AUTHOR=Cengiz Kubra , Rekik Islem TITLE=Cortical morphological networks for profiling autism spectrum disorder using tensor component analysis JOURNAL=Frontiers in Neurology VOLUME=15 YEAR=2024 URL=https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2024.1391950 DOI=10.3389/fneur.2024.1391950 ISSN=1664-2295 ABSTRACT=

Atypical neurodevelopmental disorders such as Autism Spectrum Disorder (ASD) can alter the cortex morphology at different levels: (i) a low-order level where cortical regions are examined individually, (ii) a high-order level where the relationship between two cortical regions is considered, and (iii) a multi-view high-order level where the relationship between regions is examined across multiple brain views. In this study, we propose to use the emerging multi-view cortical morphological network (CMN), which is derived from T1-w magnetic resonance imaging (MRI), to profile autistic and typical brains and pursue new ways of fingerprinting ‘cortical morphology' at the intersection of ‘network neuroscience'. Each CMN view models the pairwise morphological dissimilarity at the connection level using a specific cortical attribute (e.g., thickness). Specifically, we set out to identify the inherently most representative morphological connectivities shared across different views of the cortex in both autistic and normal control (NC) populations using tensor component analysis. We thus discover the connectional profiles of both populations shared across different CMNs of the left and right hemispheres, respectively. One of the most representative morphological cortical attributes for assessing the abnormal brain structures in patients with ASD is cortical thickness. The most representative morphological connectivities in multi-view CMN population of normal control and ASD subjects, respectively, and in both left and right hemispheres within the temporal, frontal, and insular lobes of individuals with ASD. These representative connectivities are corresponded to specific clinical features observed in individuals with ASD.