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Background: Sleep is disturbed in Rett syndrome (RTT), a rare and progressive 
neurodevelopmental disorder primarily affecting female patients (prevalence 
7.1/100,000 female patients) linked to pathogenic variations in the X-linked 
methyl-CpG-binding protein 2 (MECP2) gene. Autonomic nervous system 
dysfunction with a predominance of the sympathetic nervous system (SNS) 
over the parasympathetic nervous system (PSNS) is reported in RTT, along with 
exercise fatigue and increased sudden death risk. The aim of the present study 
was to test the feasibility of a continuous 24  h non-invasive home monitoring 
of the biological vitals (biovitals) by an innovative wearable sensor device in 
pediatric and adolescent/adult RTT patients.
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Methods: A total of 10 female patients (mean age 18.3  ±  9.4  years, range 4.7–
35.5 years) with typical RTT and MECP2 pathogenic variations were enrolled. 
Clinical severity was assessed by validated scales. Heart rate (HR), respiratory 
rate (RR), and skin temperature (SkT) were monitored by the YouCare Wearable 
Medical Device (Accyourate Group SpA, L’Aquila, Italy). The average percentage 
of maximum HR (HRmax%) was calculated. Heart rate variability (HRV) was 
expressed by consolidated time-domain and frequency-domain parameters. 
The HR/LF (low frequency) ratio, indicating SNS activation under dynamic 
exercise, was calculated. Simultaneous continuous measurement of indoor 
air quality variables was performed and the patients’ contributions to the 
surrounding water vapor partial pressure [PH2O (pt)] and carbon dioxide [PCO2 (pt)] 
were indirectly estimated.

Results: Of the 6,559.79  h of biovital recordings, 5051.03  h (77%) were valid 
for data interpretation. Sleep and wake hours were 9.0  ±  1.1  h and 14.9  ±  1.1  h, 
respectively. HRmax % [median: 71.86% (interquartile range 61.03–82%)] and 
HR/LF [median: 3.75 (interquartile range 3.19–5.05)] were elevated, independent 
from the wake–sleep cycle. The majority of HRV time- and frequency-domain 
parameters were significantly higher in the pediatric patients (p  ≤  0.031). The 
HRV HR/LF ratio was associated with phenotype severity, disease progression, 
clinical sleep disorder, subclinical hypoxia, and electroencephalographic 
observations of multifocal epileptic activity and general background slowing.

Conclusion: Our findings indicate the feasibility of a continuous 24-h non-
invasive home monitoring of biovital parameters in RTT. Moreover, for the first 
time, HRmax% and the HR/LF ratio were identified as potential objective markers 
of fatigue, illness severity, and disease progression.
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Rett syndrome, cardiorespiratory monitoring, wearable devices, sleep–wake cycle, 
exercise fatigue

1 Introduction

Rett syndrome (RTT) (OMIM #312750) is a rare X-linked 
neurodevelopmental disorder that mainly affects female individuals 
(prevalence 7.1/100,000 female patients) (1, 2). RTT is a multisystemic 
disease (3) caused (in over 90–95% of cases) by a de novo loss of 
function mutations in the methyl-CpG-binding protein 2 gene 
(MECP2) (4). The classical clinical presentation of the disease (1) is 
characterized by a period of 6 to 18 months of apparently normal 
neurodevelopment, followed by an early neurological regression, with 
a progressive loss of acquired cognitive, social, and motor skills in a 
typical 4-stage neurological regression pattern (5, 6).

RTT is a complex disease with a multifaceted clinical appearance 
(3). Main neurological concerns are epilepsy (7), transient autistic 
phase (8), gait ataxia (9), intellectual deficit (9), autonomic nervous 
system dysfunction (ANSD) (3), sleep problems (3, 10–12), abnormal 
movements, and behavior disturbances (3). Other common 
comorbidities are represented by breathing dysfunction (3, 13–17), 
gastrointestinal (GI) problems (3), scoliosis (3, 18), and bone 
deficiency (osteopenia/osteoporosis with high risk of fractures) (3).

Autonomic nervous system dysfunction (ANSD) is a relevant 
contributor to some of the clinical features in RTT patients that leads 
to multiple impairments ranging from anxiety, GI dysfunction, 
breathing disturbances, peripheral vascular control alteration (19) to 

sleep issues (3), heart rate variability (HRV) (20–22), and increased 
risk of sudden death (23, 24).

Sleep pattern is severely disturbed in RTT. The prevalence of 
sleep disorders in these patients is reported to be  approximately 
80–94% (3, 10–12). Clinical manifestations such as night-time 
laughter, bruxism, diurnal napping, night screaming, nocturnal 
seizures, night terrors (3, 10), nocturnal waking (3), daytime 
sleepiness (12), and disorders of initiating and maintaining sleep (3) 
are frequent and linked to the patients’ age and mutation type (3, 10).

ANSD can result in cardiac abnormalities and reduced HRV in 
RTT patients, and varies with bradycardia (25), subclinical myocarditis 
(26), ventricular tachyarrhythmia (27), prolonged QTc interval (28), 
cardiac repolarization parameters (28, 29), cardiorespiratory coupling 
measurements (21, 23, 30–32), and reduced HRV (20–23). 
Dysautonomia and breathing dysrhythmia may interfere with physical 
activity and cause poor weight gain, impacting fatigue (3). A low level 
of tissue aerobic respiration has been reported in RTT patients 
exposed to exercise, thus indicating that RTT patients could get tired 
quicker with a lower-than-normal physical stamina compared to the 
control group (33). Interestingly, exercise fatigue is a hallmark feature 
in the experimental models recapitulating RTT (34, 35) believed to 
be related to peripheral MeCP2 deficiency (36) and mitochondrial 
dysfunction (37). Development of medical technology has allowed the 
use of wearable devices also in the healthcare field (38, 39). HRV is 
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used to examine the autonomic cardiac function under physiological 
and pathological conditions (40, 41) and estimate fatigue (42, 43).

To date, a few studies have been carried out in RTT patients 
regarding the feasibility of monitoring medical vital signs in a home 
environment by non-invasive wearable devices during daytime and 
nighttime (19, 44–48). Previously, vital signs and behavioral features 
have been mainly evaluated by questionnaires administered to 
caregivers (10, 11) or by invasive methods, such as polysomnography 
(PSG) (49, 50) during hospitalization.

Moreover, to the best of our knowledge, no clinical studies are 
found to exist evaluating longitudinal multiparameter by consistently 
monitoring an extensive time and/or indirectly targeting the 
assessment of fatigue in RTT patients. Recently, an innovative 
wearable technology with polymeric non-invasive sensors printed into 
a textile fabric has been developed, which allows a real-time 
monitoring of biovital and kinetic parameters with high ergonomic 
quality (51, 52).

This new technology, with continuous monitoring of the health 
status in everyday context, represents an improvement of the 
individual psychophysical wellbeing and health rescue purposes (51, 
52). The aim of the present study was to test the feasibility of a 
continuous non-invasive 24-h home monitoring of biovital parameters 
in RTT patients using a non-invasive, innovative wearable technology.

2 Materials and methods

2.1 Participants

The clinical trial was set as a pilot monocentric study. The study 
was approved by the Ethical Committee of Siena University Hospital, 
Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy 
(Approval code n. 23573, date 16 January 2023).

To meet the established objectives, the study was designed to 
recruit different RTT patients as a function of age, i.e., pediatric (aged 
3–13 years) vs. adolescent/adult (aged >13 years). Inclusion criteria 
were as follows: i) female positive for pathogenic MECP2 gene 
mutation (4) and clinical criteria for typical RTT (6), ii) age ≥ 3 years 
and body weight ≥ 10 kg (according to the indications for the approved 
use of the YouCare medical device in Italy); and iii) signed written 
informed consent from the patients’ parents/caregivers/legal 
guardians. Similarly, exclusion criteria were as follows: i) patients 
without RTT clinical criteria according to the guidelines; ii) patients 
negative for pathogenic MECP2 gene mutation or mutation in 
non-MECP2 genes (i.e., CDKL5 and FOXG1); iii) male RTT; and iv) 
positive history of contact dermatitis and/or known hypersensitivity 
against the textile or other materials of the sensorized T-shirts. 
Parents/caregivers/legal guardians of patients meeting inclusion/
exclusion criteria were requested to participate during a regular 
follow-up at the AOUS RTT center and a written informed consent 
was obtained.

A total of 10 RTT patients were enrolled (mean age 18.3 ± 9.4 
years, range 4.7–35.5 years) with a clinical diagnosis of typical RTT 
and proven MECP2 gene mutation. All participants received a 
structured evaluation by an expert to assess clinical severity and 
anthropometric measurements as well as specific body measures (i.e., 
chest and abdomen) to guarantee the correct fitting of t-shirts worn 
by the patients. The corresponding z-scores for head circumference 

and body mass index were calculated based on validated RTT-specific 
growth charts (53). To consider the possible effect of the presence of 
scoliosis and epilepsy on respiratory dysfunction, data regarding the 
coronal Cobb angle, presence of epilepsy, seizure frequency, and anti-
seizure medication (ASM) therapy were recorded. Scoliosis severity 
was rated: mild (Cobb angle 10°–20°), moderate (Cobb angle <40°), 
or severe (≥ 40°), according to Killian et  al. (18). Clinical stages 
distribution was as follows: stage II (n = 2), stage III (n = 3), and stage 
IV (n  = 5). The study took place at the Rett Syndrome National 
Reference Center of the AOUS.

The duration of the study was 16 weeks, which included one 
monthly visit to the center. Sensitive clinical data were anonymized by 
assigning a randomly generated integer code to each RTT patient. An 
electroencephalographic (EEG) examination was performed before 
the baseline visit according to the standard clinical follow-up of the 
patients. The systems used were a System Plus Evolution [Micromed 
SpA, Mogliano Veneto (TV) Italy], with 32 channels for pediatric 
patients (recording with gain 100 μv/cm, high pass filter 1.6 Hz; low 
pass filter 50 Hz) and Mizar 40 with 40 channels for adult patients 
(2 kHz recording and storage at 128 Hz, filter 0.3 s-70 Hz). The 
following were recorded in the study: waking, falling asleep, sleeping, 
awakening, and waking with light stimulation tests. In particular, EEG 
multifocal epileptiform activity and severe general background 
slowing were considered key EEG alterations, given their high 
frequency and relevance in the clinical course of the disease. At the 
inclusion visit, continuous and non-invasive measurements of 
oxyhemoglobin saturation (SpO2) were evaluated using pulse 
oximetry motion artifact-free technology Masimo Radical 7 (Masimo 
SET; Masimo Corp., Irvine, CA, United States).

2.2 Clinical severity

The clinical severity of the illness was assessed by validated 
scales for RTT, which were Clinical Severity Score (CSS) (54), Motor 
Behavioral Assessment Scale (MBAS) (55), Rett Syndrome Behavior 
Questionnaire (RSBQ) (56), and Multi-System Profile of Symptoms 
Scale (MPSS) (57). CSS is a specific Likert scale of 13 items designed 
to assess the natural history of key symptoms (i.e., age of onset of 
regression, somatic growth, head growth, independent sitting, 
ambulation, hand use, scoliosis, language, non-verbal 
communication, respiratory dysfunction, autonomic symptoms, 
onset of stereotypies, and seizures). The MBAS is designed to survey 
movement abnormalities, in particular extrapyramidal symptoms, 
behavioral problems, and abnormal physiological features in 
individuals with RTT. It is a Likert checklist of 37 items subdivided 
into social and communication skills and adaptive behaviors (MBAS 
I), orofacial and respiratory abilities (MBAS II), and motor abilities/
physical signs (MBAS III). The RSBQ, a Likert checklist of 45 items, 
measures behavioral and emotional features and movement 
abnormalities. RSBQ consists of 8 subdomains: general mood, 
breathing, hand behavior, repetitive face movements, body rocking 
and expressionless face, night-time behavior, fear/anxiety, and 
walking/standing. The MPSS is a Likert scale utilized to evaluate the 
frequency of symptoms in RTT patients. The scale is divided into 12 
main areas, including mental health, cardiac dysfunction, autonomic 
dysfunction, communication problems, social behavior problems, 
emotional engagement, gastrointestinal problems, motor skills, 
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neurological problems, orofacial problems, breathing, and sleep 
disorder. To evaluate possible changes in some features of RTT, the 
scale is integrated with 5 supplementary areas such as immunity 
dysfunction, infection, sensory problems, endocrine problems, 
skeletal problems, and dermatological problems.

2.3 Clinical sleep evaluation

To evaluate the effect of the sleep–wake cycle, the caregivers were 
asked to complete a patient diary in which the 24 h were categorized 
as wake-up, wakefulness, napping, night sleep onset, and night 
bedtime. Sleep quality was indirectly evaluated by the Sleep 
Disturbance Scale for Children Questionnaire (SDSC) (58). The 
questionnaire consists of 26 items grouped into 6 subscales related to 
the major sleep complaints in pediatric age: disorders in initiating and 
maintaining sleep (DIMS), sleep breathing disorders (SBD), disorders 
of arousals/nightmares (DA), sleep/wake transition disorders 
(SWTD), disorders of excessive somnolence (DOES), and sleep 
hyperhidrosis (SHY). Total sleep time and sleep onset latency were 
classified according to Bruni et  al. (58). Co-sleeping behavior 
frequency of patients was also explored.

2.4 Quality of life

The Quality-of-Life Inventory-Disability (QI-Disability) is a 
32-item questionnaire assessing the quality of life of children with 
intellectual disability (59, 60). The questionnaire is comprised of six 
domains: social interaction (7 items), positive emotions (4 items), 
negative emotions (7 items), physical health (4 items), leisure and the 
outdoors (5 items), and independence (5 items). The daily events diary 
is a Likert scale that evaluates the intensity of 6 items (hands 
stereotypes, seizures, apparent suffering aspect, irritability/agitation, 
energy, and attention). The diary is completed by the parents/legal 
tutors daily.

2.5 Continuous multiparameter monitoring 
by YouCare medical wearable device

Accyourate wearable technology consists of textile garments 
equipped with innovative non-invasive polymeric sensors on the 
clothing via ink-jet printing. The wearability and ergonomic 
characteristics of these devices allow a new way of detecting biovital 
and kinetic parameters by providing dynamic measurements of 
individual status in real-time. The YouCare “Smart T-shirt” is made of 
organic and washable fabric equipped with printed sensors embedded 
in the garment. YouCare is a certified medical device [YouCare, EC 
marking for medical device (MD type IIa), Accyourate Group SpA, 
L’Aquila, Italy] having the appearance of a T-shirt that covers the upper 
part of the chest. It was used to monitor several biovital parameters 
for 24 h in a home setting and under ordinary living conditions and 
activities. Measured and calculated parameters included heart rate 
(HR), respiratory rate (RR), skin temperature (SkT) (51, 52), and heart 
rate variability (HRV, expressed as time-domain and frequency-
domain parameters) (61). Specifically, the epoch size for the HRV 
analysis [Root mean square of successive RR interval differences 

(RMSSD)] was 10 s, which is the accepted minimum gold 
standard (61).

In addition, the kinetic parameters detected by the sensors 
provide dynamic measurements of individual status in real-time, 
given the comfortable wearability and favorable ergonomic features of 
the YouCare device. The signals taken from the sensors are tandemly 
digitized and processed by a miniaturized wearable control unit, 
which records the data and sends them to a smartphone equipped 
with the YouCare app [Accyourate Group SpA, L’Aquila, Italy] via 
Bluetooth. This process, in turn, carries out real-time data received 
and exchanged with the Accyourate cloud platform, which centralizes 
and stores the post-processing of the data collected. The cloud 
platform analyses the data through dedicated, proprietary software 
and algorithms. The raw data are analyzed on the cloud with the 
exception of a few plots analyzed on the device (i.e., smartphone) for 
the conversion of the skin temperature data. To identify artifacts, the 
algorithm reported (52) was used and subsequently discarded from 
the analysis.

YouCare has been proven effective in several clinical trials: i) 
the sports sector (both competitive and non-competitive); ii) 
protection of health in advanced age cohorts; iii) monitoring of 
fragile patients after COVID-19 infection; iv) collection of health 
datasets based on ECG measurements and their clinical 
interpretation; v) validation of innovative diagnostic methodologies 
in comparison with traditional ones; vi) applications to the military 
and industrial fields; and vii) protection of operators in high-risk 
working environments (62). Sinus rhythm was not discriminated 
from the non-sinus rhythm in the current analyses, where an 
interbeat distance of 200 ms to 1800 ms was considered acceptable 
for analysis.

The derived HRV time-domain parameters included RMSSD, 
Standard Deviation (SD) of all NN intervals (i.e., interbeat intervals 
from which artifacts have been removed) (SDNN), SD of R-R intervals 
(SDRR), RMSSD to MeanNNI ratio (CVSD), percentage of successive 
R-R intervals differing by more than 20 ms (pNNI-20), percentage of 
successive R-R intervals differing by more than 50 ms (pNNI-50), SD 
of successive differences between NN (SDSD), Mean of NN (M-NNI), 
and SDNN divided by mean NN (CVNNI). In addition, the derived 
HRV frequency-domain parameters were as follows: Low-Frequency 
power (LF), High Frequency power (HF), LF/HF ratio, normalized LF 
power (LFnu), normalized High-Frequency power (HFnu); and total 
spectral power.

The measurements of breast circumference, solar (celiac) plexus 
circumference, and shoulder-height solar plexus were also obtained 
in the study to design the individual clothing. The Accyourate clothing 
designer assigned the corresponding sensorized textiles with the 
specific fitting. At the baseline visit, an experimental kit was provided 
to each RTT patient’s family, consisting of the following items: two 
YouCare T-shirts; a control unit with an anonymous code serial 
number; and a series of accessories, including a battery charger, a USB 
cable type C, and the use of the YouCare APP. Each medical device 
was paired to the control unit with an individual patient code number 
known to the clinical staff only. To obtain reliable biovital results (i.e., 
closely reflecting the real daily life conditions of the patients) coupled 
with the need to test the compliance of the patients–caregiver pairs, 
the biovital monitoring plan was carefully scheduled with the families. 
In particular, the continuous multiparameter monitoring schedule was 
either 4 sessions weekly (week 1, week 3) or 3 (week 2, week 4) sessions 
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of 12 h duration each. During the weekend days from week 1 to 4, at 
least one session of 24 h was performed. The recording sessions, with 
a cadence of 3 sessions weekly, were therefore extended to 24 h from 
week 5 to week 12 (i.e., end of the study). To evaluate the effect of daily 
activities on biovital monitoring, the caregivers were also asked to 
complete a patient diary.

2.6 Measurement of exercise fatigue: 
percentage of maximum heart rate (Max 
HR %) and heart rate to HRV 
Low-Frequency power (HR/LF ratio)

From the continued monitoring of HR records, the percentage of 
maximum heart rate (HRmax %) was calculated as an indirect proxy 
index of fatigue and categorized according to the target heart rate. 
According to the American Heart Association definition (63), HR% 
in RTT girls was categorized based on maximum heart rate (Max HR), 
low exercise intensity (Max HR% <50), moderate exercise intensity 
(Max HR%: 50% to approximately 70%), vigorous exercise intensity 
(Max HR%: 70% to approximately 85%), and maximal exercise 
intensity (Max HR% > 85%). Given the consistently elevated Max HR 
values observed in our study, we  reasoned that RTT patients are 
usually considered fragile and motor-impaired paradoxically 
compared to young athletes under active dynamic exercise. The 
accepted model of autonomic control of HR during dynamic exercise 
indicates that the initial increase is entirely attributable to the 
withdrawal of parasympathetic nervous system (PSNS) activity and 
subsequent increase in HR is entirely attributed to increased cardiac 
sympathetic activity.

Results here indicate that: (i) an increase in exercise workload-
related HR is not caused by a total withdrawal of the PSNS, which 
follows an increase in sympathetic tone; (ii) reciprocal antagonism is 
key to transition from vagal to sympathetic dominance, and (iii) 
resetting of the arterial baroreflex (64) causes an immediate exercise-
onset reflexive increase in HR, which are parasympathetically 
mediated and follows a slower increase in sympathetic tone as 
workload increases (65). It has been previously reported that the LF/
HF ratio does not accurately measure cardiac sympathovagal balance 
(66). On the other hand, the HR/LF ratio appears to reflect 
sympathetic nervous activity and metabolic responses during 
incremental cycling exercise in healthy adults (67). Indeed, HR during 
exercise is determined by the interplay between sympathetic and 
parasympathetic nervous activity. As exercise intensity increases, the 
dominance of autonomic nervous activity is shifted from 
parasympathetic to sympathetic nervous activity, and HR linearly 
increases, which is considered to be caused by baroreflex resetting (64, 
65). The baroreflex efferent is mediated through both sympathetic and 
parasympathetic nervous signals that can influence the LF component 
of HRV (68). Moreover, the LF component is reported to be more 
strongly influenced by parasympathetic activity than sympathetic 
activity (69). Hence, it has been hypothesized that a change in HR 
corrected by the LF components could reflect sympathetic nervous 
activation by showing the relative decrease in the ability of the 
parasympathetic nervous system to modulate HR by baroreflex 
resetting during exercise. For these reasons, we decided to test the 
interpretive potential of the HR/LF ratio in the continuous home 
monitoring in our RTT patients.

2.7 Indoor Air Quality (IAQ) parameters and 
environmental data

An NHC01 weather station with indoor sensors (Netatmo, 
Boulogne-Billancourt, France) was also provided at the baseline 
visit. Key environmental data included relative humidity (range: 
0–100), air temperature (range: 0–50°C), air carbon dioxide (CO2)
(range: 0–5,000 ppm), and noise (range: 35–120 dB). The system 
was placed in the patients’ living spaces during the day and in the 
patients’ bedrooms during sleeping time (no co-sleeping together 
with parents and/or siblings was reported for this study). For the 
environmental recordings, only the patients’ hours in-home were 
considered. For the indoor air quality parameters, home monitoring 
time covered the 24 h, excluding the hours spent in schooling/
day-time centers, rehabilitation (physiotherapy, hydro-
kinesitherapy, speech therapy, music therapy, hippotherapy, and 
other rehabilitation therapies), and outdoor daily activities. The 
rationale behind evaluating these environmental data was to 
investigate their possible relationship with biophysical parameters. 
For example, important biophysical parameters, such as the RR and 
HR, can have a significant influence on the gas volume exhaled by 
the patient. Thus, from a theoretical standpoint, it is plausible that 
the CO2 and H2O molar concentrations measured in the patient’s 
room may be in relation to several biophysical parameters.

2.8 Indirect estimation of the total water 
saturation vapor pressure

Saturation vapor pressure is useful for converting the relative 
humidity monitored in the room to the partial pressure of H2O vapor 
P TH O2

0 ( ). For this, the August–Roche–Magnus formula (70) was 
applied as shown below:

 P T eH O

T
T

2

0

17 625

243 046 1094( ) ≅ +.

.

.

 (1)

The above equation contains the Celsius temperature T , and 
estimates of the water vapor partial pressure in hPa or mbar. 
Environmental temperatures in the sleeping room have been recorded 
for each patient, allowing the water saturation vapor pressure to 
be estimated.

2.9 Indirect estimation of the patient 
contribution to the water vapor pressure

The measured humidity is given by the sum of two contributions: 
the environmental humidity, R envH ( ) , and the contribution 
originated by the patient, R ptH ( ). Both parameters can change with 
time. Nonetheless, we  assumed a value of the environmental 
contribution to be constant. With this assumption, we can write:

 R R env R ptH H H= ( ) + ( ) (2)
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 R env RH H t( ) < { }min  (3)

We corrected the recorded relative humidity by subtracting the 
80% of the minimum RH  detected in the period of patient 
observation, which is a fraction of the measured RH  that would 
be ascribed to the unperturbed environment. It is presumed that a 
large fraction of the recorded minimal humidity is due to the 
environment. This heuristic and arbitrary correction is outlined in 
the following relationship:

 ( ) { }~ 0.8 minH H H tR pt R R− ⋅
 (4)

 ( ) { }~ 0.8 minH H tR env R⋅
 (5)

Using the water saturation vapor pressure estimated with Eq. 1 
and the relative humidity R ptH ( ) of Eq. 4, it was possible to retrieve 
the water vapor partial pressure PH O2  due to the patient presence in 
the sleeping room, as shown by the next equation:

 
( ) ( ) ( ) ( ) { }00

222
0.8 min

100 100

 ⋅ − ⋅⋅  ≈ =
H HH H O tH OH O

P T R RP T R pt
P pt

 
 

(6)

The conversion of relative humidity to partial pressure is discussed 
in the following reports (71, 72).

2.10 Indirect estimation of the patient 
contribution to the CO2 abundance and 
partial pressure

Carbon dioxide is a fixed mixing ratio component of the Earth’s 
atmosphere, which is almost invariant with height and geographical 
location. Variations with geographic position do not exceed ±5% of its 
global average as reported by a CO2 global mapping research (73). To 
date, an average CO2 concentration close to 420 parts per million 
(ppm) is to be expected (74).

The recorded CO2 concentration XCO2

0  was therefore corrected 
for this expected value, finding the CO2 contribution X ptCO2 ( ) 
originated by the patient:

 X pt XCO CO2 2

0
420( ) ≅ −  (7)

It can easily be shown that the CO2 partial pressure PCO2 can 
be obtained directly from the total atmospheric pressure P totair ( ) , 
another parameter measured by our environmental sensors, 
multiplied by its abundance XCO2. Similarly, considering the patient’s 
contribution X ptCO2 ( ) to the total CO2 abundance, the patient 
contribution to the CO2 partial pressure is retrieved. The equation 
below shows this property:

 ( ) ( ) ( )2 2CO CO airP pt X pt P tot= ⋅  (8)

2.11 Estimation of molarity (molar 
concentration) of H2O and CO2

Molarity ρn estimation for a given molecule can be obtained from 
its partial pressure using the ideal gas law, which states:

 

P nP V nRT
RT V

⋅ ≅ ↔ =
 

(9)

 
ρ = =

n
V

P
RT  

(10)

In the equations above, V  is the gas volume, P its pressure, n the 
mol number, and R the ideal gas constant. Data collected by the smart 
t-shirt and the available environmental sensors allow us to estimate 
the molar concentration ρ . Moreover, it is possible to estimate the mol 
number n in the sleeping room by multiplying ρ  by V :

 
N PV

RT
=

 
(11)

The estimates of ρ  and N  are easily obtained for both the water 
vapor and the CO2, obtaining ρH O2 , ρCO2, NH O2 , and NCO2  
respectively. It is noted that for all these four parameters, we  have 
preferred to estimate the patient’s contribution relative to her body mass 
(e.g., ρH O M2 / ), assuming these contributions to be proportional to the 
patient’s mass. This normalization makes it easier to investigate possible 
relationships between the above parameters with intensive biophysical 
data such as HR and BR. Combining Eqs 6, 10, we can find the final 
expression for the patient contribution ρH O2  to the water vapor molarity 
as stated per unit of body mass:

 

( ) { }0
2

2
0.8 min R

100
H HH O t

H O
P T R

RT

 ⋅ − ⋅ =
⋅

ρ
 

(12)

Including in Eq.  12 the August–Roche–Magnus formula, 
we obtain:

 

{ }
17.625

243.04

2
6.1094 0.8 min

100

T
T H H t

H O
e R R

RT

+  ⋅ − ⋅ =
⋅

ρ
 

(13)

Similarly, Eqs  7, 8, 10 provide the relationship shown in the 
equation below:

 
( ) 0

2
2

420air CO
CO

P tot X

RT

 ⋅ − =ρ  
(14)

2.12 Estimation of heat and heat flux

An important parameter to be considered is the heat flux Q from 
the body of the patient to the environment, which has a lower 
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temperature than the patient’s skin. This (heat) energy loss has to 
be  compensated by the patient body, thus bringing possible 
correlations among Q and various biophysical parameters such as HR, 
BR, and so forth. The heat flux Q is driven by two main body 
parameters: the temperature difference ( T∆ ) between the skin and 
the environment and the total body area A, as shown in the 
equation below.

 Q k A T= ⋅ ⋅ ∆

 (15)

where k  is the thermal conductivity at the body–air interface. 
We estimated T∆  by utilizing the temperature data measured by the 
environmental and wearable sensors and A as the body surface area 
(BSA) by adopting Mosteller’s equation (75) that is shown in the 
following Eq. 16.

 36
H MA BSA ⋅

≅ =
 

(16)

In this relationship, H  is the patient’s height and M  the 
patient’s mass.

2.13 Indoor Air Quality (IAQ) data analysis

As previously reported, the sensors collecting the IAQ data (RH, 
air pressure, CO2 concentration, temperatures, and so forth) were 
located in different places within the patient’s room. This circumstance 
is relevant when the diffusivity of air constituents is taken into 
consideration. The various chemical species exhaled by the patient 
reach the sensors with a different time delay, a circumstance that may 
affect the time-resolved correlation among the parameters discussed 
so far. As an example, the CO2 is preferentially accumulated in the 
lower strata of the room atmosphere; hence, its measurement would 
depend on the exact positioning of the related sensor with respect to 
the patient position. A possible difference in height between the 
patient and the CO2 sensor would heavily influence the related 
readings. Therefore, we have considered the time-averaged value of 
any parameters where possible instead of investigating their 
relationships with time-resolved data.

Time averages were computed starting from time-resolved data 
estimated by Eqs 1–16. Several extensive data such as the mean of 
patient contribution to the water vapor concentration (ρH O2 ) have 
been normalized to their mass to make easier comparisons with other 
intensive biophysical parameters (e.g., HR and RR and their time 
averages HR and RR).

2.14 Statistical data analysis

All variables were tested for normal distribution (D’Agostino-
Pearson test), and data are presented as means ± standard deviation 
(M ± SD) or medians and interquartile range for continuous normal 
distribution and non-Gaussian variables, respectively. Mann–
Whitney rank sum test (continuous non-normally distributed data), 
chi-square statistics (categorical variables with a minimum number 

of cases per cell ≥5), or Fisher’s exact test (categorical variables with 
a minimum number of cases per cell of 0.5) was accepted to indicate 
good discrimination. Relationships between variables at univariate 
analysis were tested using linear regression analysis or Spearman’s 
rank correlation. Analysis of variance was performed by one-way 
ANOVA or Kruskal–Wallis test, as required. To identify the 
discriminative power of potential predictor variables on dependent 
variables of interest, a receiver operating characteristic (ROC) curve 
analysis was performed. To test independent predictor variables for 
a dependent variable, stepwise multiple regression analysis models 
(significance entry criterion p < 0.05, with removal criterion p > 0.1) 
and stepwise multivariate logistic regression were tested considering 
the normal distribution of residuals by Kolmogorv–Smirnov test. The 
MedCalc version 20.013 statistical software package (MedCalc 
Software Ltd., Ostend, Belgium; https://www.medcalc.org 2021) was 
used for data analysis, and a two-tailed p < 0.05 was 
considered significant.

3 Results

3.1 Demographics, biometrics, and clinical 
features

Demographics, biometrics, and clinical features of the examined 
RTT patients (n = 10) at baseline are shown in Table 1. Patient’s age 
was 18.3 ± 9.4 years (range 4.7–35.5 years). The biometric z-scores 
indicate reduced somatic growth. Concerning the pathogenetic 
MECP2 mutations, half of the patients harbored early truncating 
mutations. Disease II to IV stages were presented in the examined 
group while stage I was not found due to the age inclusion criterion 
(age ≥ 3 years).

Overall, half of the patients were clinically severe according to 
disease-specific scores. While approximately half of the patients 
showed active seizures, a positive history of epilepsy was actually 
present in the overwhelming majority of the examined RTT patients. 
Indeed, the majority of RTT patients were on anti-seizure medication 
(ASM), either as monotherapy or multitherapy. Key RTT-related EEG 
alterations (i.e., general slowing of background EEG and multifocal 
EEG activity) were detected in n = 5 and n = 8 patients, respectively. 
Respiratory dysfunction was clinically evaluated at baseline visit as 
subclinical hypoxia and prevalence of apneas and/or hyperventilation 
during the daytime (i.e., MBAS sub-items). Half of the RTT patients 
exhibited SpO2 values of <90%. Majority of the patients (n = 6) 
exhibited apneas in >50% of daytime, whereas hyperventilation was 
present in n = 4 of RTT patients. Sleep disorders are known to be a key 
feature of the disease. Indeed, n = 6 patients evidenced global alteration 
of sleep quality (evaluated as SDSC score > 39). Key altered 
components were represented by DIMS, SBD, SWTD, and DOES. Of 
note, the fatigue indirect index (as measured as a specific QI-Disability 
questionnaire sub-item) suggested the presence of a fatigue status in 
approximately one-third of the patients. Muscle hypotonia (n = 7), 
bruxism (n = 9), and facial hypomimia (n = 8) were the most prevalent 
features in the examined RTT group, as well as hypoalgesia (n = 9), 
whereas hypertonia and hyperreflexia were equally distributed (n = 5) 
(Table 2). Half of the patients were non-ambulatory. Scoliosis was 
present in 6/10 patients (50% with Cobb angle >40°), whereas n = 2 
patients had surgical correction. Two patients had orthotic devices.
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3.2 Continuous wearable sensor device 
in-home monitoring

Overall, a total of 6,559.79 h of bio-vital measures were recorded, 
of which 77% of the measurements were analyzable. From a post-hoc 
analysis, discarded signals were predominantly attributed by transient 
wearability issues. As a result, a total of 5,051.04 h, including 3.176,89 h 
during the daytime (conventionally 08.00 to 22.00) and 1.874,14 h 
during the night-time (conventionally 22.00 to 08.00), were analyzed. 
Individual night sleep hours (median: 10 h, interquartile range: 10 to 
10), napping hours (median: 3 h, interquartile range: 2 to 4), and 
waking hours (mean: 10.9 ± 1.37 h, interquartile range: 9 to 13) were 
recorded by individual parents/caregivers. In particular, the total 
recorded biovital measurements corresponded to 2,238 h, 2,121 h, and 
692 h for waking, night sleeping, and napping times, respectively. 
Mean SpO2 values at baseline were 81.7 ± 5.0% in hypoxic RTT 
patients vs. non-hypoxic RTT patients showing values all within the 
physiological range (96.5 ± 1.1%). No adverse effects were reported 
during the wearable sensor device recordings, with the one exception 
of a single episode of transient irritant contact dermatitis that did not 
require protocol discontinuation. Twenty-four-hour continuous 
monitoring parameters and environmental monitoring parameters 
were examined as a function of age category (child and adolescent/
adult), disease progression (i.e., clinical stages), and pathogenic 
MECP2 mutation category (early truncating, large deletion, late 

TABLE 1 (Continued)

Variables

Mean ± SD Median [IQR] 
(range)

N/total

Sleep disorders

  Sleep hours/day 9.9 [8.5 – 10.0] (7.5 – 10.0)

  Sleep latency (min) 18.7 ± 16.3

  SDSC total score 40.6 ± 7.1 (33.5 – 54.0)

  DIMS (SDSC sub-item) 9.5 [7.5 – 12.0] (7.0 – 20.5)

  SBD (SDSC sub-item) 5.8 ± 1.4 (3.0 – 7.5)

  DA (SDSC sub-item) 3.0 [3.0 – 3.0] (3.0 – 5.5)

  SWTD (SDSC sub-item) 9.1 ± 2.7 (6.0 – 14.5)

  DOES (SDSC sub-item) 9.0 ± 1.1 (5.0 – 15.0)

  SHY (SDSC sub-item) 2.0 [2.0 – 2.0] (2.0 – 8.0)

Fatigue indirect index

  Enough energy for daily activities in 

the last month (QI-Disability sub-

item)

  Sometimes 03/10

  Often 06/10

  Very often 01/10

Qualitative data were described using numbers and percentages. Quantitative data were 
expressed as mean ± SD or median [inter-quartile range].aCalculated 𝑧-scores for age are 
referred to as standard growth charts. BMI, body mass index; CSS, Rett Clinical Severity 
Score; MBAS, Motor Behavior Assessment Scale; RSBQ, Rett Syndrome Behavior 
Questionnaire; MPSS, Multi-System Profile of Symptoms Scale; ASM, antiseizure 
medication; SpO2, oxyhemoglobin saturation; SDSC, Sleep Disturbance Scale for Children; 
DIMS, Disorders of initiating and maintaining sleep; SBD, Sleep breathing disorders; DA, 
Disorders of arousal; SWTD, Sleep–wake transition disorders; DOES, Disorders of excessive 
somnolence; SHY, Hyperhydrosis; QI-Disability, Quality of Life Inventory-Disability.

TABLE 1 Demographic and clinical features of the examined RTT patients 
(n  =  10).

Variables

Mean ± SD Median [IQR] 
(range)

N/total

Age (years) 18.3 ± 9.4 (4.7 – 35.5)

Head circumference (z-scores1) −1.9 ± 0.8 (−3.0 – 0.0)

Height (z-scores)a −1.54 ± 1.39 (−3.69 – 0.04)

Body weight (z-scores)a −2.4 [-2.5 – −1.9] (−3.6 – 1.1)

BMI (z-scores for age)a −1.3 ± 1.7 (−4.6 – 1.2)

MECP2 mutation category

  Early truncating 05/10

  Gene deletion 01/10

  Late truncating 01/10

  Missense 03/10

Disease stage

  Stage I −

  Stage II 02/10

  Stage III 03/10

  Stage IV 05/10

Disease severity

  CSS total score 21.3 ± 5.2 (15 – 32)

  MBAS total score 51.0 ± 8.1 (32.5 – 61.5)

  RSBQ total score 44.8 ± 8.9 (33 – 58)

  MPSS total score 58.5 [53.5 – 61.5] (36.5 – 63.5)

  MPSS main sub-score 40.2 ± 7.1 (25 – 48)

  MPSS supplementary sub-score 15.9 ± 2.1 (11.5 – 18.5)

Epilepsy

  Epilepsy history 09/10

  Active epilepsy 05/10

  General slowing of background EEG 05/10

  Multifocal EEG activity 08/10

  ASM therapy 8

  Mono-therapy 3/8 (37.5)

  Multi-therapy 5/8 (62.5)

Respiratory dysfunction

  Subclinical hypoxia (SpO2 < 90%) 05/10

  Apneas (MBAS sub-item)

  25% of time 04/10

  50 % of time 03/10

  75% of time 02/10

  100% of time 01/10

Hyperventilation (MBAS sub-item)

  None 05/10

  25% of time 03/10

  50 % of time 01/10

  75% of time 01/10

(Continued)
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truncating, and missense) (Figure  1 and Table  3). Among the 
measured biovital parameters, HRmax % was significantly different as 
a function of age category (p = 0.0190) (Figure  1). No significant 
differences were observed for HR, RR, and skin temperature when 
comparing pediatric RTT patients to adolescent and/or adult patients 
(p = 0.0550, p = 0.2311, p = 0.1629, respectively) (Figure 1). Significant 
age-dependent differences in HRmax % values were detectable in 
pediatric RTT patients compared to the adolescent/adult group 
(p = 0.0001 and p = 0.0190, respectively). A positive significant 
correlation between mean HR at the clinical visit and mean HR during 
24 h monitoring was evidenced (r = 0.7134, p = 0.0205), whereas no 
significant relationship regarding clinically assessed respiratory rate 
vs. 24 h monitoring evaluation was observed (r = 0.120, p = 0.749) 
(Supplementary Figure S1). As a function of disease progression, only 
RR and skin temperature values were significantly different in the 
clinical stages (i.e., II, III, and IV) (p ≤ 0.0082) (Table  3). All the 
biovital parameters were significantly associated with the MECP2 
mutation category (p ≤ 0.002) except for HR value (p = 0.3374) 
(Table 3). No statistically differences were observed as a function of 
clinical severity (i.e., CSS, MBAS, RSBQ, and SDSC) (data not shown).

3.3 HRV time-domain metrics

HRV time-domain metrics during the 24 h continuous home 
monitoring are shown in Figure 2. Although partially overlapping at 
1:00 AM, Root Mean square of successive interbeat intervals between 
all successive heartbeats (R-R) differences (RMSSD), Standard 

TABLE 2 (Continued)

Area Item Mean ± SD N/
total

Partially conserved 03/10

Lost/never acquired 06/10

Motor regression

No motor ability 04/10

Hand use 03/10

Walking ability and use of 

1-2 hands

02/10

Dyspraxia and bilateral 

pincer grap

01/10

Parkinson-like tremors 03/10

Dyskinesia

Absent 08/10

25% of time 02/10

Truncal rocking

Absent 05/10

25% of time 02/10

50% of time 03/10

Fear of movement1 02/10

Bradykinesia —

Qualitative data were described using numbers and percentages. Quantitative data were 
expressed as mean ± SD. MBAS, Motor Behavior Assessment Scale; RSBQ, Rett Syndrome 
Behavior Questionnaire. 1 as referred to the corresponding RSBQ sub-item.

TABLE 2 Motor signs in the examined RTT patients (n  =  10).

Area Item Mean ± SD N/
total

Orthotic devices 02/10

MBAS III (Motor/physical 

signs) sub-score

19.3± 6.5

Muscle Muscle hypotonia 07/10

Tendon retractions 02/10

Bruxism 09/10

Dystonia

Absent 07/10

1 joint 02/10

> 1 joint 01/10

Hypomimia

Absent 02/10

< 10% of time 08/10

Hypertonia/rigidity

Absent 05/10

Upper/lower limbs 04/10

Generalized 01/10

Hyperreflexia

Absent 05/10

> 2 joints 04/10

> 2 joints with clonus 01/10

Myoclonus

Absent 08/10

25% of time 02/10

Perception Hypoalgesia 09/10

Postural Walking ability

Ambulatory 05/10

Non-ambulatory 05/10

Scoliosis

No 02/10

Cobb angle 1° – < 20° 01/10

Cobb angle 20° – 40° 02/10

Cobb angle ≥ 40° 03/10

Surgical correction 02/10

Kyphosis 01/10

Oculogyric movements

Absent 07/10

25% of time 01/10

50% of time 02/10

Functional Ataxic gait 04/10

Hand stereotypic hand 

movements

10/10

Purposeful hand use

Conserved 01/10

(Continued)
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Deviation of all (NN) (SDNN) interbeat intervals with artifacts 
removed, CVSD (RMSSD divided by Mean NNI), and SDSD (SD of 
successive differences between NN) were increased in RTT of 
pediatric age as compared to those measured in adolescent/adult RTT 
patients (RMSSD: p  < 0.000001, SDNN: p  = 0.000001, CVSD: 
p < 0.000001, SDSD: p < 0.000001) (Figure 2).

In pediatric RTT patients, SDRR (standard deviation of R-R 
intervals), pNNI-20 (percentage of successive RR intervals differing 
more than 20 ms), pNNI-50 (percentage of successive RR intervals 
differing more than 50 ms), and CVNN (SDNN divided by mean NN) 
showed distinct increased patterns when compared to RTT of 
adolescent/adult age (SDRR: p < 0.000001, pNNI-20: p = 0.000004, 
pNNI-50: p = 0.000001, CVNN: p < 0.000001) (Figure  2). The only 
examined variable that exhibited some partially overlapping periods 
(i.e., night bedtime, napping, and night sleep initiation) was represented 
by mean NN (p = 0.0314). For the HRV time-domain parameters, all 
the examined variables were significantly different in all disease stages 
(p ≤ 0.0138) (Table 3). With a single exception of M-NNI, significant 
differences for the HRV time-domain parameters in all the MECP2 
mutation category groups were evidenced (p ≤ 0.0183) (Table  3). 
Conversely, no statistical differences as a function of disease severity 
scores (i.e., CSS, MBAS, RSBQ, and SDSC) were observed (data 
not shown).

3.4 HRV frequency-domain metrics

To understand the possible influence of sympathovagal 
imbalance, the HRV frequency-domain parameters were also 
evaluated (Figure 3). Although adolescent/adult RTT patients showed 
apparently increased values in LFnu and HFnu, no significant 
difference was observed as compared with pediatric patients 

(p = 0.0839 and p = 0.9184, respectively). Conversely, significantly 
increased LFnu/HFnu ratio and total spectral power were evidenced 
in pediatric RTT patients as compared to the adolescent/adult patient 
counterpart (p = 0.0072 and p = 0.0032, respectively). When 
examining the MECP2 mutation category, despite missing data for 
the large deletion group, the HRV frequency-domain metrics were 
significantly different (p < 0.0001) (Table  3). On the contrary, no 
statistically significant differences as a function of disease severity 
scores (i.e., CSS, MBAS, RSBQ, and SDSC) were evidenced (data 
not shown).

3.5 Environmental parameters monitoring

No statistically significant difference was observed in CO2 
levels and ambient noise levels between the pediatric and 
adolescent/adult RTT groups (p = 0.0839 and p = 0.9184, 
respectively) (Figures 4A–E). Significantly increased air humidity 
was observed in the environment of the pediatric RTT patients 
when compared to the adolescent/adult counterpart (p = 0.0072), 
albeit with a minimal overlapping time period (waking). 
Although ambient atmospheric pressure showed similar trends 
in both groups, increased values were shown in adolescent/adult 
RTT patients (p = 0.0032) and ambient temperature (p = 0.0006) 
(Figures 4A–E). Moreover, significant differences were evidenced 
in CO2, atmospheric pressure, and temperature values 
(p ≤ 0.0001) with disease stage. Significant differences were 
observed in the CO2 and atmospheric pressure when examining 
the MECP2 mutation type (p ≤ 0.0158), while no data were 
available for the large deletion mutation group (Table 3). The 
possible contribution of the environmental variables on clinical 
severity scores in RTT patients was evaluated and no statistically 

FIGURE 1

Daytime and night-time variations in biovital parameters as measured by continuous home monitoring of Rett syndrome (RTT) patients remotely. Red 
color denotes variations for RTT patients with pediatric age and blue color denotes variations for RTT patients with adult age. A significant difference 
was observed in the percentage of maximum HR [p  =  0.0021, (C)] between the two groups, whereas no significant difference was observed in heart 
rate (A), respiratory rate (B), and skin temperature (D). Data are expressed as a median and semi-interquartile range; HR, heart rate. Bold characters 
indicate statistically significant differences.
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TABLE 3 24-h continuous home monitoring in RTT patients (n  =  10) as a function of clinical stage and MECP2 mutation category.

Variable
Clinical stage

p value
MECP2 mutation category

p-value
II (A) III (B) IV (C) Early trunc. (A) Large Del. (B) Late trunc. (C) Missense (D)

Wearable monitoring 

parameters

HR (bpm) 108.6 [33−180.7] 88 [65.6−147] 90.2 [56.7−141.5] 0.686 102 [49.7−160] 95 [74.6−116.2] 73.0 [48.2−153] 100.5 [56.7−148.2] 0.3374

RR (breaths per min) 26.2 [12−55] 18.4 [10−33] 32.8 [12−53] <0.0001 27.1 [12−51] 15.3 [10−21] 18.4 [7.2−34.7] 26.5 [12−53.2] <0.0001

HR max % (%) 71.4 [58.3−80.4] 75.3 [63−82.5] 71.7 [61.6−82.1] 0.6231 71.6 [60−80.5] 76.9 [65.3−85.0] 65.5 [53.5−75.9] 74.6 [64.1−85.4] 0.0001

Skin Temperature (°C) 38.6 [38.6−39.2] 38.3 [37.4−39.4] 38.0 [35.9−39.1] 0.0082 37.35 [35.9−39.2] 32.7 [27.6−36.1] 39.3 [38.4−39.5] 38.7 [37.2−39.0] <0.0001

HRV time−domain 

parameters

RMSSD (ms) 300.1 [18.5−2021.7] 179.9 [59−341] 148 [25.2−566.9] 0.0004 246.6 [49.7−608.9] 61.5 [51.6−107.1] 90.9 [12.2−265.4] 166.4 [11.6−1334.6] 0.0004

SDNN (ms) 228.8 [21.2−1409.7] 138.9 [49.7−250.8] 104.9 [16.8−741.9] 0.0004 183.2 [37.8−550.6] 73.2 [61.101.8] 95.7 [15.5−240.1] 130.8 [12.3−924] 0.0005

SDRR (ms) 27.9 [3.12−69.2] 22.5 [4.8−48.3] 12.4 [1.3−42.4] <0.0001 24.8 [3.2−53.7] 6.9 [5.9−13.0] 9.3 [1.0−47.8] 18.7 [1.5−43.4] 0.0183

CVSD (%) 0.45 [0.02−2.03] 0.30 [0.06−0.62] 0.17 [0.02−1.24] <0.0001 0.33 [0.05−1.1] 0.15 [0.02−0.72] 0.15 [0.01−0.34] 0.25 [0.02−1.53] 0.0004

pNNI−20 (%) 70.9 [20.3−100] 77.3 [32.3−96.5] 54.7 [9.1−100] 0.0138 75.4 [44.1−100] 67.4 [60−77.3] 45.2 [4.9−88.7] 56.5 [2.8−100] 0.0008

pNNI−50 (%) 53.2 [0−100] 51.3 [12.1−86.9] 26.4 [0−81.7] 0.0079 54.7 [13.6−94.4] 35.5 [26.8−40.7] 19.24 [0−62.1] 34.5 [0−82.8] 0.0005

SDSD (ms) 292.5 [15.5−1990.3] 173.2 [45.0−333.4] 123.5 [17.6−284.7] 0.0002 210.3 [39.1−745.8] 61.5 [51.6−106.9] 85.6 [11.5−258.8] 157.7 [10.7−1324] 0.001

M−NNI (ms) 732.8 [407.1−1117.1] 492.4 [413.7−835.2] 545.2 [413.9−925.8] 0.0042 551.3 [421.2−1008.4] 681.5 [471.1−805.8] 479.7 [385.6−1024.7] 561.2 [403.8−936.6] 0.3359

CVNNI (%) 0.34 [0.03−1.45] 0.24 [0.06−0.44] 0.125 [0.02−0.33] <0.0001 0.28 [0.04−0.81] 0.09 [0.08−0.15] 0.11 [0.02−0.31] 0.11 [0.02−0.32] <0.0001

HRV frequency−

domain parameters

LFnu (Hz) 18.5 [17.7−18.7]
14,203.00 [19.8 

−15,294.0]
18.0 [16.5−103.6] <0.0001 18.7 [17.0 −12,711.0] N.A. 15,151.0 [14,321.0−15,447.0] 18.2 [17.3−18.6] <0.0001

HFnu (Hz) 81.5 [80.6 −82.3] 85.7 [84.7 −80,149.0] 83.1 [81.7−84.2] <0.0001 83.7 [81.9 −85.0] N.A. 84.8 [84.5−85.6] 81.8 [81.4−82.7] <0.0001

LF / HF ratio 0.229 [0.218−0.232] 0.185 [0.173 −0.246] 0.205 [0.190−0.225] <0.0001 0.214 [0.193−0.235] N.A. 0.181 [0.171−0.184] 0.224 [0.212−0.230] <0.0001

Total power (ms2) 379.3 [248.9−578.8] 37.1 [22.5−478.4] 95.5 [22.9−243.9] <0.0001 309.6 [90.2−553.1] N.A. 25.8 [16.9−35.5] 176.5 [10.9−278.5] <0.0001

Indoor air (IA) 

monitoring 

parameters

IA CO2 (ppm) 744.2 [407−1346] 1095.5 [760.2−1528] 808.1 [402−1495] <0.0001 887.5 [458.5−1493] N.A. 1210.7 [955.5−1634.5] 711.1 [386.5−1418] <0.0001

IA relative humidity 

(%)
65 [55−74] 65.6 [53−72] 67.3 [52−70] 0.1569 65 [55−74] N.A. 63.6 [53−72] 67.3 [52−70] 0.1569

IA noise level (dB) 40.1 [33−66] 35.5 [32−48] 42.2 [34−73] 0.2377 38.6 [33−50] N.A. 37.3 [32−48] 39.0 [32−58] 0.4203

IA atmospheric 

pressure (mbar)
1015.1 [1014.4−1021.2] 1014.4 [1013−1015.5] 1016.4 [1013.3−1020.2] <0.0001 1015.2 [1013.4−1020] N.A. 1014.4 [1013.9−1017.5] 1014.7 [1013.7−1018] 0.0158

IA temperature (°C) 22.36 [20.6−27.1] 19.62 [19.2−23.8] 22.9 [20−25.3] <0.0001 21.4 [19.5−25.1] N.A. 22.0 [18.8−23.7] 22.9 [19.1−25.5] 0.1484

PH2O (pt) (mbar) 6.8 [6.4−7.2] 6.5 [6.3−9.7] 7.4 [5.2−8.4] 0.228 7.7 [6.5−9.6] N.A. 6.4 [6.3−9.5] 6.7 [3.3−7.1] <0.0001

PCO2 (pt) (ppm) 313.5 [243.1−447.8] 693.0 [211.3−885.8] 388.1 [214.7−585.3] <0.0001 391.0 [242.0−594.6] N.A. 790.7 [713.2−905.3] 257.7 [206.7−484.3] <0.0001

HR, heart rate; RR, respiratory rate; HRmax %, percentage of maximum heart rate; Skin Temp, skin temperature; RMSSD, Root Mean square of successive RR interval differences; RR intervals, interbeat intervals between all successive heartbeats; SDNN, Standard 
Deviation of all NN intervals; NN intervals, interbeat intervals with artifacts removed; SDRR, standard deviation of RR intervals; CVSD, RMSSD divided by Mean NNI; pNNI-20, Percentage of successive RR intervals differing more than 20 ms; pNNI-50, Percentage of 
successive RR intervals differing more than 50 ms; SDSD, SD of successive differences between NN; M-NNI, Mean of NN; CVNNI, SDNN divided by mean NN; LFnu, normalized Low-Frequency power; HFnu, normalized High-Frequency power; IA, indoor air; PH2O 
(pt), water vapor partial pressure in the bedroom (patient’s contribution); PCO2 (pt), CO2 partial pressure in the bedroom (patient’s contribution); NA, data not available; A.U.; arbitrary units. Post-hoc analysis clinical stage: A > B ≈ C: RMSSD, SDNN, SDRR, CVSD, 
SDSD, M-NNI; A > B > C: CVNNI; A > C: pNNI-20, pNNI-50; B < A ≈ C: RR, IA atmospheric pressure, IA temperature; B > A ≈ C: IA CO2; C < B ≈ A: Skin Temp; B > A ≈ C: PCO2 (pt). Post-hoc analysis MECP2 mutation category: A > B ≈ C: RMSSD, SDNN, SDRR, CVSD, 
SDSD, M-NNI; A > B > C: CVNNI; A > C:pNNI-20, pNNI-50; B < A ≈ C: RR, IA atmospheric pressure, IA temperature; B > A ≈ C: IA CO2; C < B ≈ A: Skin Temp, A > B ≈ C: PH2O (pt), B > A > C: PCO2 (pt). Bold character indicates significant differences.
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FIGURE 2

Twenty-four-hour trends in time-domain parameters of heart rate. All the examined parameters (RMSSD, SDNN, SDRR, CVSD, pNNI-20, pNNI-50, 
SDSD, Mean NN, and CVNN) were statistically different between pediatric RTT patients (in red color) and adolescent/adult RTT (in blue color) (A–I). 
RMSSD, Root Mean square of successive R-R interval differences; R-R intervals, interbeat intervals between all successive heartbeats; SDNN, Standard 
Deviation of all NN intervals; NN intervals, interbeat intervals from which artifacts have been removed; SDRR, standard deviation of RR intervals; CVSD, 
RMSSD to MeanNNI ratio; pNNI-20, Percentage of successive R-R intervals that differ by more than 20  ms; pNNI-50, Percentage of successive R-R 
intervals that differ by more than 50  ms; SDSD, SD of successive differences between NN; M-NNI, Mean of NN; CVNNI, SDNN divided by mean NN. 
Bold characters indicate statistically significant differences.
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significant differences for CSS, MBAS, RSBQ, and SDSC scoring 
were observed (data not shown).

3.6 Patient-derived environmental 
parameters monitoring

Two indirectly estimated patient-derived parameters, i.e., the 
patient contribution to CO2 partial pressure [PCO2 (pt)] and H2O 
partial pressure [PH2O (pt)], were also examined in this study. Patients’ 
contributions to H2O and CO2 molar densities, as well as their heat 
fluxes, were estimated by applying Eqs  13–15. Time-resolved 
estimations of these parameters exhibited complex mutual behaviors 
and complex patterns in the scatterplots with various biophysical 
parameters. An increase in water vapor emitted by a given patient can 
be sensed by the environment sensors with a possible delay, depending 
on variables influencing the air circulationin the room. This delay 
phenomenon hinders a time-resolved comparison among 
environmental signals originating from patient-derived molecules 
with differences in diffusivity and/or molecular weight, such as H2O 
and CO2. Therefore, we have investigated possible correlations among 
the time averages of biophysical and environmental parameters, 
obtaining results summarized in Supplementary Figure S2.

This figure (Supplementary Figure S2) shows selected examples of 
the relationship (scatterplots) among data extrapolated from 
environmental sensors and biophysical parameters (HR and RR). All 
data have been averaged over time, with each point in the three images 
representing data from a single patient. In addition, the data shown in 
these plots represent a partial indirect validation of the physical/
mathematical modeling applied for estimating the patient parameters 
from the collected environmental data.

The time average of patient’s contribution to water vapor 
molar density ρH O2  shows a good linear correlation with the 

average heat flux 
Q (R2

0 8235= . ) and CO2 molar density ρCO2 
(R2

0 7566= . ). Moreover, ρH O2  and Q showed robust correlations 
with several biophysical parameters. The heat flux Q had a  
strong linear correlation with the HR (R2

0 9385= . ) and with a 
power relationship ( 0.727

3345.8NNI Q
−

≅ ⋅  ) of an 
average NNI  (R2

0 9244= . ).
Interestingly, both the patient-derived variables resulted in a 

statistical difference in RTT patients as a function of age category 
(Figures 4F,G). In particular, RTT of adolescent/adult age showed 
statistically significant increase in PH2O (pt) levels when compared to 
pediatric RTT patients (p < 0.000001) (Figure  4F). The pediatric 
population exhibited increased values in PCO2 (pt) during the night 
bedtime and first half of the day, whereas the adolescent/adult patients 
showed higher values in the second half of the day (p = 0.0056) 
(Figure 4G). Furthermore, a significant difference was observed in 
PCO2 (pt) as a function of clinical stages of the disease (p ≤ 0.0001) 
(Table 3). Moreover, both PCO2 (pt) and PH2O (pt) values differed as a 
function of the MECP2 mutation category (p < 0.0001) (Table 3).

Supplementary Figure S2 shows that ρH O2  has a high linear 
correlation (R2

0 9528= . ) with the mean HR values, and that the 
patients’ contribution to the H2O partial pressure P patH O2 ( )
using Eq. 6, is strongly correlated with the average breath rate 
values. Supplementary Figure S2A shows selected examples of 
relationships (scatterplots) among data extrapolated from 
environmental sensors and biophysical parameters (HR and RR). 
All data were averaged over time where each point in the three 
images represents data from a single patient. Data shown in these 
plots are also an indirect partial validation of the physical/
mathematical modeling adopted for estimating patient 
parameters from the collected environmental data. Panel A 
illustrates the patient contribution to water vapor relative molar 
density (per body mass unit) vs. the estimated flux of heat lost by 
the patient due to the patient–environment temperature 

FIGURE 3

Twenty-four-hour trends in time-domain parameters of heart rate variability. No statistically significant difference was found for LFnu (A) and HFnu 
(B) when compared to RTT of pediatric age (red color) and RTT of adolescent/adult age (blue color). Statistically significant differences were evidenced 
in LFnu/HFnu ratio [p  =  0.0072, (C)] and total spectral power [p  =  0.0032, (D)]. LFnu, normalized Low-Frequency power; HFnu, normalized High-
Frequency power. Bold characters indicate significant differences.

https://doi.org/10.3389/fneur.2024.1388506
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Leoncini et al. 10.3389/fneur.2024.1388506

Frontiers in Neurology 14 frontiersin.org

difference. The heat flux was estimated using skin temperature 
data collected by the wearable t-shirt, the environment 
temperature acquired by the meteorological station, and the 
patient’s height and mass. The corresponding water vapor molar 

density stemming from the relative humidity measured by the 
meteorological station was estimated. Although the interpretation 
is complex, the evidenced pattern confirms the existence of a 
clear relationship between the data.

FIGURE 4

Twenty-four-hour variation of indoor air quality parameters measured in the bedroom of RTT patients. Variations in pediatric RTT patients and 
adolescent/adult patients are shown in red and blue colors, respectively. Significant differences were observed in air humidity [p  =  0.0072, (B)], 
atmospheric pressure [p  =  0.0032, (D)], and air temperature [p  =  0.0006, (E)]. Conversely, no significant differences were observed for CO2 levels 
(A) and noise (C). Significant differences were also observed for both patient-derived parameters, PH2O (pt) [p  <  0.000001, (F)] and PCO2 (pt) 
[p  <  0.000001, (G)]. Data are expressed as a median and semi-interquartile range. Statistically significant differences are indicated in bold character. PH2O 
(pt), water vapor partial pressure originating from patients in the bedroom; PCO2 (pt), CO2 partial pressure originating from patients in the bedroom.
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Supplementary Figure S2A sketches the relationship between 
patient heat loss and patient’s contribution to water vapor relative 
molar density (per body mass unit). The patient’s contribution to 
the water vapor molar density (per body mass unit) has been 
estimated to be derived from the relative humidity measured by 
the meteorological station. Supplementary Figure S2B plot also 
confirms the existence of a strong relationship between these 
data, which can be interpreted by the augmentation in the heart 
rate, implying an increase of the emitted water vapor. Finally, 
Supplementary Figure S2C shows the relationship between RR 
and the patient’s contribution to water vapor partial pressure, 
estimated from the relative humidity measured by the weather 
station with indoor sensors. The scatterplot confirms the 
existence of a relationship between these data, which can 
be interpreted by the augmentation in the respiratory rate related 
to an increase in the emitted water vapor.

The possible contribution of the two patient-derived parameters, 
[i.e., PCO2 (pt) and PH2O (pt)], on clinical severity scores in RTT patients 
was evaluated. Interestingly, significant relationships were evidenced 
between the MPSS scale sub-items (either mean MPSS or MPSS 
supplement) and PH2O (pt) values (Supplementary Figure S3). In 
particular, for the MPSS mean scale, the most relevant negative 
significant correlations were found with mental health (r = −0.481, 
p < 0.001), autonomic (r = −0.450, p < 0.001), orofacial (r = −0.451, 
p < 0.001), respiratory (r = −0.481, p < 0.001), respiratory problems 
(r = −0.642, p < 0.001), and sleep problems sub-scores (r = −0.540, 
p < 0.001) (Supplementary Figure S3). For the MPSS supplement, 
statistically significant inverse associations with the endocrinology 
(r = −0.433, p < 0.001) and skeletal problems subscores were evidenced 
(r = −0.630, p < 0.001).

3.7 Effect of sleep–wake cycle on 
continuous wearable sensor device and 
environmental variables

All the 24-h continuous wearable sensor devices and 
environmental parameters were then examined as a function of the 
sleep–wake cycle based on caregiver diaries (Figures  1–3). No 
statistically significant differences were observed in the wearable 
parameters for all RTT patients (pediatric age p ≥ 0.4254 and 
adolescent/adult age p ≥ 0.1674; data not shown). Similarly, no 
significant difference was found in all the examined HRV time-
domain variables for all RTT patients (pediatric age p ≥ 0.5324 and 
adolescent/adult age p ≥ 0.3129). Significant differences were 
evidenced for HRV frequency-domain parameters. In particular, 
pediatric RTT patients showed significant differences in HFnu and 
total power values (p ≤ 0.0431), while adolescent/adult RTT patients 
showed significant differences in LFnu values, HFnu values, and LF/
HF ratio (p ≤ 0.0320). For the IA monitoring variables, we observed 
statistically significant differences in noise levels and PCO2 (pt) values 
in both pediatric (p < 0.001) and adolescent/adult RTT patients (noise 
levels p = 0.0024, PCO2 (pt): p < 0.0001). Moreover, CO2 levels were 
found to be  statistically different in pediatric RTT patients as a 
function of the sleep–wake cycle (p = 0.0001), whereas atmospheric 
pressure and PH2O (pt) values resulted statistically different in RTT 
patients of adolescent/adult age (atmospheric pressure p = 0.0255; PH2O 
(pt) p = 0.0063).

3.8 Effect of clinical sleep disorder (CSD) 
on continuous wearable sensor device 
parameters and environmental variables

All parameters of the wearable sensor device were evaluated for 
clinical sleep disorder (CSD) (Table 4). All the wearable monitoring 
parameters were evaluated as a function of clinical sleep disorder 
(CSD) (Table 4). Pediatric RTT patients with CSD exhibited increased 
values in SDRR, CVSD, pNNI-20, pNNI-50, and SDSD (p ≤ 0.032) 
compared to RTT without CSD. Similarly, all the HRV frequency-
domain variables were significantly increased in pediatric RTT 
patients with CSD (p ≤ 0.0008). Concerning the IA monitoring, 
increased values in atmospheric pressure (p = 0.0290) and reduced 
values in relative humidity (p = 0.0360) and PH2O (pt) values 
(p < 0.0001) were evidenced in pediatric RTT patients with CSD 
(Table 4).

Adolescent/adult RTT patients with CSD showed significantly 
reduced HRmax % (p = 0.0071) and increased skin temperature values 
(p = 0.0123) compared to adolescent/adult RTT patients without 
CSD. No statistically significant differences in HRV time-domain 
parameters (p ≥ 0.054) were evidenced in adolescent/adult RTT 
patients with CSD compared to those without CSD. For the HRV 
frequency-domain variables, similarly to pediatric RTT patients with 
CSD, we found increased values in all the parameters of adolescent/
adult RTT patients with CSD except for LF/HF ratio that resulted in 
reduced values (p = 0.0054) (Table  5). For the environmental 
monitoring, although overlapping significant trends with pediatric 
RTT patients with CSD were evidenced for relative humidity and PH2O 
(pt) values (p < 0.0001), increased CO2 levels (p = 0.0045) and lower 
temperature (p = 0.0330) were also observed.

3.9 Effect of EEG alterations on continuous 
wearable sensor device and environmental 
variables

In addition, all the 24-h monitoring parameters were evaluated as 
a function of EEG findings of multifocal epileptiform activity and 
severe general background slowing (Table 5).

RTT patients with EEG multifocal epileptiform activity showed 
statistically increased HRmax % values (p = 0.0076) and reduced skin 
temperature values (p = 0.0120). No significant differences were 
observed for the HRV time-domain parameters except for CVNNI 
(p < 0.0001). Conversely, all the examined HRV frequency-domain 
variables were statistically different. In particular, we  observed 
reduced values in LFnu (~38-fold, p < 0.0001) (p < 0.0001) and HFnu 
(p < 0.0001) together with increased LF/HF ratio (p < 0.0001) and total 
power values (approximately 2-fold, p < 0.0001) in RTT patients with 
EEG multifocal epileptiform features. Furthermore, for the IA 
monitoring, a decreased relative humidity (p < 0.0001) was found to 
be associated with a significant increase in both PH2O (pt) (p < 0.0001) 
and PCO2 (pt) (approximately 1.9-fold, p < 0.0001) (Table 5).

The other key EEG abnormality (i.e., severe general background 
slowing) apparently shows a partial overlapping pattern with that 
observed in RTT patients with EEG multifocal epileptiform activity. 
For wearable sensor parameters, we found a statistically significant 
reduction in RR (approximately 1.3-fold, p = 0.012) and skin 
temperature values (p = 0.0279). For HRV time-domain parameters, 
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the only statistically significant differences were observed for RMSSD 
values (−1.5-fold, p = 0.012), SDSD values (+1.5 fold, p = 0.012), and 
CVNNI values (+1.1, p = 0.027). Interestingly, for the HRV frequency-
domain variables, HFnu values were increased (p < 0.0001), whereas 
LF/HF ratio (p < 0.0001) and total power levels (p < 0.0001) were 
reduced. Some IA variables [i.e., relative humidity, PH2O (pt), and PCO2 
(pt)] were overlapping with the pattern observed in patients with 
EEG multifocal epileptiform activity. Of note, PH2O (pt) and PCO2 (pt) 
values were increased approximately 1.3-fold and 2.1-fold, 
respectively. Furthermore, increased CO2 levels (approximately 
1.4-fold, p < 0.0001) and reduced temperature (p = 0.0330) were also 
evidenced for RTT patients with severe general background slowing 
(Table 5).

3.10 Effects of beta blockade on 
continuous wearable sensor device and 
environmental variables

An adolescent RTT patient was under treatment with the 
beta-blocker drug propranolol due to a prolonged QTc interval. 
Therefore, the potential influence of this drug on the 24-h 
biovital monitoring was examined. A significant decrease in 
HRmax % and skin temperature values was observed (p < 0.0001) 
(Supplementary Table S1). While no significant difference was 
observed in the HRV time-domain variables (p ≥ 0.1264), all the 
examined HRV frequency-domain parameters were statistically 
different from those of the remaining untreated RTT group. In 

TABLE 4 24-h continuous home monitoring in RTT patients (n  =  10) as a function of clinical sleep disorders.

Variable Clinical Sleep disorders

Patients with pediatric age 
(n =  3)

P-value Patients with adolescent/adult 
age (n =  7)

p-value

No (n =  1) Yes (n =  2) No (n =  5) Yes (n =  2)

Wearable 

monitoring 

parameters

HR (bpm) 110.6 [34.7–173] 110.8 [65.5–160.5] 0.6874 86.1 [58–133.5] 82.9 [49–157] 0.4766

RR (breaths per min) 26.33 [12–53.7] 24.6 [11.5–39.5] 0.2163 26.33 [11.0–50.2] 32.5 [14–45.9] 0.6032

HR max % (%) 74.6 [61.1–85.6] 76.6 [66.7–82.3] 0.8280 73.1 [62.1–83.9] 68.6 [56.9–77.5] 0.0071

Skin Temperature 

(°C)

38.4 [36.7–38.8] 37.7 [36.4–39.2] 0.3524 38.2 [37.1–39.2] 38.9 [38.2–39.4] 0.0123

HRV time-

domain 

parameters

RMSSD (ms) 206.7 [13.4–1980.6] 323.9 [128.5–645.8] 0.067 103.8 [25.2–293.2] 161.7 [12.3–359.8] 0.1882

SDNN (ms) 149.3 [13.9–1379.2] 237.5 [101.6–468.2] 0.069 86.3 [22.7–238] 130.2 [15.5–274.4] 0.2769

SDRR (ms) 20.1 [2.5–66.7] 37.5 [11.3–60.5] 0.032 10.2 [1.34–34.7] 16.9 [2.3–54.3] 0.1480

CVSD (%) 0.29 [0.02–1.95] 0.55 [0.18–1.028] 0.037 0.14 [0.02–0.475] 0.21 [0.02–0.64] 0.2514

pNNI-20 (%) 59.17 [8.99–100] 89.1 [68.5–100] 0.0016 50.0 [11.1–93.3] 57.3 [6.1–100] 0.054

pNNI-50 (%) 37.7 [0–100] 78.3 [47.6–100] 0.0099 22.13 [0–75] 35.7 [0–86.4] 0.7007

SDSD (ms) 189.2 [13.6–1974.4] 321.4 [124.5–640.8] 0.0071 100.5 [17.2–290.4] 147.1 [11.9–358.2] 0.2929

M-NNI (ms) 594.3 [413.7–1109.1] 638.8 [414.9–1004.5] 0.9624 526.1 [417.5–901.3] 554.7 [403.7–1011.1] 0.6145

CVNNI (%) 0.23 [0.02–1.43] 0.4 [0.16–0.71] 0.0510 0.125 [0.02–0.34] 0.110 [0.02–0.027] 0.1556

HRV frequency-

domain 

parameters

LFnu (Hz) 18.5 [17.4–18.6] 18.67 [18.1–19.6] <0.0001 18.1 [16.3–14566.5] 700.6 [17.9–15151.0] 0.0001

HFnu (Hz) 81.5 [81.3–82.6] 82.1 [81.4–80149.0] 0.0008 83.6 [82.0–84.3] 84.3 [82.1–87.8] 0.0052

LF / HF ratio 0.230 [0.213–0.231] 0.232 [0.223–0.246] <0.0001 0.197 [0.187–0.221] 0.187 [0.181–0.221] 0.0054

Total power (ms2) 279.9 [152.5–392.5] 549.1 [435.2–664.2] <0.0001 73.4 [10.9–142.3] 90.4 [25.8–338.1] 0.0012

Indoor air (IA) 

monitoring 

parameters

IA CO2 (ppm) 933.1 [377–1,650] 959 [662.7–1444.2] 0.2607 818.7 [395.7–

1431.5]

968 [598.8–1468.5] 0.0045

IA relative humidity 

(%)

68.2 [56.5–80] 66 [54.7–74] 0.0360 64.3 [58–74.6] 58.3 [40.5–68] <0.0001

IA noise level (dB) 37.9 [32–49.9] 38.4 [33.9–44.2] 0.2377 39.8 [32.4–53.6] 37.7 [32–55.5] 0.2270

IA atmospheric 

pressure (mbar)

1014.4 [1014.0–

1021.3]

1014.8 [1012.6–

1015.6]

0.0290 1015.6 [1013.3–

1019.8]

1015.2 [1014.3–

1018.5]

0.7263

IA temperature (°C) 22.9 [15.8–27.1] 21.4 [19.3–23.7] 0.7877 22.9 [19.9–25.3] 21.4 [18.5–24.8] 0.0330

PH2O (pt) (mbar) 7.2 [6.9–7.4] 6.4 [6.3–6.5] <0.0001 8.4 [7.4–9.7] 5.2 [2.4–6.4] <0.0001

PCO2 (pt) (ppm) 406.3 [243.2–629.4] 382.5 [285.7–864.5] 0.1126 400.9 [221.7–585.3] 508.3 [178.9–790.7] 0.066

HR, heart rate; RR, respiratory rate; HRmax %, percentage of maximum heart rate; Skin Temp, skin temperature; RMSSD, Root Mean square of successive RR interval differences; RR intervals, 
interbeat intervals between all successive heartbeats; SDNN, Standard Deviation of all NN intervals; NN intervals, interbeat intervals with artifacts removed; SDRR, standard deviation of RR 
intervals; CVSD, RMSSD divided by Mean NNI; pNNI-20, Percentage of successive RR intervals differing more than 20 ms; pNNI-50, Percentage of successive RR intervals that differing more 
than 50 ms; SDSD, SD of successive differences between NN; M-NNI, Mean of NN; CVNNI, SDNN divided by mean NN; LFnu, normalized Low-Frequency power; HFnu, normalized High-
Frequency power; IA, indoor air; PH2O (pt), water vapor partial pressure in the bedroom (patient’s contribution); PCO2 (pt), CO2 partial pressure in the bedroom (patient’s contribution); 
A.U.; arbitrary units. Bold character indicates significant differences.
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particular, increased LFnu (approximately 847%, p < 0.0001), 
HFnu (p < 0.0001), and total power values (−14%, p = 0.0022) 
were observed, while the LF/HF ratio was decreased 
(approximately 36%, p < 0.0001). In the environment of the same 
RTT patient, significant increases in relative humidity 

(p < 0.0001), atmospheric pressure (p < 0.0001), and PH2O (pt) 
values (p < 0.0001) were detectable as compared to the 
environmental variables measured in the untreated RTT patients 
(not on beta-blocker). Of note, a strong depressed HR/LF ratio 
in the patient was detectable (p < 0.0001).

TABLE 5 24-h continuous home monitoring of RTT patients (n  =  10) as a function of EEG multifocal epileptiform activity and severe general background 
slowing.

Variable EEG multifocal 
epileptiform activity

P-value Severe EEG general 
background slowing

P-value

No (n =  6) Yes (n =  4) No (n =  5) Yes (n =  5)

Wearable 

monitoring 

parameters

HR (bpm) 88.9 [54.7–149.5] 97.6 [51–156] 0.7973 101.7 [51–152] 90.81 [64–152] 0.8857

RR (breaths per min) 20.6 [13.2–45.5] 26.3 [12–51] 0.6323 26.7 [102–53] 19.8 [12–38.7] 0.012

HR max % (%) 69.0 [58.2–80.4] 73.7 [62–86.7] 0.0076 71.5 [60.4–81.4] 74.1 [63–82.5] 0.5018

Skin Temperature 

(°C)

38.2 [37.5–39.3] 38.0 [36.5–39.2] 0.0120 38.48 [36.7–39.1] 38.36 [37.1–39.4] 0.0279

HRV time-domain 

parameters

RMSSD (ms) 139.7 [13.2–

344.7]

188.4 [34.2–

625.6]

0.0670 205.2 [25.2–

1,242]

129.2 [22.7–

373.9]

0.0227

SDNN (ms) 139.6 [26.3–

550.6]

117.4 [15.8–

256.6]

0.1457 151.63 [22.3–

916.1]

108.7 [21.5–

281.7]

0.0823

SDRR (ms) 18.4 [2.7–49.7] 13.6 [1.3–53.4] 0.1350 10.2 [1.34–34.7] 16.9 [2.3–54.3] 0.4696

CVSD (%) 0.25 [0.02–0.52] 0.17 [0.02–0.52] 0.0670 0.14 [0.02–0.47] 0.21 [0.02–0.64] 0.0590

pNNI-20 (%) 68.2 [25.2–100] 57.7 [6.1–100] 0.0740 50.0 [11.1–93.3] 57.3 [6.1–100] 0.8632

pNNI-50 (%) 22.13 [0–75] 35.7 [0–86.4] 0.0660 22.1 [0–75] 35.7 [0–86.4] 0.8048

SDSD (ms) 100.5 [17.2–

290.4]

147.1 [11.9–

358.2]

0.0870 100.5 [17.2–

290.4]

147.1 [11.9–

358.2]

0.0470

M-NNI (ms) 549 [414.6–976.5] 559.6 [403.7–

1005.3]

0.5479 526.1 [417.5–

901.3]

554.7 [403.7–

1011.1]

0.0270

CVNNI (%) 0.11 [0.03–0.81] 0.21 [0.02–0.27] <0.0001 0.12 [0.02–0.34] 0.11 [0.02–0.27] 0.7736

HRV frequency-

domain parameters

LFnu (Hz) 700.6 [17.9–

15151.0]

18.5 [17.2–19.7] <0.0001 700.6 [17.9–

15151.0]

18.5 [17.2–19.7] 0.7819

HFnu (Hz) 84.3 [82.0–84.8] 82.6 [81.5–84.3] <0.0001 81.9 [81.4–82.9] 84.6 [82.6–86.2] <0.0001

LF / HF ratio 0.187 [0.181–

0.221]

0.220 [0.196–

0.231]

<0.0001 0.223 [0.208–

0.231]

0.195 [0.183–

0.207]

<0.0001

Total power (ms2) 90.4 [25.8–250.3] 191.1 [70.1–

475.3]

<0.0001 243.9 [97.8–

379.3]

66.1 [32.0–158.3] <0.0001

Indoor air (IA) 

monitoring 

parameters

IA CO2 (ppm) 941.6 [476.2–

1,529]

933 [477.3–

1348.8]

0.2956 746.5 [402–1,322] 1,047 [610–1,616] <0.0001

IA relative humidity 

(%)

68.29 [56–74] 61.6 [38.2–69] <0.0001 64.3 [58–74.6] 58.3 [40.5–68] <0.0001

IA noise level (dB) 39.8 [32.4–53.6] 37.7 [32–55.5] 0.2270 39.8 [32.4–53.6] 37.7 [32–55.5] 0.2270

IA atmospheric 

pressure (mbar)

1014.8 [1013.3–

1019.8]

1015.2 [1014.3–

1018.5]

0.1182 1015.6 [1013.3–

1019.8]

1015.2 [1014.3–

1018.5]

0.7263

IA temperature (°C) 21.5 [19.5–22.9] 22.9 [18.6–25.1] 0.5141 22.9 [19.9–25.3] 21.4 [18.5–24.8] 0.0330

PH2O (pt) (mbar) 6.4 [3.3–9.7] 6.9 [6.5–7.7] <0.0001 6.7 [6.3–7.4] 9.0 [6.4–9.7] <0.0001

PCO2 (pt) (ppm) 241.5 [117.8–

713.2]

450.5 [285.7–

649.7]

<0.0001 319.3 [228.9–

517.2]

682.0 [211.3–

885.8]

<0.0001

HR, heart rate; RR, respiratory rate; HRmax %, percentage of maximum heart rate; Skin Temp, skin temperature; RMSSD, Root Mean square of successive RR interval differences; RR intervals, 
interbeat intervals between all successive heartbeats; SDNN, Standard Deviation of all NN intervals; NN intervals, interbeat intervals with artifacts removed; SDRR, standard deviation of RR 
intervals; CVSD, RMSSD divided by Mean NNI; pNNI-20, Percentage of successive RR intervals differing more than 20 ms; pNNI-50, Percentage of successive RR intervals that differing more 
than 50 ms; SDSD, SD of successive differences between NN; M-NNI, Mean of NN; CVNNI, SDNN divided by mean NN; LFnu, normalized Low-Frequency power; HFnu, normalized High-
Frequency power; IA, indoor air; PH2O (pt), water vapor partial pressure in the bedroom (patient’s contribution); PCO2 (pt), CO2 partial pressure in the bedroom (patient’s contribution); A.U., 
arbitrary units. Bold character indicates significant differences.
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3.11 Diurnal variations in minimum (nadir) 
and maximum (zenith) values for 
environmental variables and 
patient-derived parameters

To explore the possible role of sympathovagal imbalance on the 
daily activities/quality of life of the examined RTT patients, the 
frequency distribution of the daily minimum (nadir) and maximum 
(zenith) values for the measured environmental variables and the 
estimated patient-derived parameters PH2O (pt) and PCO2 (pt) were 
evaluated (Supplementary Figure S4). A significant diurnal variation 
in the minimum values of RR (p = 0.039) and the maximum values of 
skin temperature were observed (p = 0.045) 
(Supplementary Figure S2A). For the patient-derived parameters, 
we observed statistically significant differences for the PH2O (pt) and 
PCO2 (pt). In particular, the daily distribution of maximum values of 
PH2O (pt) was statistically significant (p = 0.045), with a prevalence of 
55% during the night, while the minimum value distribution of PH2O 
(pt) was close to statistical significance (p = 0.051). Of note, for the 
diurnal distribution of PCO2 (pt), distinctively mirroring patterns in 
both minimum and maximum values were detectable (p = 0.020 and 
p = 0.001, respectively). Indeed, the minimum values of PCO2 (pt) were 
recorded during the morning time (approximately 90%), whereas the 
maximum values of PCO2 (pt) were found at night time (approximately 
80%) (Supplementary Figure S4). Regarding the HRV time-domain 
variables, no statistical difference was evidenced for their daily 
distributions except for the maximum value distribution of M-NNI 
(p = 0.044) (Supplementary Figure S2B). Similarly, for the HRV 
frequency-domain parameters, no significant difference was found in 
their daily distributions, with the single exception for the maximum 
value daily variation of HFnu (a marker of PSNS activity), which 
maintained peak values during the night time (40%) (p = 0.005) 
(Supplementary Figure S4).

3.12 HR/LF ratio: relationships with age, 
key clinical RTT features, and disease 
severity scores

HR/LF ratio was found to be increased in the pediatric patients as 
compared to the adolescent/adult group (p < 0.00001) (Figure 5A). 
This index was significantly reduced in stage III patients as compared 
with the other disease stages (p < 0.00001) (Figure 5B). No significant 
differences were detectable for the sleep–wake cycle (Figure 5C) and 
clinical sleep disorder (Figure 5D). An increased HR/LF ratio was 
evidenced in patients with subclinical hypoxia (p = 0.0259) (Figure 5E). 
EEG finding of multifocal activity was associated with significantly 
higher HR/LF ratio values (p < 0.00001) (Figure  5F). Conversely, 
reduced HR/LF ratios were associated with EEG findings of general 
background slowing (p = 0.0043) (Figure 5G). HR/LF was positively 
correlated with CSS, RSBQ, MBAS, MPSS Main, and QI Disability 
(Spearman rank correlation coefficient range: 0.204 to 0.540, 
p < 0.0001). Conversely, HR/LF was inversely related to supplement 
MPSS (Spearman rank correlation coefficient: −0.522, p < 0.0001). No 
significant association was found for SDSC (p = 0.9378) (Figure 5H). 
Furthermore, significant positive associations were observed between 
the HR/LF ratio and the subscores of MPSS mental health and 

autonomic, communication, social behavior, engagement, 
gastrointestinal, motor skills, and respiratory problems (Spearman 
rank correlation coefficient range: 0.118 to 0.522, p < 0.0001). 
Conversely, the HR/LF ratio was inversely related to the subscores of 
MPSS cardiac problems (Spearman rank correlation 
coefficient − 0.487, p < 0.0001).

The HR/LF ratio was positively related to the subscores of the 
MPSS dermatological problems (Spearman rank correlation 
coefficient: 0.499, p < 0.0001) while inversely associated with the 
subscore of MPSS sensory, immune dysfunction/infection, and 
skeletal problems (Spearman rank correlation coefficient range: 
−0.089 to −0.571, p ≤ 0.0374) (Figure 5I).

3.13 Clinical sleep disorder: ROC curve 
analysis

From the ROC curve analysis, a value of PH2O (pat) ≤6.7 mbar was 
found to be a significant predictor for a clinical sleep disorder, with 
very good discriminative performance (AUC 0.962, 95% CI: 0.944–
0.975 (p < 0.0001), 100% sensitivity, 88.3% specificity, 87.2% positive 
predictive values, and 100% negative predictive values). In addition, 
weak to fair discriminative performances (AUC range: 0.562 to 0.698; 
p-value range: <0.0001 to 0.0104) were evidenced for a number of 
biovitals and HRV time-domain and frequency-domain parameters, 
together with environmental variables (skin temperature, pNNI-20, 
IA relative humidity, PCO2 (pt), RMSSD, SDNN, SDRR, CVSD, pNNI, 
SDSD, LF/HF ratio, LFnu, HFnu, and total power) (Figure 6).

3.14 Subclinical hypoxia: ROC curve 
analysis

The results of the ROC curve analysis indicated a series of 
significant predictive variables for the dependent variable of 
subclinical hypoxia showing acceptable (variables: PH2O (pt), LF/HF 
ratio, and total power; AUC range 0.686 to 0.733, p-value range: 
<0.0001 to 0.0010)or weak discriminative performances (variables: 
CVSD, pNNI-20, pNNI-50, SDSD, LFnu, and HFnu; AUC range: 
0.534 to 0.581; p-value range: 0.001 to 0.0349) (Figure 7).

3.15 Clinical sleep disorder, subclinical 
hypoxia, and EEG alterations: stepwise 
multiple regression models

From a multiple stepwise regression analysis model, clinical 
sleep disorder was found to be positively correlated with skin 
temperature, PCO2 (Pt), LFnu, and total power while inversely 
correlated with PH2O (Pt); R2 0.606, adjusted R2 0.602, multiple 
regression coefficient 0.7783, p < 0.0001 (Figure  8A). In a 
multivariate stepwise logistic regression analysis, clinical sleep 
disease in RTT patients was positively associated with PCO2 (Pt) 
(OR: 1.015, p = 0.001), LFnu (OR: 1.002, p = 0.0268), and total 
power (OR: 1.028, p  < 0.0001) while inversely correlated with 
PH2O (Pt) (OR: 5.013 ∙10−10, p  < 0.0001) (Figure  8B). Multiple 
stepwise regression analysis model of subclinical hypoxia in RTT 
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patients was positively correlated with p-NNI-20, LF/HF ratio, 
and total power while inversely related to skin temperature, PH2O 
(Pt), and HR/LF ratio; R2 0.368, adjusted R2 0.361, multiple 
regression coefficient 0.607, p < 0.0001 (ANOVA) (Figure 8C). 
Multivariate stepwise logistic regression analysis of subclinical 
hypoxia in RTT patients was found to be positively related to 
p-NNI-20 (OR: 1.008, p = 0.0071) and LF/HF ratio (OR: 1.25 E10, 
p  < 0.0001) while inversely related to skin temperature (OR: 
0.6983, p  < 0.0001) and PH2O (Pt) (OR: 0.3109, p  < 0.0001) 
(Figure 8D). Moreover, a multiple stepwise regression analysis 
model of EEG multifocal activity in RTT patients was found to 
be positively correlated with PH2O (Pt), LF/HF ratio, and total 
power while inversely correlated with PCO2 (Pt) and LFnu; R2 
0.754, adjusted R2 0.752, multiple regression coefficient 0.869, 
p < 0.0001 (ANOVA) (Figure 8E). A multivariate stepwise logistic 
regression analysis, EEG multifocal activity in RTT patients, was 
positively correlated with p-NNI-20 (OR: 1.008, p = 0.0112), PCO2 
(Pt) (OR: 1.015, p = 0.001), LFnu (OR: 1.002, p = 0.0268), and 
total power (OR: 1.0014, p = 0.0214) while inversely correlated 
with skin temperature (OR: 0.6983, p < 0.0001), LFnu (OR: 0.999, 
p < 0.0001), and PH2O (Pt) (OR: 0.2779, p < 0.0001) (Figure 8F). 
Furthermore, a multiple stepwise regression analysis model, EEG 
general background slowing in RTT patients, was positively 
correlated with skin temperature, SDRR, PCO2 (Pt), and PH2O (Pt), 
while inversely correlated with Mean NNI and LF/HF ratio; R2 
0.468, adjusted R2 0.462, multiple regression coefficient 0.684, 
p < 0.0001 (ANOVA) (Figure 8G). A multivariate stepwise logistic 

regression analysis of EEG general background slowing in RTT 
patients was found to be  positively correlated with skin 
temperature (OR: 1.7386, p < 0.0001), SDRR (OR: 1.0615, 
p < 0.0001), PH2O (Pt) (OR: 2.7325, p < 0.0001), PCO2 (Pt) (OR: 
1.0045, p < 0.0001), and LF/HF ratio (OR: 5.9 1013, p < 0.0001), 
while inversely correlated with Mean NNI (OR: 0.9947, 
p < 0.0001) (Figure 8H).

4 Discussion

RTT is known to have an increased mortality risk, previously 
linked to cardiorespiratory issues (24, 76) or pneumonia (77). Despite 
the changing survival rates, due to carefully addressing modifiable risk 
factors (76), overall clinical severity remains a key player in the 
mortality risk in classic RTT (76, 77). To date, four prior studies using 
continuous monitoring of vital signs by different wearable sensor 
devices have explored variations of biovital/physiological signs and 
HRV metrics in RTT (19, 45–47). The present pilot study demonstrates 
the feasibility of a continuous 24-h in-home non-invasive biovital 
signs monitoring by a wearable sensor device, coupled with 
continuous in-home monitoring of environmental indoor variables in 
classic RTT patients. The percentage of correctly measured and 
recorded data in the absence of significant adverse events was 
appreciable (>70%). Apart from swimming, this innovative wearable 
sensor technology allowed the patients to continue their life under 
normal conditions and activities without restrictions.

FIGURE 5

HR/LF ratio as a function of age (A), disease stage (B), sleep–wake cycle (C), clinical sleep disorder (D), subclinical hypoxia (E), EEG finding of multifocal 
activity (F), and EEG finding of general background slowing (G). Spearman rank correlation coefficients (Rho) between the HR/LF ratio and clinical 
severity (CSS, RSBQ, MBAS, MPSS Main, MPSS supplement), quality of life, and sleep disorder (H). Spearman rank correlation coefficients (Rho) between 
the HR/LF ratio and MPSS individual sub-items (I). HR, heart rate; LF, Low-Frequency power; CSD, clinical sleep disorders; SH, subclinical hypoxia; GBS, 
generalized background slowing; MPSS, Multi-System Profile of Symptoms Scale. Bold characters indicate significant differences; * p  <  0.05, ** 
p  <  0.0001, *** p  <  0.000001.
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Our results are only partially in line with those of prior 
investigations (45, 46) regarding age, sleep–wake cycle, MECP2 gene 
mutation category, and clinical severity.

Resting sinus tachycardia and a reduced HRV in RTT patients 
are currently thought to be the result of ANSD (3, 19, 20, 78). In 
particular, HRV has been exploited in a novel integrated 
autonomic-sensory measurement approach for investigating 
somatosensory function (79)where an abnormal HRV could 
improve risk stratification (80). Efforts were necessary to improve 
the understanding of heart–brain interactions (81). Influences 
between the heart and the brain include autonomic regulation 
and hemodynamic connections and HRV acting as a proxy of 
autonomic activity, which is associated with executive functions, 
decision-making, and emotional regulation (81). While a high 
HRV is indicative of adaptability and good health, a reduced HRV 
variability (i.e., a decreased vagal functioning) is reported to be a 
sign of inadequate adaptability and physiological dysfunction 
(82, 83). While technological advancements have made it possible 
to acquire high-quality HR and HRV data in resting conditions, 
several questions remain unanswered regarding the use of resting 
heart rate and HRV in a population and inter-individual (i.e., in 
response to stressors) levels (84). Previous research has 

characterized HRV (16, 20–23, 85), cardiac repolarization (28, 
29), and cardiorespiratory coupling to be valuable measures of 
autonomic dysregulation (21, 23, 30–32). Dysregulation of 
autonomic circuits represents a key feature of RTT, possibly 
contributing to sudden death (21, 24, 25, 27, 28, 78, 86, 87). Our 
study shows that HRV metrics (both time-domain and frequency-
domain parameters) are related to age (in that pediatric patients 
show higher values than adolescent/adult patients with the 
exception of LFnu), clinical stage, and MECP2 gene mutations 
category. Sleep–wake cycle impacted the HRV frequency-domain 
with a distinct pattern as a function of age. Clinical sleep disorder 
(CSD) was found to be related to higher values for five out of nine 
HRV time-domain parameters in pediatric patients, whereas no 
differences were observed in the adolescent/adult group. HRV 
frequency-domain parameters were all increased in pediatric 
patients with clinical sleep disorders. The pattern of the LF/HF 
ratio is reduced in adolescent/adult patients with clinical sleep 
disorders faced with increased spectral total power. The results 
of the present study indicate that the HRV metrics per se (i.e., the 
commonly used time-domain and frequency-domain indices) are 
unable to explain illness severity and several other features of the 
RTT phenotype. Overall, in the present study, highly reduced 

FIGURE 6

For the dependent variable clinical sleep disorder (CSD), the results of the receiver operating characteristic (ROC) curve analysis indicated a highly 
significant predictive value for PH2O (pat): cutoff criterion ≤6.7  mbar; AUC 0.926, 95% CI: 0.944–0.975 (p  <  0.0001), with very good discriminative 
performance (100% sensitivity, 88.3% specificity, 87.2% positive predictive value, and 100% negative predictive value). In addition, a series of variables 
(skin temperature, pNNI, IA relative humidity, PH2O (pat), RMSSD, SDNN, SDRR, CVSD, pNNI-20, SDSD, LF/HF ratio, LFnu, HFnu, and total power) showed 
weak to fair discriminative performance (AUC range: 0.562 to 0.698; p-value range: <0.0001 to 0.0104). For the sake of clarity, predictor variables were 
grouped into 3 graphs (A-C). AUC, area under the curve; AUC, Area Under the Curve; SE, standard error; Sens, sensitivity; Spec, specificity; +LR, positive 
likelihood ratio; −LR, negative likelihood ratio; +PV, positive predictive value; −PV, negative predictive value; Skin Temp, skin temperature; RMSSD, Root 
Mean square of successive RR interval differences; RR intervals, interbeat intervals between all successive heartbeats; SDNN, Standard Deviation of all 
NN intervals; NN intervals, interbeat intervals from which artifacts have been removed; CVSD, RMSSD divided MeanNNI; pNNI-20, Percentage of 
successive R-R intervals that differ by more than 20  ms; pNNI-50, Percentage of successive R-R intervals that differ by more than 50  ms; SDSD, SD of 
successive differences between NN; M-NNI, Mean of NN. CVNNI, SDNN divided by mean NN; IA, indoor air; PH2O (pt), water vapor partial pressure 
originating from patients in the bedroom; PCO2 (pt), CO2 partial pressure originating from patients in the bedroom; LFnu, normalized Low-Frequency 
power; HFnu, normalized High-Frequency power. Bold characters indicate significant differences.
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HRV values (RMSSD<20 ms) were observed in less than 
one-quarter of the analyzable records (data not shown). 
Therefore, our results would not confirm the findings of a 
generally reduced HRV in RTT patients as reported in at least 
two previous monitoring studies using wearable sensor devices 
(45, 46). Several factors, including methodology differences, may 
likely account for this apparent discrepancy. In the present study, 
we  can infer a persistent fatigue status, with a significant 
autonomic tone shift toward SNS predominance over the PSNS.

To date, the pathophysiological role of MECP2 gene mutations in 
the etiology of intrinsic cardiac abnormality and sudden death 
remains unclear. Several lines of evidence suggest the co-existence of 
intrinsic structural myocardial abnormalities in RTT patients (88). In 
particular, it has been recently reported that cardiac repolarization 
abnormalities are present in RTT patients, even without long QTc, and 
the T-wave morphology is related to the RTT genotype, which is a 
predictor of mortality (89). A subclinical myocardial dysfunction in 
RTT patients has been previously reported, where a mild-to-moderate 
decrease in systolic and diastolic left and right ventricles longitudinal 
function in both typical and atypical RTT without evidence of QT 
prolongation was found (26). MeCP2, a reader of DNA methylation 
and a component of a co-repressor complex, has been shown to 
regulate gene expression in chronic heart failure (90) and to attenuate 
in vitro hypoxia/reperfusion-induced injury in H9c2 cardiomyocytes 
by modulating the SFRP4/Wnt/β-catenin axis (91). Moreover, an 

altered Wnt signaling, consequent to MeCP2 protein deficiency, is 
associated with an abnormal cardiac ion channel expression and 
cellular electrophysiology underlying QT prolongation and sudden 
death in RTT (86).

Severe hypotonia is a recognized feature in RTT patients and 
MeCP2-deficient mice. Specifically, mild generalized hypotonia is 
frequently observed in the first months of life in RTT patients, with an 
abnormal muscle tone generally observed later (6). Exercise fatigue in 
RTT has been reported in both patients (33) and experimental models 
recapitulating the disease (34). It is postulated that the RTT phenotype 
is due to central and peripheral MeCP2 protein deficiency. Indeed, a 
comparison of peripheral knock-out (PKO) mice with wild-type and 
global Mecp2-deficient mice (36) showed that the majority of 
RTT-associated behavioral, sensorimotor, gait, and autonomic 
(respiratory and cardiac) phenotypes are dependent on CNS 
deficiency; most notably, hypo-activity, exercise fatigue, and bone 
abnormalities have been reported to depend on peripheral Mecp2 
deficiency. In particular, a disorganized architecture with hypotrophic 
fibers and tissue fibrosis in the skeletal muscles and altered IGF-1/Akt/
mTOR pathway have been demonstrated in Mecp2-null mice (92). 
These data suggest that hypotonia is mainly, if not exclusively, 
mediated by non-cell autonomous effects and support the hypothesis 
that defects in the paracrine/endocrine signaling system (in particular, 
GH/IGF axis) are the main cause of the observed muscular defects in 
RTT (92).

FIGURE 7

Dependent variable of subclinical hypoxia. Receiver operating characteristic (ROC) curve analysis indicated a series of statistically significant predictive 
variables with either acceptable [variables: PH2O (pat), LF/HF ratio, and total spectral power; AUC range 0.686 to 0.733, p-value range: <0.0001 to 
0.0010] or weak discriminative performance (variables: CVSD, pNNI-20, pNNI-50, SDSD, LFnu, and HFnu; AUC range: 0.534 to 0.581; p-value range: 
0.001 to 0.0349). For the sake of clarity, predictor variables were grouped into 3 graphs (A-C) AUC, area under the curve; AUC, Area Under the Curve; 
SE, standard error; Sens., sensitivity; Spec, specificity; +LR, positive likelihood ratio; −LR, negative likelihood ratio; +PV, positive predictive value; −PV, 
negative predictive value; R-R intervals, interbeat intervals between all successive heartbeats; SDNN, Standard Deviation of all NN intervals; NN 
intervals, interbeat intervals from which artifacts have been removed; CVSD, RMSSD/MeanNNI ratio; pNNI-20, Percentage of successive R-R intervals 
that differ by more than 20  ms; pNNI-50, Percentage of successive R-R intervals that differ by more than 50  ms; PH2O (pt), water vapor partial pressure 
originating from patients in the bedroom; PCO2 (pt), CO2 partial pressure originating from patients in the bedroom. Bold characters indicate significant 
differences.
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In the current study, besides exploiting biovital measurements and 
the standard HRV metrics, HR max % (maximal heart rate) and the 
HR/LF ratio were evaluated as potential markers of persistent fatigue 
and SNS activation under dynamic exercise, respectively. HR max % 
is an essential measure of cardiovascular compliance to exercise 
testing and exertion during exercise despite the commonly used 
equations for evaluating age-predicted HR max %, which showed 
poor agreement with the actual value measured by graded treadmill 
exercise tests in cooperating subjects (93). Nonetheless, the testing of 
dynamical exercise in RTT patients using traditional methods is 
challenging, while continuous monitoring of HR and HRV metrics 
during a sufficiently prolonged time period (i.e., the present study) 
offers an alternative way to identify individually based HR max %. The 
present research suggests that the HR max % of RTT patients is 
persistently in the target ranges comparable with those observed 
during vigorous exercise.

A persistent fatigue status, with significant autonomic tone shift 
toward SNS predominance over the PSNS, could be inferred from our 
continuous non-invasive 24-h in-home monitoring in RTT patients. 
In the present study, for the first time, two markers of fatigue, i.e., HR 
Max % (63) and HR/LF (67), were applied to the interpretation of the 
continuous biovital monitoring in our particular patient group. A 
comparison of RTT patients with healthy young subjects under 
intense exercise evidenced the relevance of the HR/LF ratio for 
gauging non-invasively the clinical disease severity of the disease. 
When the HRV-derived HR/LF ratio, previously confined to sports 
physiology and medicine (67), was applied to the interpretation of the 

biovital monitoring of our examined RTT patients, it was found that 
several of the features of the RTT phenotype were relatable, strongly 
suggesting that a new point-of-view is warranted. Exercise-induced 
lactic threshold is the exercise intensity at which blood concentration 
of lactate begins to increase rapidly and is often expressed as 85% of 
HR max % or 75% of maximum oxygen intake (94).

Although exercise-induced lactic threshold has not been 
determined experimentally in RTT patients, evidence of systemic 
oxidative stress is well-established (95), as well as in experimental 
mouse models recapitulating the disease (96, 97). In the present study, 
the HR/LF ratio showed a significant relationship with subclinical 
hypoxia and key EEG. Epileptic seizures affect both sympathetic and 
parasympathetic nervous systems, thus leading to changes in the 
cardiac autonomic nervous function (98). In addition, HRV changes 
in the preictal phase have been previously reported (99). Among the 
time-domain parameters, patients with EEG multifocal epileptiform 
activity showed increased CVNNI, LF/HF, and total power values. 
Conversely, a different pattern for HRV time-domain parameters was 
observed in patients with EEG findings of background slowing with 
depressed HRV frequency-domain parameters. In our study, several 
parameters were found to be related to EEG findings of multifocal 
epileptiform activity and/or EEG background slowing, although the 
reasons behind the observed associations are yet to be elucidated.

In the present study, patients’ contributions to the environmental 
water vapor [PH2O (pt)] and carbon dioxide [PCO2 (pt)] partial pressures 
were estimated and derived from the data collected by the 
meteorological station. Moreover, the (heat) energy lost by the patients 

FIGURE 8

Stepwise multiple regression models and multivariate logistic regression models in the exploration of the relationships between 24  h-monitored 
biovitals/patient-derived environmental parameters as potential predictor variables and the dependent variables clinical sleep disorder (A,B), subclinical 
hypoxia (C,D) EEG finding of multifocal activity (E,F), and EEG finding of general background slowing (G,H).
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to maintain body temperature and the skin–environment temperature 
difference (measured by the smart t-shirt sensor) were calculated. 
Although at a very early stage, correlating these data with the 
environmental and some biophysical parameters brought some 
interesting results. Regardless, given their potential relevance, these 
preliminary outcomes need confirmation by future independent 
studies. Coherently with the limits of the present pilot investigation 
and considering that no definitive conclusion can be drawn at this 
point, here we  attempted to outline a possible rationale by 
theoretical interpretation.

The mechanism leading to heat loss and water evaporation can 
be  explained by considering Eq.  1 and a realistic temperature 
difference between the environment and the body (e.g.: Tenv =15°C 
and Tbody = 36 °C). For instance, an atmospheric RHenv  of 70%, 
means that the air inhaled by a subject contains a water vapor partial 
pressure approximately P envH O2 11 7( ) = .  mbar [the saturation water 
vapor pressure of P TH O env2

0
16 7( ) is approximately .  mbar, as dictated 

by Eq. 1]. When the gas from the air reaches the body’s airways, it is 
naturally heated by the body (temperature of T Cbody =

°
36 0. ), a 

temperature at which the saturation water vapor pressure, 
P T toH O body2

0
56 7( ), .increases by approximately  mbar. Hence, 

according to Eq. 1, the relative humidity, RHbody , of the inhaled air 
suddenly drops to 20 6. %, as long as the water vapor partial pressure 
(i.e., water content) is constant. Such a low RH ofbody 20 6. %  
represents a typical humidity of desertic regions and triggers the 
mechanism of water evaporation from airway tissues. Water 
evaporation implies heating up to 100°C and the compensation of the 
latent heat of evaporation [approximately 539 Kcal/kg (2,257 kJ/kg)], 
resulting in heat loss from body tissues. Hence, the body–environment 
temperature difference drives the water evaporation from the patient’s 
body (her contribution to environmental humidity) and the associated 
heat loss. On the other hand, the patient emission of CO2 certainly is 
related to oxygen consumption, which, in turn, is driven by physical 
activity (i.e., production of mechanical energy) and thermoregulation. 
Considering the facts above, identifying a relationship between the 
environmental and biophysical parameters is logical. Of course, 
further studies are needed to validate these new preliminary variables 
and to better investigate the environment–patient axis interactions 
and the potential use of them as new disease biomarkers.

Previous research indicates that the lungs can be  primarily 
involved in the pathophysiology of respiratory dysfunction in RTT. A 
possible mechanistic explanation comes from the observation of a 
surfactant deficiency in Mecp2-deficient mice as a consequence of a 
previously unrecognized lung lipid perturbation due to accumulation 
of neutral lipids in the lung against decreased surfactant phospholipids 
(100). potentially contributing Intriguingly, surfactant dysfunction 
causes ground glass opacities and bronchial thickening, which is 
comparable with the computed tomography observation in RTT 
patient lungs (14). However, the role of changes in PH2O (pt) in the 
RTT severity and progression should be considered in the study and 
certainly worthwhile for further investigation.

It is known that water evaporation is mainly driven by temperature 
differences and the difference between body and environment 
temperature could play a central role in the explanation of our 
findings. Of course, further studies are needed to validate these new 
preliminary variables and better investigate the environment–patient 
interactions and the potential use of them as new disease biomarkers.

Continuous monitoring of vital signs has potential value in the 
diagnosis and/or rescue of critically ill patients (101). In parallel with 
the technology of wearable wireless sensors for vital signs monitoring, 
the use of quantitative data and mathematical models to understand 
and treat disease is advancing rapidly.

Future studies are needed to address the possible role of the 
identified environmental variables and deepen the present 
investigation by complementing the results with a multicentric case–
control design, complimentary polysomnography and kinetic 
analyses, and interfacing the biochemical correlates of the 24-h 
continuous non-invasive multiparameter home monitoring in 
RTT patients.
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Glossary

ANSD Autonomic nervous system dysfunction

ASM anti-seizure medication

A.U. arbitrary units

AUC Area Under the Curve

CO2 carbon dioxide

CSD Clinical Sleep Disorder

CSS Rett Clinical Severity Score

CVNNI SDNN divided by mean N-N

CVSD RMSSD to Mean NNI ratio

ECG electrocardiography

EEG electroencephalography

EIA exercise-induced asthma

HF High-frequency power

HFnu normalized High-Frequency power

HR Heart Rate

HRmax % percentage of maximum HR

HRV Heart Rate Variability

IAQ Indoor Air Quality

LF Low-frequency power

LFnu normalized Low-Frequency power

LF/HF Low-frequency power to high-frequency power ratio

MBAS Motor Behavioral Assessment Scale

MECP2 Methyl-CpG-binding protein 2 gene

M-NNI mean of N-N

MPSS Multi-System Profile of Symptoms Scale

N-N intervals interbeat intervals from which artifacts have been removed

PCO2 (pt) the patient contribution to the CO2 partial pressure

PH2O (pt) the patient contribution to the H2O partial pressure

pNNI-20 percentage of successive R-R intervals that differ by more than 20 ms

pNNI-50 percentage of successive R-R intervals that differ by more than 50 ms

QI-Disability Quality-of-Life Inventory-Disability

RSBQ Rett Syndrome Behavior Questionnaire

CSD Rett Clinical Severity Score

RMSSD Root Mean square of successive R-R interval differences

RR Respiratory Rate

R-R intervals interbeat intervals between all successive heartbeats

RTT Rett syndrome

SD standard deviation

SDNN SD of all N-N intervals

SDRR SD of R-R intervals

SDSC Sleep Disturbance Scale for Children Questionnaire

SDSD SD of successive differences between N-N

SkT skin temperature
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