical markers 
related to inflammation, coagulation, fibrinolysis, and heart, and 
kidney function. Future research could delve deeper into markers 
affecting the integrity of the blood–brain barrier, such as matrix 
metalloproteinase-9 (MMP-9), and their impact on prognosis. Thirdly, 
the proportion of anticoagulation in the development cohort and the 
regional validation cohort in this study were low, which may have a 
certain impact on the prognosis and our study did not consider the 
impact of complications on prognosis.

In conclusion, our research is a foundational step toward 
optimizing stroke prediction models in the future. It underscores the 
importance of secondary prediction and prevention, particularly in 
predicting the prognosis of NVAF-related CCE patients through the 
integration of multiple related biochemical and imaging markers. 
Future studies should prioritize larger sample sizes and the inclusion 
of novel predictors, potentially including genomics factors.

The N-ABCD2 model can specifically predict poor outcomes in 
CCE patients with NVAF at 3 months. The model has strong prediction 
abilities, discrimination, and calibration. The model’s predictive 
variables are objective and easily attainable in clinical practice, rendering 
it a convenient tool for widespread clinical application.
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