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Objectives: Cerebral small vessel disease (CSVD) visible on MRI can 
be  asymptomatic. We  sought to develop and validate a model for detecting 
CSVD in rural older adults.

Methods: This study included 1,192 participants in the MRI sub-study within the 
Multidomain Interventions to Delay Dementia and Disability in Rural China. Total 
sample was randomly divided into training set and validation set. MRI markers of 
CSVD were assessed following the international criteria, and total CSVD burden 
was assessed on a scale from 0 to 4. Logistic regression analyses were used to 
screen risk factors and develop the diagnostic model. A nomogram was used 
to visualize the model. Model performance was assessed using the area under 
the receiver-operating characteristic curve (AUC), calibration plot, and decision 
curve analysis.

Results: The model included age, high blood pressure, white blood cell count, 
neutrophil-to-lymphocyte ratio (NLR), and history of cerebral infarction. The 
AUC was 0.71 (95% CI, 0.67–0.76) in the training set and 0.69 (95% CI, 0.63–0.76) 
in the validation set. The model showed high coherence between predicted and 
observed probabilities in both the training and validation sets. The model had 
higher net benefits than the strategy assuming all participants either at high risk 
or low risk of CSVD for probability thresholds ranging 50–90% in the training 
set, and 65–98% in the validation set.

Conclusion: A model that integrates routine clinical factors could detect 
CSVD in older adults, with good discrimination and calibration. The model has 
implication for clinical decision-making.
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Introduction

Cerebral small vessel disease (CSVD) refers to as various 
pathologic processes affecting the small arteries, arterioles, capillaries, 
and probably venules of the brain (1). The MRI markers for CSVD 
manifest as recent small subcortical infarcts, brain atrophy, white 
matter hyperintensity (WMH), lacunes, microbleeds, and enlarged 
perivascular space (EPVS) (2). As people age, CSVD is increasingly 
common. For instance, The prevalence of WMH affecting 
approximately 5% of individuals aged 50 years and to almost 100% of 
individuals aged 90 years (3). Similarly, the prevalence of CMB rises 
from 6.5% among individuals aged 45–50 years to 35.7% among those 
of 80 years and older (4).

In addition to older age, previous studies have suggested that 
CSVD is associated with conventional vascular risk factors such as 
smoking, hypertension, diabetes mellitus, dyslipidemia, and obesity 
(5, 6). Furthermore, a community-based study showed that CSVD was 
associated with higher white blood cell (WBC) count, neutrophil 
count (NC), neutrophil-to-lymphocyte ratio (NLR), and systemic 
immune-inflammation index (SII) (7). This supports the view that 
systemic inflammation is involved in the pathogenesis of CSVD (8).

CSVD has been associated with series of clinical sequelae, such as 
clinical stroke, cognitive impairment, and gait and balance 
disturbances (9). It’s reported that CSVD contributes to 25% of 
ischaemic strokes and most hemorrhagic strokes (9). Furthermore, 
CSVD is the prime cause of vascular dementia, and contributes to up 
to 45% of all dementia (10). Despite the substantial impact of CSVD 
on health, there has no available effective treatment. Thus, early 
detection of CSVD may provide the potential for preventive or 
therapeutic interventions to delay or prevent its clinical sequelae 
because most risk factors for CSVD are modifiable or clinically 
manageable. A large-scale population-based study of middle-aged 
people found that adding NC to the basic model of traditional vascular 
risk factors could significantly improve the accuracy of detecting 
CSVD (7). However, a simple, practical, and clinically useful model 
for detecting CSVD among older adults remains to be developed.

In this population-based study of older adults who were living in 
rural communities, we sought to (1) explore the possible risk factors 
associated with CSVD; (2) develop and validate a diagnostic model to 
detect CSVD; and (3) evaluate the clinical net benefits of the model.

Materials and methods

Study design and participants

The protocols of MIND-China and MRI sub-study were reviewed 
and approved by the Ethics Committee at Shandong Provincial 
Hospital in Jinan, Shandong, China. Written informed consent was 
obtained from all participants or proxies.

We used data derived from the baseline assessments of the 
Multimodal INtervention to delay Dementia and disability in the rural 
China (MIND-China) that is a participating project in the World-
Wide FINGERS Network, as described previously (11, 12). Briefly, the 
MIND-China study targeted people aged 60 years and older and living 
in 52 rural communities of Yanlou Town, Yanggu County, western 
Shandong province, China. From March to September 2018, 5,765 
participants were examined for MIND-China. Of them, 1,304 

participants from 26 villages randomly selected from all the 52 villages 
accomplished the structural brain MRI scans.

MRI acquisition and processing

All participants underwent the brain MRI scans either on the 
Philips Ingenia 3.0 T MR System (Philips Healthcare, Best, The 
Netherlands) in Southwestern Lu Hospital or on the Philips Achieva 
3.0 T MR System (Philips Healthcare, Best, The Netherlands) in 
Liaocheng People’s Hospital. The MRI sequences included the sagittal 
3D sT1-weighted, axial T2-weighted, sagittal 3D Fluid-attenuated 
inversion recovery (FLAIR) images, and axial susceptibility weighted 
imaging (SWI). The detailed parameters of the core MRI sequences 
have been reported previously (13).

We assessed the following four MRI markers for CSVD. Cerebral 
microbleeds (CMBs) were focal, rounded hypodense lesions 
measuring less than 5 mm in diameter on SWI. The CMBs was 
quantitatively acquired by AccuBrain® (BrainNow Medical 
Technology Ltd., Shenzhen, Guangdong, China) as described 
previously (14, 15). Briefly, CMBs were detected on SWI images via a 
fully connected network that was trained by deep learning technique. 
For a given SWI image, the network showed CMB location by 
exporting a probability map.

The visual assessment of lacunes, WMH, and PVS was performed 
by two well-trained raters (M.Z. for EPVS and J.W. for lacunes and 
WMH) according to the standards for reporting vascular changes on 
neuroimaging 1 (STRIVE-1) (2). The raters were blinded to 
participants’ clinical data and under the supervision of an experienced 
clinical neurologist (L.S) and an experienced neuroradiologist (T.G.). 
Lacunes were rounded or ovoid lesions, 3–15 mm in diameter, 
generally in the intensity of cerebrospinal fluid (CSF) signal on T2 and 
FLAIR sequences. The trained rater (J.W.) counted lacunes in each 
hemisphere on FLAIR sequence, and then added up the numbers of 
lacunes in bilateral hemispheres. WMH was defined as symmetrical 
hyperintense on T2 images in the brain white matter, and was 
evaluated in periventricular and deep white matter region according 
to the Fazekas scale (16). We defined periventricular WMH (PWMH) 
and deep WMH (DWMH) following the “continuity to ventricle” rule 
(17). The rater (J.W.) evaluated WMH on the slice with the most 
severe white matter lesions. We  defined EPVS as small (<3 mm) 
punctate (if perpendicular) or linear (if longitudinal to the plane of 
scan) hyperintensities on T2 images. We  rated EPVS using the 
validated semiquantitative scale (18). Briefly, the rater (M.Z.) visually 
counted bilateral EPVS in basal ganglia (BG) and centrum semiovale 
(CSO) on all slice, and categorized EPVS in BG and CSO according to 
the highest counts on the slice and hemisphere with the most EPVS.

Six months after the initial assessment, the rater re-assessed MR 
images of 200 randomly selected subjects for lacunes and WMH, 
which yielded the weighted ĸ statistic of 0.84 for lacunes, 0.86 for 
DWMH, and 0.89 for PWMH. Similarly, three months after the initial 
assessment, the rater re-evaluated EPVS in MRI images of 30 
randomly selected subjects, which yielded a weighted ĸ statistic of 0.75 
for BG-EPVS and 0.74 for CSO-EPVS.

Total CSVD score was assessed as previously reported (19). One 
point was assigned for the presence of: (a) lacunes; (b) CMBs; (c) 
moderate-to-severe EPVS (>10) in BG; and (d) DWMH (Fazekas 
score 2–3) or PWMH (Fazekas score 3). We dichotomized the total 
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CSVD score into the absence of CSVD (total CSVD score = 0) and the 
presence of CSVD (total CSVD score ≥ 1) (7).

Data collection and definitions of 
candidate risk factors

In March–September 2018, extensive data were collected by 
trained staff through face-to-face interviews, clinical examinations 
or laboratory tests. According to the literature (5–8, 10, 20), 
we selected the following candidate risk factors for CSVD: age, sex, 
education, body mass index (BMI), smoking, alcohol drinking, 
high blood pressure, pulse pressure, history of cerebral infarction, 
fasting blood glucose (FBG), low-density lipoprotein (LDL), WBC 
count, NC, NLR, and SII. Education was dichotomized into low 
education (primary school and below) and high education (middle 
school and above). Alcohol consumption and smoking status were 
categorized as current, former, and never drinking or smoking, 
respectively. Arterial pressure was measured as described previously 
(21), and high blood pressure was defined as systolic 
pressure ≥ 140 mmHg or diastolic pressure ≥ 90 mmHg. FBG and 
LDL was measured using an automatic biochemical analyzer 
(DIRUICS-600B; DIRUI Corporation, Changchun, China) (22). 
The automated blood cell analyzer (BC1800, Mindray Corporation, 
Shenzhen, China) was used for routine blood tests (12). NLR 
(neutrophil count/lymphocyte count) and SII (platelet count × 
neutrophil count/lymphocyte count) were calculated based on the 
absolute NC (×109/L), lymphocyte count (×109/L), and platelet 
count (×109/L).

We defined clinical risk factors (i.e., high blood pressure, high 
pulse pressure, obesity, and high FBG) according to current clinical 
criteria, as described above. For laboratory measurements (e.g., LDL, 
WBC, NC, NLR, and SII), abnormal values were defined according to 
the optimal cutoff points determined using the receiver operating 
characteristic (ROC) analyses and Youden index 
(Supplementary Table S1).

Statistical analysis

We performed the analyses among participants with complete 
data. We presented frequencies (%) for categorical variables and the 
median (interquartile range, IQR) for continuous variables. The 
Chi-square test or Mann–Whitney test was used for the comparisons 
of categorical or continuous variables, respectively. Univariate logistic 
regression analyses were performed to screen potential risk factors at 
the level of p < 0.10, and multivariable logistic regression analyses 
using backward stepwise approach was used to select independent risk 
factors associated with CSVD.

We assessed the model performance using discrimination and 
calibration. The discrimination refers to as the model’s ability to 
distinguish between high- and low-risk participants and was assessed 
by calculating the area under the ROC (AUC) that ranged from 0.5 
(no better than chance) to 1.0 (perfect discrimination) (23). The 
calibration was defined as the agreement between the predicted and 
observed probability. It was determined by Hosmer-Lemeshow test 
and calibration curve (23), where people were evenly divided into ten 
groups based on decile of predicted risk, and the predicted probability 

was plotted against the observed probability. A diagonal line with 
intercept of 0 and slope of 1 represented ideal calibration.

We assessed the clinical usefulness of the model using decision 
curve analysis (DCA), which compared the net benefit of using the 
diagnostic model vs. the strategy of assuming that all people were at 
high or low risk of CSVD (24). Graphically, the line parallel to the 
x-axis was drawn to show no net benefit when assuming all people 
with low CSVD risk and no intervention given, whereas the solid 
black curve represented all people with high CSVD risk and received 
intervention. The DCA curve (black dotted curve) was drawn for the 
established diagnostic model, and the curve with the highest net 
benefit corresponded to a higher clinical value.

All analyses were performed using IBM SPSS Statistics for 
Windows, Version 26.0 (IBM Corp., Armonk, NY, USA) and Stata 
Statistical Software: Release 15.0 (Stata Corp LLC., College Station, 
TX, USA) for Windows. Two-sided p < 0.05 was considered 
statistically significant.

Results

Characteristics of study participants

In 1304 participants accomplished the structural brain MRI scans, 
we excluded 112 participants due to suboptimal image quality (n = 70) 
or missing data on clinical features and laboratory measures (n = 42), 
leaving 1,192 participants for the current analysis. These participants 
were randomly divided into the training set (70%, n = 847) and the 
validation set (30%, n = 345). Figure  1 shows the flowchart of the 
study participants.

The median age of the 1,192 participants was 69 years (IQR: 
66–72 years), 58.56% were female, and 80.37% had limited education 
(i.e., primary school or no school education) (Table 1). Out of these, 
934 (78.36%) were presented with CSVD (i.e., total CSVD score ≥ 1), 
including 659 (77.80%) in the training set and 275 (79.71%) in the 
validation set. There was no statistical significance between the two 
datasets with respect to all the examined variables (Table 1).

Independent risk factors for CSVD in the 
training set

Univariate logistic regression analysis suggested nine of the 15 
candidate risk factors were associated with CSVD at the p < 0.10 
(Table  2). These nine risk factors were then entered into the 
multivariable logistic regression model, and five risk factors, i.e., older 
age, high blood pressure, history of cerebral infarction, increased 
WBC count, and increased NLR, were independently associated with 
CSVD and selected for the final diagnostic model (Table 2).

Development of a nomogram in the 
training set

A nomogram was built based on the multivariable logistic 
regression (Figure 2). Each variable was assigned a weighted score 
based on odds ratio. A total score was generated by adding each 
weighted score of the risk factors, then the probability of having CSVD 
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was determined by projecting the total score to the total point scale. 
For example, a person aged 62 years with a history of cerebral 
infarction, high blood pressure, WBC count of 7.0 × 109/L, and NLR 
of 2.2 had a total point 19.4, representing approximately 92% 
probability of having CSVD (Supplementary Figure S1).

Internal validation of the diagnostic model

The diagnostic model yielded AUC of 0.71 (95% CI, 0.67–0.76) in 
the training set (Figure  3A) and 0.69 (95% CI, 0.63–0.76) in the 
validation set (Figure 3B). Ten-fold cross-validation was performed in 
the training set, with the AUC being 0.69 (Figure 3A). The calibration 
plot showed a good agreement between the predicted and the 
observed probabilities of having CSVD in both the training 
(Figure 3C) and the validation sets (Figure 3D), which was verified by 
Hosmer-Lemeshow test, with χ2 being 10.50 (p = 0.40) and 10.36 
(p = 0.41) for the training and the validation set, respectively, 
indicating no significant difference between the predicted and 
observed probabilities.

Decision curve analysis

We assessed the clinical utility of the nomogram using DCA. In 
the training set (Figure 4A), the curve of applying the model crossed 

the curves of treating all participants as having low and high risk 
approximately at threshold probability of 90 and 50%, respectively, 
suggesting that the diagnostic model had higher net benefits for risk 
thresholds between 50 and 90%. In the validation set (Figure 4B), the 
model had higher net benefits than the strategy assuming all 
participants either at high risk or low risk of CSVD for risk thresholds 
between 65 and 98%.

Discussion

Using data from a population of rural-dwelling older adults, 
we developed and validated a diagnostic model for detecting CSVD, 
and the model included age, high blood pressure, history of cerebral 
infarction, WBC count, and NLR. The AUC and calibration plot 
confirmed the model’s relatively good discriminative ability and 
calibration. DCA metrics indicated the model had good clinical 
application value.

Our diagnostic model yielded AUC of 0.71 in the training set and 
0.69 in the validation set, which indicated an acceptable discriminative 
ability. It has been reported that AUC values higher than 0.7 are generally 
considered fair and values higher than 0.9 excellent (25). To our best 
knowledge, little diagnostic models have been developed for CSVD. Only 
a hospital-based study reported a predictive model incorporating nine 
predictors, of which AUC of the model was 0.85 (26). Though higher 
than ours, most variables incorporated in the model were 

FIGURE 1

Flowchart of the study participants. MRI, magnetic resonance imaging; MIND-China, Multimodal Interventions to Delay Dementia and Disability in 
Rural.
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unconventional indicators, which may limit the generalizability of the 
model, especially for rural-dwelling older adults. In addition, we use 
Hosmer-Lemeshow test to assess the model’s calibration. It has been 
reported that Hosmer-Lemeshow test is susceptible to sample size, and 
with large sample sizes, a minor difference between the predicted and 
the observed risk could be identified to be statistically significant (i.e., 
false-positive results) (27). Furthermore, Hosmer-Lemeshow test is 
powerless in detecting overfitting of predictor effects (24). However, 
calibration plot, another way to assess calibration which is preferred over 
the Hosmer-Lemeshow tests (24), confirmed a high coherence between 
predicted and observed probabilities in our study.

In this study, older age was the strongest contributing factor to our 
nomogram, consistent with previous studies (5, 6). High blood 
pressure was an independent risk factor for CSVD in the model. Long-
term high blood pressure could cause endothelial dysfunction and 
subsequent blood–brain barrier (BBB) dysfunction that was a driving 
force leading to CSVD. Increased BBB permeability allowed the 
leakage of fluid and blood products into the perivascular spaces, 
leading to EPVS (28). Moreover, chronic hypertension can cause 
structural alterations to cerebral small vessels (e.g., thickening of the 
vessel walls and narrowing of the lumen), thus, leading to chronic 
hypoperfusion and cerebral ischemic lesions (29).

We identified two indicators of systemic inflammation, WBC 
count and NLR, that contributed to the diagnostic model for 
CSVD. Increased WBC count, a risk factor for arteriosclerosis, has been 
associated with coronary heart disease and stroke (30, 31). However, 

very few population-based studies have investigated the association 
between WBC and CSVD. A community-based study showed middle-
aged people with CSVD had higher WBC count (7). A Mendelian 
randomization study revealed that higher WBC count was associated 
with small vessel stroke (32). NLR has been a strong predictor of stroke 
and cardiovascular disease (33, 34), but the relationship between NLR 
and CSVD remains poorly understood. Previously, CSVD was found 
to be associated with a higher NLR in one population-based study of 
middle-aged adults (7), but not in another community-based study and 
a hospital-based study of middle-aged and older adults (35, 36). The 
discrepant findings across studies may be partly attributed to different 
characteristics of study participants (e.g., age, education, and settings).

The following potential mechanisms may underlie the associations 
of WBC and NLR with CSVD. Firstly, increased WBC could adhere 
to vascular endothelium, resulting in endothelial dysfunction and 
subsequent atherosclerosis and BBB damage (7). Secondly, a higher 
NLR indicates increased neutrophils or decreased lymphocytes or 
both. High neutrophils could release various inflammatory cytokines, 
triggering inflammatory cascades (37). In contrast, lymphocytes could 
be a healing promotor by secreting interleukin-10 (37).

The major strength of our study was the relatively large-scale 
sample that engaged rural-dwelling older adults in western Shandong 
Province, China, a sociodemographic group that has been rarely 
targeted in brain aging research. Our study also has limitations. 
Firstly, the model was developed and validated based on data from a 
single center, the external validation in the future would increase the 

TABLE 1 Characteristics of participants in the training and validation sets.

Characteristics Total sample 
(n  =  1,192)

Training set 
(n  =  847)

Validation set 
(n  =  345)

p value

Demographic factors

Age (years) 69 (66, 72) 69 (66, 73) 69 (66, 72) 0.95

Female, n (%) 698 (58.56) 495 (58.44) 203 (58.84) 0.90

Educational level, n (%) 0.91

Low (primary school or below) 958 (80.37) 680 (80.28) 278 (80.58)

High (middle school or above) 234 (19.63) 167 (19.72) 67 (19.42)

Risk factors

Body mass index (kg/m2) 24.90 (22.50, 27.10) 24.80 (22.70, 27.10) 24.90 (22.10, 27.35) 0.72

Current smoking, n (%) 242 (20.30) 169 (19.95) 73 (21.16) 0.64

Current drinking, n (%) 379 (31.80) 270 (31.88) 109 (31.59) 0.92

Systolic pressure (mmHg) 142 (130, 156) 142 (130, 156) 141 (130, 158) 0.97

Diastolic pressure (mmHg) 85 (79, 92) 85 (79, 92) 84 (79, 91) 0.24

Pulse pressure (mmHg) 56 (46, 67) 56 (46, 67) 58 (46, 68) 0.38

Cerebral infarction, n (%) 144 (12.08) 106 (12.51) 38 (11.01) 0.47

Laboratory data

FBG (mmol/L) 5.24 (4.89, 5.78) 5.23 (4.91, 5.78) 5.27 (4.84, 5.77) 0.79

LDL (mmol/L) 2.67 (2.31, 3.01) 2.66 (2.29, 3.00) 2.70 (2.33, 3.04) 0.40

white blood cell count (×109/L) 5.60 (4.90, 6.70) 5.60 (4.80, 6.70) 5.70 (4.90, 6.60) 0.63

Neutrophil count (×109/L) 3.40 (2.80, 4.20) 3.50 (2.80, 4.20) 3.40 (2.90, 4.20) 0.84

NLR 2.00 (1.59, 2.55) 2.00 (1.59, 2.56) 2.00 (1.59, 2.52) 0.85

SII (×109/L) 402.00 (303.13, 529.98) 402.32 (302.64, 530.06) 401.75 (307.54, 527.85) 0.80

Data were median (IQR), unless otherwise specified. FBG, fasting blood glucose; LDL, low-density lipoprotein; NLR, neutrophil-to-lymphocyte ratio; SII, systemic immune-inflammation 
index; IQR, interquartile range.
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FIGURE 2

Nomogram predicting the probability of having cerebral small vessel disease. Total score  =  3.9 (if NLR ≥2.1) +5.1 (if WBC  ≥  7.0  ×  109/L)  +  6.2 (if with high 
blood pressure) +4.2 (if with a history of cerebral infarction)  +  0/2.7/7.1/10 (if age range of 60–64, 65–69, 70–74, and  ≥  75  years, respectively).

TABLE 2 Univariate and multivariate analysis of risk factors for CSVD in training set.

Variables Univariate analysis Multivariate analysis

OR (95% CI) p value OR (95% CI) p value

Age groups (years) - <0.001 - <0.001

60–64 1.00 (reference) - 1.00 (reference) -

65–69 1.42 (0.90, 2.26) 0.133 1.49 (0.92, 2.41) 0.108

70–74 2.56 (1.55, 4.22) <0.001 2.82 (1.67, 4.76) <0.001

≥75 4.51 (2.21, 9.22) <0.001 4.32 (2.07, 9.03) <0.001

Sex (female vs. male) 0.82 (0.59, 1.14) 0.232 - -

Educational level (high vs. low) 1.32 (0.86, 2.02) 0.208 - -

Obesity (BMI ≥28 kg/m2) 1.52 (0. 97, 2.39) 0.067 - -

Current smoking 1.12 (0.74, 1.69) 0.603 - -

Current alcohol drinking 1.06 (0.75, 1.51) 0.732 - -

High blood pressure 2.57 (1.85, 3.59) <0.001 2.47 (1.75, 3.48) <0.001

High pulse pressure (≥60 mmHg) 1.97 (1.39, 2.77) <0.001 - -

History of cerebral infarction 2.02 (1.21, 3.63) 0.019 1.84 (1.00, 3.38) 0.052

High FBG (≥7.0 mmol/L) 1.50 (0.81, 2.78) 0.200 - -

High LDL (≥2.5 mmol/L) 1.14 (0.82, 1.59) 0.446 - -

High white blood cell count 

(≥7.0 × 109/L)

2.36 (1.45, 3.85) 0.001 2.10 (1.26, 3.51) 0.005

High neutrophil count (≥3.6 × 109/L) 1.60 (1.15, 2.23) 0.006 - -

High NLR (≥2.1) 1.72 (1.23,2.40) 0.001 1.77 (1.24, 2.52) 0.002

High SII (≥413×109/L) 1.66 (1.19, 2.32) 0.003 - -

CSVD, cerebral small vessel disease; BMI, body mass index; FBG, fasting blood glucose; LDL, low-density lipoprotein; NLR, neutrophil-to-lymphocyte ratio; SII, systemic immune-
inflammation index; OR, odds ratio; CI, confidence interval.
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generalizability of the findings. Secondly, although the four MRI 
markers were used in previous studies for assessing the CSVD burden 
(7, 19), we did not have additional MRI markers such as recent small 
subcortical infarcts and brain atrophy, which may underestimate the 
CSVD burden in older people.

As the majority of older adults with CSVD are clinically 
asymptomatic, early detection is crucial for effective interventions 
to prevent occurrence of catastrophic cerebrovascular events and 
cognitive consequences. Brain MRI is not cost-effective and 
clinically not feasible, especially in rural areas. Instead, the 
diagnostic model based on easily accessible variables could 
be simple and practical to identify CSVD at asymptomatic stage, 
thus assisting clinical decision-making with regard to the necessity 
for further MRI examination and prevention and therapeutic 
interventions to slow progression of CSVD and related clinical 
consequences. Further exploration of sensitive biomarkers for 
CSVD is essential, especially plasma biomarkers and genetic factors, 
which would help to improve model performance. Additionally, 
prediction model for CSVD from large scale longitudinal study to 
early identify those at high risk of CSVD is urgently needed.

Conclusion

In conclusion, we developed and validated a diagnostic model by 
integrating five easily accessible factors for detecting CSVD in rural 
older adults. The model with good discrimination, calibration, and 
clinical benefits has the potential to detect CSVD at asymptomatic 
stage, and thus, provide the potential for secondary interventions of 
CSVD and functional consequences.
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