
TYPE Brief Research Report
PUBLISHED 04 July 2024
DOI 10.3389/fneur.2024.1391950

OPEN ACCESS

EDITED BY

Salem Hannoun,
American University of Beirut, Lebanon

REVIEWED BY

Lei Gao,
Wuhan University, China
Miao Cao,
Fudan University, China

*CORRESPONDENCE

Kubra Cengiz
kcengiz@itu.edu.tr

RECEIVED 29 February 2024
ACCEPTED 30 May 2024
PUBLISHED 04 July 2024

CITATION

Cengiz K and Rekik I (2024) Cortical
morphological networks for profiling autism
spectrum disorder using tensor component
analysis. Front. Neurol. 15:1391950.
doi: 10.3389/fneur.2024.1391950

COPYRIGHT

© 2024 Cengiz and Rekik. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Cortical morphological networks
for profiling autism spectrum
disorder using tensor component
analysis

Kubra Cengiz1,2* and Islem Rekik1
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Imperial-X and Department of Computing, Imperial College London, London, United Kingdom

Atypical neurodevelopmental disorders such as Autism Spectrum Disorder (ASD)
can alter the cortex morphology at di�erent levels: (i) a low-order level where
cortical regions are examined individually, (ii) a high-order level where the
relationship between two cortical regions is considered, and (iii) a multi-
view high-order level where the relationship between regions is examined
across multiple brain views. In this study, we propose to use the emerging
multi-view cortical morphological network (CMN), which is derived from T1-
w magnetic resonance imaging (MRI), to profile autistic and typical brains and
pursue new ways of fingerprinting ‘cortical morphology’ at the intersection of
‘network neuroscience’. Each CMN view models the pairwise morphological
dissimilarity at the connection level using a specific cortical attribute (e.g.,
thickness). Specifically, we set out to identify the inherently most representative
morphological connectivities shared across di�erent views of the cortex in
both autistic and normal control (NC) populations using tensor component
analysis. We thus discover the connectional profiles of both populations shared
across di�erent CMNs of the left and right hemispheres, respectively. One
of the most representative morphological cortical attributes for assessing the
abnormal brain structures in patients with ASD is cortical thickness. The most
representative morphological connectivities in multi-view CMN population of
normal control and ASD subjects, respectively, and in both left and right
hemispheres within the temporal, frontal, and insular lobes of individuals with
ASD. These representative connectivities are corresponded to specific clinical
features observed in individuals with ASD.

KEYWORDS

corticalmorphological networks, tensor component analysis, brain connectivity, autism

spectrum disorder, multi-view profiling

1 Introduction

Cortical morphological networks (CMNs), emerging at the intersection of “network

neuroscience” and “cortical morphology”, are networks which portray dissimilarity among

network nodes in morphology, and they have been demonstrating to have utility in

diagnosing neurological disorders (1, 2), estimating network atlases of the cortex (3, 4), and

investigating gender differences in cortical morphology (5). In contrast with conventional

functional networks derived from functional magnetic resonance imaging (fMRI) and

structural networks derived from diffusion-weighted MRI (6), cortical morphological

networks provide new network-based representations of the cerebral cortex, which are

derived from solely baseline T1-weighted MRI based on different cortical attributes
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(e.g., cortical thickness and sulcal depth). Indeed, previous studies

showed that brain morphology can be affected by different

psychiatric disorders, in particular the cortex. Although complex

and variable, the morphology of the cortical gyri and sulci at

birth predicted pathological functioning in certain developmental

and neuropsychiatric disorders (7), thereby highlighting that brain

morphology and function are intertwined. Notably, changes in

function can elicit changes in morphology and structure and vice

versa. Indeed, according to the tension theory of cerebral cortex

morphogenesis, network changes in the morphological attributes

of the brain (e.g., cortical surface attributes such as curvature)

reflect the underlying changes in the structural and functional

connectivity (8) and can be studied without the need for costly

and time-consuming imaging of patients using advanced fMRI and

dMRI facilities.

Undoubtedly, traditional functional and structural network

neuroscience (6) has substantially advanced our understanding

of neurological disorders that involve atypical changes in brain

connectivity. In particular, autism spectrum disorder (ASD)

has been widely investigated using resting-state fMRI (9) and

dMRI (10), offering insights into its biological mechanisms.

Nevertheless, ASD remains a behaviorally defined syndrome

with no reliable biological markers (11). However, we note

that different cortical attributes identified cortical shape-related

alterations manifesting during ASD disorder progression such

as temporal and parietal cortical thinning (12). As such, the

emerging multi-view CMNs, where each CMN is derived from

a specific cortical attribute (e.g., thickness) producing a specific

network view, may eventually provide complementary insights

into the etiology of the autistic cortex. Although the neuroscience

network literature provides preliminary evidence for substantiating

and fingerprinting the autistic brain connectivity (9, 10), these

were limited to investigating functional and structural networks

(at the connectivity level) and overlooked the cross-network

interaction (at the network level). To address these limitations,

we propose to use multi-view CMNs to discover the connectional

profiles of the autistic and healthy cortices, respectively, that are

shared across four cortical attributes (i.e., maximum principal

curvature, cortical thickness, sulcal depth network, and average

curvature). Each subject is hence represented by a set of cortical

morphological networks, each encoded in a connectivity matrix

(Figure 1A). Next, for each subject, we extract the connectivity

values in each CMN off-diagonal lower triangular matrix, thereby

defining a view-specific vector. Drawing on the wealth of

machine learning approaches for multi-view data analysis, we

root our population-based multi-view CMN analysis framework

in the robust mathematical theory of tensor component analysis

(TCA) of multi-view datasets (13). Specifically, we encode a

population of CMNs in a three-dimensional tensor structure, where

the first dimension represents subjects, the second dimension

denotes morphological connectivities, and the third dimension

defines the network view. It is a third-order tensor (three-

dimensional array) in which each entry indicates themorphological

connectivity of a particular subject with a particular view on a

particular pair of cortical region of interest (ROI) (Figures 1A,

B). This nicely captures the connectivity structure and multi-

view network complementarity across subjects and avoids the

loss of information using concatenation, where all CMN views

are vectorized and then concatenated in a single long feature

vector.

To map or profile high-dimensional biological data, one

can leverage data decomposition and dimensionality reduction

such as principal component analysis, which map the high-

dimensional data onto a new space where a few and most

meaningful components (also called dimensions or factors) are

estimated and inherent data profiles are charted. Since biological

networks are non-linear and have non-orthogonal properties

(14), morphological connectivities might overlap between cortical

regions and could be correlated, yielding a non-orthogonal

structure that cannot be recovered by conventional mapping

techniques such as PCA or independent component analysis

(ICA) (13). In addition, while TCA is a simple generalization

of PCA, its theoretical properties are strikingly more favorable

in comparison to both PCA and ICA which are fundamentally

matrix decomposition methods. Consequently, we leverage TCA to

profile ASD and NC multi-view brain networks more effectively

and circumvent the need to average the cortex tensor across

views. Indeed, TCA is able to achieve a simultaneous and shared

dimensionality reduction across subjects, connectivities, and views,

reducing Ns (subjects) × Nc (connectivities) × Nv (views) to Nt

(tensor components)×(Ns+Nc+Nv) (13) while capturing view-to-

view connectional variability (Figure 1C). In this study, we leverage

TCA to provide unprecedented profiling of ASD and NC based on

multi-view connectional brain maps in an unsupervised, fully data-

driven fashion. Our goal was to identify the most representative

morphological connectivities shared across different views of the

CMNs of the left and right hemispheres in both autistic and

normal control (NC) populations using the TCA method in an

unsupervised, fully data-driven fashion. The method was applied

to a large population sample of brain imaging data, the Autism

Imaging Data Exchange I (ABIDE I).

2 Methods

2.1 Dataset

We conducted a thorough examination of brain imaging data

from ASD patients, which was taken from the global multi-site

database known as Autism Brain Imaging Data Exchange (ABIDE

I), comprising 341 subjects of which 155 (15 female(F), 140

male(M)) with 16.92 ± 6.38 age ASD, and 186 (31 F, 155 M) with

16.65 ± 6.06 age NC subjects (15) (Ns = 155 for ASD and 186 for

NC). Each subject has structural T1-w MRI. We used FreeSurfer

(16) to extract both right and left hemispheres (RH and LH) for

each subject and then parcellate each into Nr = 35 cortical regions

of interest using Desikan-Killiany Atlas (17). We derive Nv = 4

CMNs from specific cortical measurements for each subject as

introduced in the study by (1): (1) maximum principal curvature,

(2) cortical thickness network, (3) sulcal depth network, and (4)

average curvature network. Next, for each cortical attribute and

for each ROI, we compute an average cortical attribute. To define

the morphological connection between two ROIs, we compute

the absolute distance between average cortical measurement in

both ROIs. In a CMN, when two ROIs Ri and Rj, become more

similar in morphology, their morphological connectivity nears zero
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FIGURE 1

Proposed pipeline to discover the most representative connections for profiling a population of multi-view cortical morphological networks (CMNs).
(A) For each subject, we define four cortical morphological networks (views) encoding the dissimilarity in morphology between pairs of cortical
regions. Next, we generate view-specific vector by vectorizing the o�-diagonal lower triangular matrix of each CMN. Hence, for each subject,
multi-view CMN (gray horizontal plane) combines view-specific vectors using specific cortical attributes. (B) Construction of a third-order
population-based tensor, where each horizontal plane (dark gray) represents a multi-view CMN (views×connectivities) of a single subject. (C) Tensor
component analysis (TCA). The tensor is approximated by a sum of outer products of three rank-one vectors, producing an additional set of
low-dimensional factors (subject, view, and connectivity factors). (D) Extraction of the average subject (red), view (yellow), and connectivity (green)
factors for di�erent TCA components across five random partitions of the data for reproducibility. (E) Display of the weights (magnitudes) of factors.
These low-dimensional view-based and connectivity-based factors’ weights are used for profiling healthy and autistic cortices. (F) Discovery of the
most representative connectivity shared across morphological views for a given CMN population. Here, we display the most representative
connectivity in profiling the autistic left hemisphere.

(Supplementary Table 1, Supplementary Data). By vectorizing the

off-diagonal upper triangular part of each CMN, we generate a

connectivity vector of size Nc = Nr × (Nr − 1)/2 (i.e., 595

connectivities for Nr = 35). We would like to note that the method

and experimental protocols were carried out using the public

Autism Brain Imaging Data Exchange (ABIDE) dataset. Informed

consent was obtained from all ABIDE subjects or, if subjects are

younger than 18 years, from a parent and/or legal guardian.

2.2 CMN profiling using TCA

Wemap each population-based high-dimensional CMN tensor

of dimension Ns × Nc × Nv into a low-dimensional space with

Nt = 4 dimensions (components). Indeed, TCA approximates the

CMN tensor as a sum of outer products of three vectors, producing

an additional set of low-dimensional factors (subject factors,

connectivity factors, and view factors) that capture how brain

connectivity changes across views (13) (Figure 1C). Specifically,

we fit a tensor decomposition model (13) to identify a set of

low-dimensional components describing variability along each

of these three axes. By allowing a multi-dimensional space of

possible connectivities to different view factors, TCA can capture

a rich diversity of changing multi-brain connection patterns across

views for each hemisphere in healthy and disordered cortices

(Figure 1D). We visualized the connectivity and view factor using

TCA to profile unrivaled structure of populations (Figure 1E), as

shown in Figures 2A, B. We discover that shared morphological

connectivity between healty and austistic population and brain

graph represents the morphological connections between ROIs

(Figure 1F), as shown in Figure 3. We randomly split available

subjects in each population into five random sets. For rigorous TCA

reproducibility, we report the average profiles discovered across five

random data partitions. This allows to avoid population-driven bias

by perturbing the set of the subjects to learn from TCA model and

derive our analyses.

3 Results

We profile ASD/NC at two fronts: (1) individually across view

and connectivity factors, respectively, to learn their corresponding

shared patterns across independent subjects and (2) jointly across

all subject, view, and connectivity factors. First, we display the view
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FIGURE 2

Profiling of autism spectrum disorder (ASD) and normal control (NC) populations and discovery of most representative connections shared across
multi-view cortical morphological networks (CMNs). (A) Visualization of the view factors by tensor component analysis (TCA) of the multi-view CMN
population of healthy and autistic subjects, respectively, and in both the left and right hemispheres (LH and RH). We display the view factors using
TCA component 3. Each line (e.g., solid green for ASD) profiles the relevance of each view in representing the given multi-view CMN population. The
dashed gray line is the average of ASD and NC green and orange lines. (B) Visualization of the view factors by tensor component analysis (TCA) of the
multi-view CMN population of normal control and ASD subjects, respectively, and in both the left and right hemispheres (LH and RH). We display the
view factors using TCA component 3. Each line (e.g., solid green for ASD) profiles the relevance of each view in representing the given multi-view
CMN population. Discovery of the most representative cortical connectivity in profiling ASD and NC populations. Filled rectangles and stars display
the top 20 most representative connectivities for ASD and NC populations, respectively.

factors of the third components for ASD (light orange LH/dark

orange RH) and NC (light green LH/ dark green RH) for each

hemisphere (Figure 2). For each CMN view, we display its average

weight of view factors for ASD and NC (dashed gray), respectively

(Figure 2A). In terms of representativeness, we note that view 2

(i.e., cortical thickness network) has the highest weight for each

population across components. For example, in the left hemisphere,

the highest weights of view factors are of views 2 and 3, which were

captured by components 3 and 1 (p−value < 0.05 using two-tailed

paired t-test), respectively (Figure 3). In the right hemisphere, view

2 was found as most representative across views using components

3 and 4 (p − value < 0.05 using two-tailed paired t-test). In terms

of discriminative profiling of ASD and NC populations, both view

3 (i.e., sulcal depth) for LH components 1 and 3 and view 2 for RH

component 3 achieved the largest margins between factors’ weights,

indicating that both populations can be easily separated by these

views even though the tensor decomposition has no knowledge of

the population labels i.e., this is discovered in a fully data-driven

unsupervised manner. The weights of connectivity factors for ASD

(green) and NC (orange) were displayed for the component 3

and in both hemispheres (Figure 3). After sorting the connectivity

factor weights in descending order, we select the 20 largest weights

which are highlighted using filled rectangles (ASD) and stars (NC)

in Figure 2B. In terms of discriminative profiling of ASD and

NC populations, for each hemisphere, component 3 displayed the

largest margins between the largest weights of connectivity factors,

indicating that both populations can be linearly separated by these

components (i.e., we can also easily fit a line to discriminate them)

(Supplementary Figures 7–9).

4 Discussion

Variations in shared morphological connectivity weights

can be represented in a graph by the thickness of each

edge. We display two graph representations: circular and brain
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FIGURE 3

Circular graphs of the top five most representative morphological connections in profiling ASD and NC populations using TCA third component for
view 2. (A) The edge thickness quantifies the representativeness of each connection (the higher the thickness, the more important the spotted
connection is in representing the morphological brain connectome). Identifying the most representative morphological cortical connection in
profiling ASD LH and NC LH (left to right) populations. (B) The most representative brain connection for ASD cortices is (entorhinal cortex (EC) (red)
↔ rostal middle frontal gyrus (purple)) (LH). The most representative brain connections for NC cortices is (EC↔ insula cortex (green)) (LH). All results
in this figure present the average results across 50 random partitions of each population to increase robustness against data perturbation. (C) Circular
graphs of the top five most representative morphological connections in profiling ASD RH and NC RH (left to right) populations using TCA third
component for view 2. (D) The most representative brain connection for ASD cortices is (bank of the superior temporal sulcus (STS) (blue) ↔ EC)
(RH). The most representative brain connections for NC cortices is (STS↔EC)(LH).

cortical hemisphere (Figure 3). We visualize the top five most

representative morphological connectivities profiling ASD and

NC populations for the left hemisphere (Figure 3A) and right

hemisphere (Figure 3C). The thickness of each cortical connection

reflects its importance in mapping (or non-linearly representing)

other cortical connections across the four cortical views. The most

representative high-order morphological connections for ASD left

hemisphere include (1) (entorhinal cortex (EC)↔rostral middle

frontal gyrus), (2) (unmeasured corpus callosum (CC)↔EC),

(3) (EC↔frontal pole (FP)), (4) (EC↔temporal pole (TP)), and

(5) (EC↔pericalcarine cortex (PC)), as shown in Figure 3A.

For the right hemisphere, the top most representative cortical

connections include (1) (STS↔EC), (2) (CC↔EC), (3) (EC↔FP),

(4) (EC↔TP), and (5) (EC↔PC), as shown in Figure 3C.

These results were statistically significant with a p − value <

0.05 using two-tailed paired t-test on ASD and NC groups

(Supplementary Figures 4, 5).

To the best of our knowledge, we found no difference

in the most representative cortical connection profiling NC

RH and ASD RH populations, which connected the STS and

the temporal pole (Figures 3C, D). However, for the ASD RH

population, (STS↔EC) was identified as the most representative

connection, which might be related to the correlation of the

EC with the severity of symptomatology of ASD (18). A

meta-analysis (19) showed that in ASD, there are volume

reductions in the hippocampal area, which includes the entorhinal

cortex found in the medial regions of the temporal lobe. This

entorhinal cortex is linked with several other cortices and is

the main facilitator for the transfer of cortical information in

and out of the actual hippocampus (20). This area is vital

for memory processing, so any reductions in volume could

potentially lead to issues with episodic memory (18). The superior

temporal gyrus, along with its neighboring structure, and the

superior temporal sulcus, play a role in non-linguistic social

cognition. This includes recognizing behaviors and responding

to social information. Abnormalities, such as cortical thinning,

reduced gyrification, and less sulcus depth, can contribute to

the challenges in social interaction experienced in ASD (21).

Specifically, cortical thinning in the right superior temporal gyrus

is linked with higher Social Responsiveness Scale (SRS) scores,

pointing to more significant social communication difficulties

(22). (CC↔EC) was found as the second most representative

morphological connection in profiling ASD RH, which is in

line with the study by (23) arguing that CC was mostly

affected in brain structures in ASD and CC; area, volume,

and white matter (WM) density are lower in autism than

in typical development. We also discovered the (EC↔rostral

middle frontal gyrus) morphological connection as the most

representative in profiling ASD LH Figure 3B. (24) that age-

related cortical thinning in ASD subjects increases in the right

paracentral cortex and left pars opercularis, rostral middle frontal

gyrus, and frontal pole compared with typical subjects. Although

our findings gave novel insights into the role of CMNs in

profiling the cortex on a connectional level, network neuroscience

demands not only to examine the brain using conventional

T1-w MRI but it also calls for underpinning holistic profiles

of its morphology, structure, and function using multimodal

neuroimaging.
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