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Intracranial aneurysm is a high-risk disease, with imaging playing a crucial role in 
their diagnosis and treatment. The rapid advancement of artificial intelligence in 
imaging technology holds promise for the development of AI-based radiomics 
predictive models. These models could potentially enable the automatic 
detection and diagnosis of intracranial aneurysms, assess their status, and 
predict outcomes, thereby assisting in the creation of personalized treatment 
plans. In addition, these techniques could improve diagnostic efficiency for 
physicians and patient prognoses. This article aims to review the progress of 
artificial intelligence radiomics in the study of intracranial aneurysms, addressing 
the challenges faced and future prospects, in hopes of introducing new ideas 
for the precise diagnosis and treatment of intracranial aneurysms.
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1 Introduction

Intracranial aneurysms (IAs) are a type of cerebrovascular disorder primarily caused by 
congenital defects in the cerebral artery walls or internal pressure, leading to abnormal dilation 
and protrusion of the artery walls (1). Globally, the prevalence of IAs is estimated to be between 
3 to 5%, while in China, it is about 7%, significantly impacting patient outcomes (2).

Imaging examinations play a pivotal role in the early screening of IAs. Digital subtraction 
angiography (DSA) is considered the gold standard for IA diagnosis; however, its invasive 
nature, high risk, and cost limit its clinical application (3, 4). With the continuous development 
of imaging technology, non-invasive methods like CT angiography (CTA) and magnetic 
resonance angiography (MRA) are increasingly used for IA detection (5). CTA, known for its 
non-invasiveness and convenience, has become a primary method for vascular lesion 
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screening, though it does not provide hemodynamic information of 
aneurysms (6). MRA, characterized by its non-ionizing nature and 
excellent tissue resolution, can offer information on blood flow 
conditions (7). Techniques like 4D flow MRI based on magnetic 
resonance can quantitatively obtain multi-directional hemodynamic 
parameters within arteries, and high-resolution MRI vessel wall 
imaging (HRMR-VWI) with its high tissue resolution can clearly 
depict the structure of vessel and aneurysm walls, assessing 
inflammatory and pathological changes based on aneurysm wall 
enhancement features (8).

Currently, the detection of IAs relies heavily on the experience of 
physicians, with CTA and MRA facing challenges in diagnosing small 
aneurysms, posing a risk of missing them. In the clinical treatment 
and decision-making process for IAs, clinicians often determine 
treatment plans by combining patients’ clinical characteristics and 
individual circumstances, making it difficult to directly use imaging 
information for decision-making support. With the rapid 
advancements in artificial intelligence and imaging technologies in 
recent years, AI and radiomics have been widely applied in early 
disease screening, status assessment, and prognosis prediction using 
medical imaging data, offering new possibilities for clinical detection 
and personalized precision treatment of IA patients. This study 
summarizes the application of deep learning and radiomics in the 
clinical diagnosis, status assessment, and prognosis prediction of IAs, 
proposing new approaches to address current challenges.

2 Overview of artificial intelligence 
and radiomics

2.1 Workflow of a radiomics study

The general workflow of radiomics and artificial intelligence is 
shown in Figure  1. Radiomics aims to extract and analyze patient 
imaging data, uncovering medical imaging features such as shape, size, 
texture, and intensity, including perianeurysmal enhancement, that are 
difficult to discern with the naked eye but can reveal the microstructure 
of lesions (9). Radiomics data can be integrated with patients’ clinical 
data to identify biomarkers and correlations in imaging that indicate 
patient prognosis and lesion status. The workflow of radiomics generally 
includes: (1) image acquisition (2) dataset creation: typically comprises 
clinical data and imaging material (3) image preprocessing: generally 
includes image denoising, normalization, and enhancement (4) 
delineation of the region of interest (ROI): often done through expert 
manual annotation (5) extraction of radiomic features: includes texture 
features, intensity features, etc. (6) feature selection and dimensionality 
reduction: commonly employed techniques include regression models 
for supervised learning or clustering models for unsupervised learning 
(7) model development and validation: typically utilizes machine 
learning and deep learning methods applied to binary or multi-class 
tasks, with model predictive results applied to external validation 
datasets to ensure the model’s generalizability.
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2.2 Overview of artificial intelligence

Machine learning (ML), a key research method in radiomics 
within artificial intelligence technology, predicts the occurrence of an 
outcome event by analyzing radiomics feature, capable of 
autonomously learning to recognize complex patterns within large 
and intricate datasets. Machine learning can be  divided into 
supervised learning, unsupervised learning, and reinforcement 
learning. Supervised learning includes random forests, support vector 
machines, KNN, XGBoost, LightGBM, etc. Supervised learning 
requires manually labeled training data and trains the optimal model 
through known relationships, commonly used for classification and 
regression. Common unsupervised learning methods include k-means 
clustering. Unsupervised learning does not require labeled data and 
can directly analyze data through assumptions. It is mainly used for 
clustering and dimensionality reduction. Reinforcement learning 
focuses on how to take actions in an environment to maximize some 
cumulative reward. This learning process is based on the interaction 
between the agent and the environment, with the core being learning 
a policy, that is, mapping from states to actions, to optimize long-term 
rewards. In addition, machine learning also includes other complex 
learning types, such as semi-supervised learning and weakly 
supervised learning, which train on incompletely labeled datasets to 
overcome the problem of high data labeling costs in traditional 
supervised learning.

In deep learning algorithms, CNNs, ANNs, and backpropagation 
neural networks are all applied in the study of intracranial aneurysms, 
among which CNNs are the most widely used. CNNs identify and 
extract key features in images through convolutional and activation 
layers. Pooling layers further reduce the feature dimensions, 
decreasing the computational burden of the model. The fully 
connected layers integrate these features to provide a basis for the final 
decision-making. During the entire training process, backpropagation 
and optimization algorithms (such as gradient descent) are used to 
continuously adjust network parameters to minimize prediction 
errors (10). CNNs learn discriminative features from input data 
through convolution, pooling, and activation steps, constructing 
feature hierarchies from low to high levels (2, 11). At lower levels, the 
network learns relatively simple features like lines and edges (12). At 
higher levels, CNNs can combine these simple features into complex 
patterns, such as specific shapes or objects (13). CNNs can also enrich 
data composition by extracting deep learning features through 
convolutional layers and combining them with radiomic features (14). 
Radiomics based on convolutional neural networks (CNNs) differs 
from traditional radiomics in that the models can automatically learn 
to extract and select image features. Therefore, it does not introduce 
additional errors in radiomic analysis due to feature computation, 
ensuring the accuracy and effectiveness of image features (15).

Large language models (LLMs) represent another major branch 
in the AI field and have recently garnered widespread attention in 

FIGURE 1

Workflow and principles of radiomics and artificial intelligence algorithms. Referenced and reproduced with permission from (1).
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the field of radiology. The Transformer, foundational to the 
development in the LLM domain, is essentially a deep neural 
network based on a self-attention mechanism, mainly comprising 
encoders and decoders. The Transformer model efficiently captures 
dependencies between different positions within sequence data and 
processes sequences of natural language data of certain lengths (16). 
Due to its independence from extensive manual annotations and 
the ability to handle multimodal data, Transformers are considered 
to have more potential than traditional CNNs. However, 
Transformers generally have a larger number of parameters and 
require extensive data for training. In contrast, CNNs capture local 
features through convolutional layers and implement parameter 
sharing, maintaining good performance even with small sample 
sizes. Therefore, in some scenarios, combining the strengths of 
CNNs and Transformers could be an effective strategy.

3 Applications

3.1 Detection and diagnosis of intracranial 
aneurysms

Most patients with unruptured intracranial aneurysms (IAs) 
do not exhibit noticeable symptoms. The hidden nature and 
morphological diversity of IAs often lead to missed diagnoses of small 
aneurysms. Trained convolutional neural networks (CNNs), with 
their multi-layered structures, can learn and recognize the complex 
morphological features of IAs across all imaging modalities, 
performing precise detection and segmentation to separate aneurysm 
areas from surrounding brain tissue and vessels. Therefore, the 
automatic segmentation and diagnosis of IAs have become research 
focal points, widely applied across imaging modalities such as CTA, 
MRA, and DSA. However, AI’s challenges in identifying small 
aneurysms (less than 3 mm) and misdiagnosing the remnants of vessel 
occlusions as aneurysms highlight the technology’s significant 
limitations in clinical practice. Currently, these technologies are 
mostly in the development stage and have not been widely 
implemented in clinical settings (see Table 1).

3.1.1 Intracranial aneurysm identification and 
diagnosis based on digital subtraction 
angiography images

To explore the detection performance of CNNs for IAs, Jin et al. 
(2) trained a network on 2,269 DSA sequences from 347 IA patients 
using a generic U-Net convolutional network design tailored for 
medical image segmentation and detection. The network incorporated 
bidirectional convolutional long short-term memory modules at each 
level to capture changes in contrast agent flow within 2D DSA images, 
allowing the convolutional network to contain both spatial and 
temporal information from the DSA sequences for end-to-end 
training. The results demonstrated a patient-level sensitivity of 97.7%. 
Duan et al. (11) introduced a cascaded CNN architecture based on 
feature pyramid networks (FPN) with ResNet50 as the network 
backbone. In the first stage, which is the global localization stage, the 
posterior communicating artery is located from 2D-DSA images. In 
the second stage, dual inputs merge two images of the posterior 
communicating artery output from the global localization stage and 
input them into the second-stage FPN to detect intracranial 

aneurysms. The study indicates that the dual-input model is more 
stable under different data conditions than the single-input model. 
Compared with automatic computer-aided diagnosis based on 
classical digital image processing (DIP) methods for DSA modality, 
the results showed that the proposed architecture has an accuracy of 
93.5% and an AUC of 0.942, which are significantly higher than the 
classical DIP methods. Moreover, the CNN detection time required is 
only 1% of that required by DIP methods. Those studies highlight the 
superior detection capabilities of various CNN architectures on DSA 
images for IAs, but CNNs cannot utilize the relational and 
informational context of each frame in an entire DSA sequence, which 
may affect detection accuracy. Existing research has shown that 
recurrent neural networks (RNNs) can integrate contextual 
information from time-series data (12). Future research could explore 
combining RNNs with CNNs, utilizing RNNs to convey features 
extracted by CNNs from DSA sequences, leveraging the temporal 
context of DSA sequences to achieve higher precision in predictions 
for medical imaging data with complex temporal dynamics.

3.1.2 Detection and segmentation of images 
based on CT angiography and magnetic 
resonance techniques

To verify the performance of deep learning in the detection 
and segmentation of intracranial aneurysm (IA) images from CT 
angiography (CTA) and MR, Ueda et  al. (17) proposed an 
18-layer CNN residual network architecture for MRI images, 
achieving sensitivities of 91% (internal dataset) and 93% (external 
dataset). Claux et al. (18) employed a dual convolutional neural 
network based on a regularized U-Net architecture to enhance 
performance in situations with limited training data. The results 
demonstrated a sensitivity of 78% and a positive predictive value 
of 62%. The dual convolutional model was able to achieve 
accurate intracranial artery segmentation and effective aneurysm 
detection on 3D TOF MRA images. These studies showcase the 
promising performance of artificial intelligence technologies in 
MR imaging.

You et al. (19) developed a novel U-net network that incorporates 
a vascular attention model, trained on CTA images from 3,190 
patients with intracranial aneurysms. The results demonstrated that 
the internal test set sensitivity reached 95–96%, and a sensitivity of 
96.17% was achieved in the external validation set. The model also 
achieved more robust segmentation performance, with Dice scores of 
0.71–0.78 on the internal test set and 0.66 on the external test set. The 
obtained model has higher segmentation accuracy than previously 
developed deep learning algorithms, showcasing the superior 
performance of artificial intelligence in CTA image detection and 
segmentation. Although this study included the largest and most 
complex dataset to date, the lack of negative samples without 
aneurysms in the dataset may affect the false positive rate due to 
sample imbalance. Therefore, establishing a comprehensive and 
standardized dataset remains an important goal.

Zhu et  al. (14) used small sample datasets to compare the 
detection of aneurysms using 3D UNet, VNet, and 3D Res-UNet, with 
3D UNet showing the best detection performance. This suggests that 
the architectural structure of different CNN models could impact 
detection and segmentation capabilities. Chen et al. (20) developed an 
aneurysm detection model based on a dual-channel SE-3D UNet, 
retrospectively collecting 1,096 TOF-MRA images of unruptured 
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intracranial aneurysms. The model, which divided the dataset into 
training and validation sets chronologically, outperformed the basic 
SE-3D UNet, increasing patient-level sensitivity by 15.79% and 
reducing false positives by 4.1%. These findings emphasize the 
importance of continuous exploration and integration of the latest 
AI technologies.

Beyond direct CNN application for IA imaging detection and 
segmentation across various modalities, Podgorsak et  al. (21) 
combined deep learning with radiomics, automating the extraction 
of radiomic features through CNNs for IA detection and 
segmentation. While deep learning (DL) enables fully automated 
analysis of imaging post-model training, it requires significantly 

larger data volumes compared to radiomics, and the data volume 
in most studies is limited. Therefore, combining DL radiomics 
(DLR) features with clinical parameters or classical radiomics 
features can reduce the demand for large sample sizes, enhancing 
the accuracy and reliability of classification or prediction outcomes. 
This approach offers potential assurance for optimizing 
personalized diagnosis and treatment.

Despite promising results in automated detection studies, 
current capabilities still show significant room for improvement, 
especially in detecting small and very small aneurysms (22, 23). 
This is related to the subtle imaging features of tiny aneurysms, 
which are easily overlooked or confused with normal physiological 

TABLE 1 A brief summary of papers on the application of artificial intelligence and radiomics in the automated detection and segmentation of 
intracranial aneurysms.

Author and 
year

Imaging 
modality

Dataset size 
and source

Methodology Model 
validation 
methods

Clinical 
outcomes 
predicted

Evaluation 
metrics

Ueda et al. (17) MRI
683 patients, 

multicenter
ResNet-18

Internal and 

external validation

Detection and 

segmentation

Internal validation: 

TPR = 91%

External validation: 

TPR = 93%

Claux.et al. (18) 3D TOF-MRA
49 patients, single 

center
U-Net Internal validation

Detection and 

segmentation
TPR = 78%

You et al. (19) CTA
3,190 patients, 

multicenter
U-Net

Internal and 

external validation

Detection and 

segmentation

Internal validation: 

DSC = 0.78, 0.71, 0.71

External validation: 

DSC = 0.66

Internal validation: 

TPR = 98.58,95.00, 

96.00%

External validation: 

96.17%

Zhu et al. (14) CTA
101 patients, single 

center

3D U-Net, V-Net, 3D 

Res-Unet
Internal validation

Detection and 

Segmentation

3D U-Net: 

DSC = 0.818 ± 0.100

Hu et al. (26) CTA
17,277 patients, 

multicenter
GCN + LFN

Internal and 

external validation
Detection

Internal validation: 

TPR = 95.7%

External validation: 

TPR = 98.8%

Chen et al. (20) 3D TOF-MRA
1,160 patients, 

multicenter

Dual-channel SE-3D 

U-Net

Internal and 

external validation
Detection

Internal validation: 

TPR = 82.46%

Jin et al. (2) 2D-DSA
347 patients, single 

center

End-to-end 

spatiotemporal deep 

neural network

Internal validation
Detection and 

segmentation

DSC = 0.533, 

TPR = 97.7%

Duan et al. (11) 2D-DSA
281 patients, single 

center

Cascade CNN based on 

FPN with ResNet50 as 

the backbone

Internal validation Detection AUC = 0.942

Podgorsak et al. (21) 2D-DSA
350 patients, single 

center
CNN and radiomics Internal validation

Detection and 

segmentation

DSC = 0.903

AUC = 0.791

Bizjak et al. (6) MRA和CTA
3,228 patients, 

multicenter
U-Net and Point Net++

Internal and 

external validation
Detection

External validation

MRA: TPR = 85%

CTA: TPR = 90%

Sichtermann et al. (25) 3D TOF-MRA
85 patients, single 

center

Deep-medic based on 

CNN
Internal validation Detection TPR = 90%

DSC, Dice similarity coefficient; TPR, sensitivity; AUC, area under curve; GCN, global context network; LFN, local fine-grained network; CNN, convolutional neural networks.
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structures, preventing the effective capture of their characteristics. 
Research has found that compared to regular aneurysms, small 
aneurysms with a diameter of <5 mm have a higher proportion of 
severe cases classified under Fisher’s scale for subarachnoid 
hemorrhage caused by aneurysm rupture, and the proportion of 
poor prognosis is not significantly different from other aneurysms 
(24). Therefore, to ensure patient safety and quality of life, it is 
essential to develop new detection technologies to improve the 
detection capability for tiny intracranial aneurysms (IAs). Bizjak 
et al. (6) introduced a novel IA detection method based on deep 
geometric learning, applicable to both MRA and CTA images and 
validated across multiple internal and external datasets, showing 
sensitivities of 72 and 83% for detecting small aneurysms in MRA 
and CTA images, respectively.

Artificial intelligence models have an absolute advantage in 
processing speed compared to doctors and can provide effective 
assistance to radiologists with less clinical experience. Sichtermann 
et al. (25) compared the sensitivity of two professional doctors in 
identifying aneurysms independently and with the assistance of 
the DeepMedic CNN model, confirming improved detection 
sensitivity under CNN-assisted diagnosis. Hu et al. (26) established 
the largest dataset of intracranial aneurysm CTA images to date, 
incorporating CTA images of 14,517 patients for AI model 
development and internal validation, and retrospectively collected 
data from 1,198 patients for external validation, conducting 
prospective studies in five hospitals. The study showed that the AI 
model achieved high diagnostic accuracy in the external validation 
set (sensitivity of 98.8%, specificity of 81.2%, and negative 
predictive value of 99.8%), surpassing the performance of 
radiologists, with an error rate of 0.5% in prospective validation. 
AI-assisted reading significantly improved the diagnostic 
performance of clinical doctors, with the AUC increasing from 
0.787 to 0.909 and patient-level sensitivity from 0.590 to 0.825, 
particularly enhancing the diagnosis of aneurysms <3 mm by 
31.8%, reducing the probability of missed diagnoses. This aids in 
early screening and the development of personalized treatment 
plans for patients, improving patient prognosis. The study 
highlighted that for less experienced resident doctors, utilizing 
deep learning models for assisted diagnosis can yield more 
significant benefits. However, the study was limited to CTA images, 
and there is currently a lack of comparative discussions and 
prospective validation of AI applications in DSA, MRI, and other 
areas. Further repeated and large-sample studies are needed to 
ascertain the practical value of AI models in clinical application.

3.2 Recognition and prediction of IA status

Subarachnoid hemorrhage (SAH) caused by the rupture of 
intracranial aneurysms (IAs) often results in extremely high mortality 
and morbidity rates, with survivors frequently suffering from long-
term neurological sequelae that diminish their quality of life (27). The 
clinical manifestations of IA rupture are complex, primarily due to the 
aneurysm’s structural morphology and location. Some patients with 
ruptured IAs do not experience SAH, resulting in relatively good 
prognoses. On the other hand, locating the rupture site in patients 
with multiple aneurysms, even in the presence of SAH, can 

be challenging, making accurate recognition of IA status crucial for 
clinical treatment and prognosis assessment (28, 29). In clinical 
practice, healthcare professionals still widely use scale scoring 
methods to predict the risk of aneurysm rupture, such as PHASES 
score, UIATS score, and ELAPSS score. However, studies comparing 
machine learning models (including SVM, RF, and ANN) with 
traditional statistical models and the PHASES score have confirmed 
the superior performance and application potential of machine 
learning algorithms in predicting intracranial aneurysm rupture (30). 
Yang et al. (31) conducted a prospective study on IA rupture risk 
assessment using a backpropagation (BP) neural network and 
compared the predictive performance of BP, PHASES, UIATS, and 
ELAPSS scores through ROC analysis. The results showed that BP 
outperformed PHASES and ELAPSS scores but was slightly inferior 
to UIATS, which may be related to the smaller sample size included 
in the study. The research also indicated that using UIATS carries the 
risk of overtreatment, whereas artificial intelligence algorithms can 
effectively reduce the probability of overtreatment. This not only 
benefits the physiological health of patients but also helps avoid 
unnecessary economic burdens and psychological stress. The 
superiority of artificial intelligence in predicting aneurysm rupture 
may be  due to the complex and nonlinear relationships between 
clinical manifestations and data. For instance, the rupture of 
intracranial aneurysms is often the result of interactions among 
multiple factors. Therefore, compared to traditional statistical models 
(such as logistic regression) and scale scoring, which are limited to 
linear relationships, artificial intelligence algorithms can better capture 
these nonlinear relationships by constructing multi-level data 
representations from simple to complex, quickly providing more 
accurate results (see Table 2).

3.2.1 Prediction of IA rupture based on radiomics
The use of morphological characteristics of intracranial 

aneurysms to predict aneurysm rupture has received extensive 
validation. Liu et al. (32) segmented aneurysms using 3D Slicer, 
selecting 420 aneurysms with maximum 3D diameters between 
4 mm and 8 mm for analysis. Innovatively, they employed the 
Python-based “PyRadiomics” package to extract 12 derived 
morphological features, including shape, size, and surface area, and 
integrated these with clinical features to construct two machine 
learning models: glm_step and glm_lasso. The glm_lasso model was 
identified as superior, with an AUC of 0.853. However, a study by 
Ludwig et  al. (33) found that radiomics-derived morphological 
features extracted from DSA did not significantly enhance the 
predictive performance for aneurysm rupture, contradicting Liu’s 
assertion that flatness is the most critical morphological 
determinant for predicting aneurysm stability. Yang et  al. (34) 
utilized radiomics features to distinguish between ruptured and 
unruptured intracranial aneurysms in the middle cerebral artery, 
constructing classification models with 12 common machine 
learning algorithms. The models built on AdaBoost, XGBoost, and 
CatBoost algorithms outperformed others, with AUCs of 0.889, 
0.883, and 0.864, respectively. Compared to previous studies that 
solely relied on morphological features, the application of radiomics 
yielded higher predictive accuracy, underscoring the significant 
contribution of radiomics features in assessing the risk of 
aneurysm rupture.
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3.2.2 Prediction of IA rupture using deep learning 
combined with multi-omics

Feng et al. (35) utilized a three-dimensional CNN to automatically 
detect and segment aneurysms, calculating 21 morphological features 
for each aneurysm. They extracted and identified 13 radiomics features 
related to aneurysm rupture, then used dimensionality reduction to 
construct SVM, RF, and MLP machine learning (ML) classification 
models to differentiate between ruptured and unruptured intracranial 
aneurysms (IAs). The results demonstrated that all three models 
exhibited high accuracy and were effective in discerning the status of 
aneurysms. Xie et al. (36) combined features extracted by CNN with 
radiomics features and patient clinical information, employing LASSO 
regression to select important feature variables for constructing an 
SVM-based aneurysm rupture risk prediction model. The accuracy 
and AUC were 89.78 and 89.09%, respectively. These studies confirmed 
that even with limited samples, the integration of CNN and radiomics 
can enhance model predictive performance. The optimal set of feature 

variables can provide essential biomarkers for determining rupture 
risk, which holds significant clinical implications for the personalized 
treatment planning of IAs. However, only age and gender were included 
as clinical features, necessitating further exploration of the impact of 
including additional clinical features on result accuracy. Turhon et al. 
(37) included 1,740 IA patients and constructed traditional ML and 
deep learning models based on clinical, radiomics, and morphological 
features. The results indicated that the deep learning-based radiomics 
model for predicting aneurysm rupture (AUC = 0.929) outperformed 
traditional ML models (AUC = 0.878), with the inclusion of 
morphological parameters also enhancing predictive performance. 
Unlike some studies that apply machine learning (ML) algorithms to 
morphological variables and hemodynamic parameters (38), Chen 
et al. (39) utilized computational fluid dynamics (CFD) to extract the 
hemodynamic cloud from 148 patients. They employed Point-Net to 
extract hemodynamic cloud features and combined these with 
morphological features to build integrated models using five ML and 

TABLE 2 A brief summary of papers on the application of artificial intelligence and radiomics in the detection and prediction of intracranial aneurysm 
status.

Author and 
year

Imaging 
modality

Dataset size 
and source

Methodology Model 
validation 
methods

Clinical 
outcomes 
predicted

Evaluation 
metrics

Zhu et al. (30) 3D-DSA 2,179 patients, single 

center

ML (SVM, RF, ANN) Internal validation Stability assessment SVM: AUC = 0.858

RF: AUC = 0.850

ANN: AUC = 0.867

Liu et al. (32) 3D-DSA 368 patients, single 

center

Radiomics and ML (glm-

lasso)

Internal validation Stability assessment AUC = 0.854

Yang et al. (34) CTA 576 patients, 

multicenter

Radiomics and ML 

(AdaBoost, XGBoost, 

CatBoost)

Internal validation Identification of 

status

AdaBoost: 

AUC = 0.889

XGBoost: 

AUC = 0.883

CatBoost: 

AUC = 0.864

Feng et al. (35) CTA 363 patients, 

multicenter

Radiomics, CNN and ML 

(SVM, RF, MLP)

Internal and external 

validation

Identification of 

status

Internal validation: 

SVM = 0.86

RF = 0.85

MLP = 0.90

External validation: 

SVM = 0.85

RF = 0.88

MLP = 0.86

Xie et al. (36) CTA 106 patients, single 

center

Radiomics, CNN and 

ML(SVM)

Internal validation Stability assessment AUC = 0.8909

Turhon et al. (37) 3D-DSA 1,740 patients, 

multicenter

Radiomics, 

DL(Transformer) and 

ML(SVM)

Internal and external 

validation

Stability assessment Internal validation: 

DL: AUC = 0.929

External validation: 

DL: AUC = 0.823

Chen et al. (39) 3D-DSA 148 patients, single 

center

DL(PointNet) and ML (RF, 

KNN, XGBoost, 

LightGBM)

Internal validation Stability assessment AUCMAX = 0.969

Li et al. (40) CTA 423 patients, single 

center

Trans IAR-net Internal and external 

validation

Stability assessment Internal validation: 

AUC = 0.9224

External validation: 

AUC = 0.9803

AUC, area under curve; CNN, convolutional neural networks; MLP, multi-layer perceptron; ANN, artificial neural network; RF, Random Forest; SVM, Support Vector Machine; AdaBoost, 
Adaptive Boosting; XGBoost, eXtreme Gradient Boosting; CatBoost, Categorical Boosting; KNN, K-Nearest Neighbors; LightGBM, Light Gradient Boosting Machine.
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DL approaches. The results indicated that the use of the integrated 
model and the inclusion of hemodynamic cloud features can enhance 
the accuracy of IA rupture risk assessment. From the studies by Turhon 
and Chen, it’s evident that incorporating considerations of 
morphological and hemodynamic cloud features is crucial for 
improving model predictive performance, achieving more accurate 
classification results. This suggests that the multi-omics development 
in IAs is a feasible approach to further optimize and enhance 
model performance.

3.2.3 Prediction of IA rupture using Transformer 
technology combined with deep learning

Li et al. (40) proposed an end-to-end deep learning method called 
TransIAR, designing a multi-scale 3D CNN to extract structural patterns 
of IAs and their surroundings. A Transformer encoder was used to learn 
spatial dependencies within the IA neighborhood, automatically learning 
morphological features from 3D-CTA data and accurately predicting the 
IA rupture status. The results demonstrated that the features learned by 
TransIAR were more effective and robust than manually crafted features, 
improving the accuracy of rupture status prediction by 10 to 15%, 
showcasing the superior performance of combining Transformer with 
CNN. Utilizing the attention mechanism of Transformers addresses the 
limitation of deep learning in long-distance modeling, demonstrating the 
superior performance of combining Transformers with CNNs. However, 
the study excluded aneurysms with a diameter smaller than 3 mm, which 
limits its clinical applicability.

3.3 Prediction of IA prognosis

With the development of embolization device technology, pipeline 
embolization devices (PEDs) have become an important tool for 
treating complex intracranial aneurysms (41). However, complications 
such as rebleeding and thromboembolic events can occur following 
IA treatment with PEDs, adversely affecting patient prognosis. 
Therefore, predicting potential outcomes before and after embolization 
is crucial for clinical decision-making (see Table 3).

3.3.1 Prediction of postoperative complications 
based on radiomics

Angiographic parametric imaging (API), which relies on digital 
subtraction angiography (DSA), is a quantitative imaging tool that can 

extract hemodynamic-related parameters of contrast agent flow 
within IAs. This tool enables precise quantitative measurements and 
therapeutic evaluations of IAs. Radiomics can extract features from 
the ROI of API to predict prognosis. Liang et al. (42) screened 281 IAs 
treated with PEDs and analyzed the embolization results of 235 
patients. Radiomic features were extracted from postoperative DSA 
images using API, and the Lasso algorithm was used to select radiomic 
features and calculate radiomics scores. The results suggested that 
API-derived radiomic features could be  potential indicators for 
assessing the effectiveness of PED treatment for IAs. This novel 
approach provides new methods for predicting and evaluating the 
prognosis of PED treatment, such as combining API-derived radiomic 
features with deep learning to construct predictive models for patient 
prognosis, potentially offering more personalized clinical 
treatment options.

Bhurwani et  al. (43) proposed the application of deep neural 
networks and DSA images for angiographic parametric imaging to 
predict the risk of thromboembolism after PED treatment. They 
analyzed DSA images before and after IA treatment to manually 
extract API parameters from the IA and corresponding aorta, 
standardizing them on projection views scanned before and after 
treatment. The results showed a prediction accuracy of 77.9% for 
thromboembolism after PED treatment, confirming the feasibility of 
using angiographic parametric imaging and deep neural networks to 
predict post-occlusion complications of IAs.

In addition to their individual applications, the combined use of 
radiomics and API (angiographic perfusion imaging) has shown great 
potential in predicting delayed intracranial aneurysm rupture post-
surgery. Postoperative delayed rupture of intracranial aneurysms, a 
severe complication of pipeline embolization device (PED) treatment, 
poses a significant threat to patient outcomes. Therefore, accurately 
predicting the risk of rupture post-intervention is crucial. Liang et al. (42) 
extracted radiomic features from DSA images of patients after PED 
treatment using API and identified a higher radiomics score as a risk 
factor for complications. Ma et al. (44) utilized hemodynamic radiomic 
features derived from postoperative DSA angiography to quantitatively 
predict the risk of delayed rupture after PED treatment. For each patient, 
five perfusion parameter maps derived from post-intervention DSA were 
created, and radiomic features were obtained from each map. Six 
radiomic features were selected, and a radiomics score was calculated to 
predict the occurrence of IA rupture post-intervention. The results 
showed an AUC of 0.912 (95% CI: 0.767–1.000) for the training set and 

TABLE 3 Brief summary of papers on the application of artificial intelligence and radiomics in the complication of intracranial aneurysms.

Author and 
year

Imaging 
modality

Dataset size 
and source

AI methodology Model 
validation 
methods

Clinical 
outcomes 
predicted

Evaluation 
metrics

Bhurwani et al. 

(43)

DSA 163 patients, single 

center

DNN Internal validation Thrombosis AUC = 0.77

Ma et al. (44) DSA 64 patients, single 

center

Radiomics Internal validation Postinterventional 

rupture

Internal validation: 

AUC =0.912

External validation: 

AUC = 0.938

Jin et al. (47) DSA 52 patients, single 

center

Radiomics Internal validation In-sent stenosis AUC = 0.743

AUC, area under curve; DNN, deep neural networks.
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0.938 (95% CI: 0.806–1.000) for the test set. The study confirmed the 
potential of using angiography-derived radiomic features to predict post-
intervention intracranial aneurysm rupture, further expanding the 
application scope of radiomics. In summary, there is a significant 
association between radiomic features and occlusion and rupture of 
intracranial aneurysms in patients after PED treatment, but current 
research is still in its infancy, with relatively small sample sizes included 
in the studies. Additionally, given that API is inherently two-dimensional, 
its capacity to reflect the actual situation of three-dimensional aneurysms 
has limitations. However, the current workflow for quantifying API 
features requires manual delineation of the contrast medium’s entry into 
the target vessel and IA, a time-consuming and labor-intensive task that 
severely limits its application in clinical settings or large-scale studies. 
The application of deep learning in feature extraction can effectively 
address this issue. Podgorsak et al. (21) used CNNs to automate the 
extraction of radiomic features from angiographic parametric imaging 
analyses of IAs, comparing the results with manual extractions. The 
results demonstrated consistency between CNN and manual extractions, 
achieving minimal error in extracting API radiomic features and 
significantly reducing extraction time. This method enhances the clinical 
utility of using API features for prognosis prediction, potentially making 
it a tool to assist clinical decision-making.

Although post-pipeline embolization device (PED) treatment 
in-stent stenosis (ISS) is a self-limiting condition (45), its high 
incidence rate and subtle symptoms increase the risk of complications 
and can lead to severe consequences (46). The integration of 
morphological features and radiomics plays a significant role in 
predicting ISS after PED treatment. Jin et  al. (47) extracted 
preoperative manually measured shape features and radiomic shape 
features, comparing patients who developed ISS with those who did 
not using follow-up DSA images. The results showed that one of the 
radiomic features, the elongation ratio, is an independent predictor of 
ISS. The study indicates that the more regular the shape of the 
aneurysm and the artery, the lower the likelihood of ISS.

Although clinical outcomes of aneurysms are influenced by 
various factors such as individual patient characteristics, severity of 
hemorrhage, different treatment modalities, and preoperative, 
intraoperative, and postoperative management (36), the application 
of radiomics and artificial intelligence in predicting the prognosis of 
patients with intracranial aneurysms offers new personalized 
treatment methods and holds great potential.

4 Discussion—existing challenges and 
future perspective

In recent years, artificial intelligence technology has been widely 
applied in the field of medical imaging, demonstrating tremendous 
potential in the automatic detection, status evaluation, and prognosis 
prediction of intracranial aneurysms (IAs). However, several 
challenges remain:

4.1 Algorithm interpretability

Local interpretable model-agnostic explanations (LIME) explores 
how slight perturbations to the input affect the output of a black-box 
model. By understanding these changes, LIME trains and builds a locally 
interpretable, agnostic model at the point of interest (the original input) 

to “explain” the black-box model (48). For example, when the model is 
used to predict the risk of an individual patient’s intracranial aneurysm 
rupture, LIME might discover that certain specific image regions (such 
as the location of the aneurysm) and the size of the intracranial aneurysm 
have a high positive weight in the model’s prediction. Clinicians can use 
the key features identified by LIME in the model’s predictions to 
understand why the model made such a prediction and combine this 
with their professional knowledge to make appropriate decisions.

SHapley Additive exPlanations (SHAP) provides more transparent 
result interpretations, calculating the importance of variables or features 
that make up the model and explaining how changes in important 
feature parameters affect the model’s predictive outcomes (49). By 
inputting features extracted from imaging, SHAP can provide a detailed 
feature contribution distribution through visualization, revealing which 
features are most important for predicting aneurysm rupture risk. SHAP 
helps doctors better understand how the model makes classifications or 
predictions based on image data, thus enhancing the reliability of the 
output results.

However, current interpretability algorithms still do not fully meet 
the needs of clinical doctors. Clinicians tend to use their medical 
knowledge to interpret the internal logic of how artificial intelligence 
algorithms use data to obtain predictive results, rather than relying on 
mathematically interpretable models. This might be because clinical data 
are inherently complex, and mathematically interpretable models overly 
focus on statistical characteristics of data, neglecting clinical realities, 
leading to inconsistencies between the interpretation results and clinical 
outcomes, and reducing clinicians’ trust.

To promote the clinical deployment of AI models, the primary 
interpretability approach for Transformers is based on attention weights. 
Additionally, an interactive radiology report diagnostic and evaluation 
system based on LLM can extend the detailed description of AI model 
detection results. For example, a study by Zhang et al. (50) developed an 
AI captioning system based on the Transformer’s BERT model, which 
autonomously provides prior fields for lesion descriptions. This greatly 
enhances the model’s interpretability by providing textual descriptions 
based on lesion details and is expected to directly output 
diagnostic results.

As the training costs of LLMs decrease, more LLM models for 
specific clinical purposes will be  developed in the future. However, 
developers must be cautious about potential new and unpredictable 
behavior patterns or biases introduced by fine-tuning LLMs in open-
source frameworks, which may exacerbate the “black box” phenomenon. 
To address these challenges, researchers need to adopt objective and 
unified evaluation metrics, explore new explanation methods, enhance 
the inherent interpretability of models, and promote innovative research 
in explainable algorithms.

4.2 Microaneurysm detection

Current research primarily focuses on the status detection and 
prognostic prediction of intracranial aneurysms (IAs). In previous 
studies on IA detection and diagnosis, there has been limited 
discussion and research specifically addressing microaneurysms 
(<3 mm), with the results of existing automatic segmentation and 
detection algorithms being relatively unsatisfactory. You et al. (19) 
reported that their VA-Unet model exhibited significant differences in 
segmentation performance for IAs of different sizes (p < 0.001), with 
poorer diagnostic performance for small aneurysms (<3 mm). In 
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another study by Bo et al. (51), the GLIA-Net demonstrated a recall 
rate of 90.6% for aneurysms >7 mm but only a 70.3% recall rate for 
microaneurysms <3 mm. Additionally, a study (52) showed that the 
included CNN had an overall sensitivity greater than 98% (98–100%) 
for aneurysms >3 mm, whereas the overall sensitivity for aneurysms 
<3 mm was only 74.6%. Early screening of micro-aneurysms remains 
a clinical challenge. The emergence of the Vision Transformer (ViT) 
architecture and its application in medical image analysis offers a new 
method to address this issue. ViT-based models for disease image 
segmentation, such as TransUNet, Swin-UNet, and MedT, have 
demonstrated strong segmentation performance on images of other 
disease types (53, 54). ViT algorithms can divide an entire image into 
smaller image patches, using these patches’ linear embeddings as input 
for the Transformer network, and then employ supervised learning 
methods for image classification training. ViT utilizes the self-
attention mechanism of Transformers to capture long-range 
dependencies between these patches, establishing richer contextual 
connections across the entire image. This integration of global 
information provides more precise analysis for identifying and 
locating micro-aneurysms with unclear boundaries compared to 
traditional CNNs, which rely on local receptive fields.

4.3 Training data and clinical applicability

AI and radiomics dependence on extensive imaging data. Current 
research is predominantly based on small samples and single-center 
studies. Faced with limited datasets, most studies use CNN networks for 
feature extraction and traditional ML for classification and prediction, 
combining the early stages of deep learning with the latter stages of 
radiomics. Models may suffer from overfitting or underfitting due to 
overtraining. Most models lack external validation, making it difficult 
to judge their generalizability across patient populations with different 
statistical characteristics, and their experimental results require further 
verification. Currently, research on large language models and 
Transformer architectures in the medical field is gradually underway, 
requiring significantly larger datasets for training than traditional CNNs 
or ML to achieve good model performance. High-quality, large-sample 
datasets enable models to mine and learn deeper data features and 
patterns, enhancing model accuracy. Additionally, the data should 
be more diverse, including various types of intracranial aneurysms, such 
as microaneurysms and cases of arterial stenosis, while ensuring a 
balance between positive and negative samples. Challenging cases 
should not be  excluded merely to achieve numerical performance 
breakthroughs, to better reflect clinical reality and enhance model 
generalizability. The neuroimaging field currently lacks large, publicly 
accessible datasets like the cancer imaging TCIA and genomic GEO 
databases for researchers. Thus, establishing large, multicenter databases 
and international collaboration to collect and share patient 
demographics, aneurysm radiographic characteristics, imaging 
methods, and imaging parameters is essential for advancing AI.

The clinical applicability of predictive models in AI and radiomics 
remains limited. Studies have shown that AI models often exhibit 
insufficient generalizability in external validations, manifesting as 
performance declines (55), possibly related to patient ethnic 
differences, medical conditions, and other factors. Even AI decision 
support systems approved for clinical use face questions about their 
safety and efficacy in different clinical environments. Therefore, 
conducting prospective, multicenter, randomized controlled clinical 

trials to assess the reliability of AI and radiomics models in 
radiographic image analysis and ensure their benefit for patient 
prognosis is necessary. Continual model algorithm updates and 
comprehensive clinical research are also crucial, oriented towards the 
needs of patients and healthcare workers, to optimize models and 
simplify processes, reducing the usage threshold for healthcare 
workers. Developing multi-task AI models to achieve a fully automated 
service for the detection, segmentation, status assessment, and 
prognostic prediction of intracranial aneurysms, and integrating 
radiomics with patients’ other clinical histories, laboratory indicators, 
and past report results using LLMs can aid physicians in designing 
accurate and personalized treatment plans. Standardizing operation 
processes and providing data governance, model deployment, and 
maintenance services are also essential.

4.4 Ethical considerations

Privacy protection is one of the main ethical challenges in the 
application of AI and radiomics in the medical field. Patient data, 
containing highly sensitive personal information, must be rigorously 
protected. Federated learning, an innovative machine learning 
architecture, provides a new method for multi-party data collaboration 
while safeguarding privacy. In this framework, a virtual model is 
designed to enable multi-center data collaboration without exchanging 
data (56). Each center trains the model on local devices and then 
transmits the model updates to a central server, not the original data. 
The central server aggregates these model updates from different 
devices to enhance the performance of the global model and returns 
it to each device for further local training and optimization. Under the 
federated mechanism, since the original data is not transferred, the 
risks of data leakage and misuse are significantly reduced by avoiding 
data transmission and centralized storage. This approach effectively 
allows multiple institutions to use data and build models while 
adhering to user privacy protection, data security, and 
government regulations.

Algorithmic bias is also a significant ethical issue in the medical 
AI field, often facing problems such as data bias, label bias, algorithm 
design bias, and data collection method bias, which can lead to AI 
models providing incorrect suggestions, influencing doctors’ 
judgments. Medical decisions are crucial for patients, and incorrect 
judgments can endanger their lives. However, studies have shown that 
some healthcare professionals heavily rely on suggestions provided by 
AI-assisted decision systems, sometimes unable to recognize incorrect 
recommendations, leading to severe consequences. Medical 
professionals should always maintain critical thinking towards AI 
system suggestions and bear ultimate responsibility in final decisions. 
Relevant laws and regulations should also further refine the 
determination and division of responsibility.

5 Conclusion

This study provides a comprehensive review of the application of 
artificial intelligence and radiomics in the detection, segmentation, 
and status recognition prediction of intracranial aneurysms, as well 
as postoperative prognostic prediction, showcasing the potential of 
AI and radiomics in this field. The development of new technologies, 
such as large language models (LLMs) and self-supervised learning, 
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is expected to further advance research in this domain. Future studies 
should focus more on the practical application of the constructed 
models, transitioning AI and radiomics from research to clinical 
practice. This transition necessitates a collaborative effort by global 
researchers to establish standard databases, enhance model 
performance, and pay particular attention to model interpretability. 
With advancements in big data technology and the proliferation of 
precision medicine concepts, the integration of medical imaging, 
artificial intelligence, and radiomics is poised to contribute 
significantly to the field. They are expected to jointly create a clinical 
decision support system, offering more personalized and precise 
treatment options for patients with intracranial aneurysms, 
improving treatment outcomes and quality of life, and collectively 
advancing the field of precision medicine.
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