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Surgical decision-making for glioblastoma poses significant challenges due to 
its complexity and variability. This study investigates the potential of artificial 
intelligence (AI) tools in improving “decision-making processes” for glioblastoma 
surgery. A systematic review of literature identified 10 relevant studies, primarily 
focused on predicting resectability and surgery-related neurological outcomes. 
AI tools, especially rooted in radiomics and connectomics, exhibited promise 
in predicting resection extent through precise tumor segmentation and tumor-
network relationships. However, they demonstrated limited effectiveness in 
predicting postoperative neurological due to dynamic and less quantifiable 
nature of patient-related factors. Recognizing these challenges, including 
limited datasets and the interpretability requirement in medical applications, 
underscores the need for standardization, algorithm optimization, and addressing 
variability in model performance and then further validation in clinical settings. 
While AI holds potential, it currently does not possess the capacity to emulate 
the nuanced decision-making process utilized by experienced neurosurgeons 
in the comprehensive approach to glioblastoma surgery.
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Introduction

High-grade gliomas (HGG) stand as the most prevalent and deadly primary malignant 
brain tumors in adults. Among these, glioblastoma (GBM) is the most frequent malignant 
brain tumor, constituting 14.2% of all tumors and 50.9% of all malignant tumor. In the 
United States, its incidence is reported at 3.27 per 100,000 population. Typically affecting 
individuals with a median age of 65 years, GBM exhibits a remarkably poor overall survival, 
despite the implementation of combined radio-chemotherapy. Survival durations typically 
range between 15 and 17 months, with a median survival of only 8 months (1).

The decision-making process for surgical interventions in patients with GBM is inherently 
challenging, suffering from a lack of clear guidelines, particularly regarding the choice between 
biopsy and resection. Surgeons are confronted with the intricate task of assessing resectability, 
carefully balancing the advantages of decompression and cytoreduction against the potential 
neurological consequences. Navigating the diverse clinical landscape characterized by varied 
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glioma molecular subtypes, tumor locations, sizes, eloquent area 
involvement, and co-existing medical complexities poses a formidable 
challenge (2).

Moreover, while individual surgeons manifest considerable 
variability in their clinical judgment regarding surgical resectability, 
aggregated responses from a large number of surgeons prove to 
be more consistent and predictive. Sonabend et al. (3) demonstrated 
a robust correlation between surgical resectability in GBM patients 
and defined GBM resectability through the wisdom of the crowd. 
Their study, derived from the pooled responses of 13 surgeons and the 
percentage of contrast-enhancing tumors, revealed a significant 
correlation. Despite notable variability in individual surgical goals 
among neurosurgeons, the resectability index, derived from the 
pooled responses of surgeons, exhibited a strong correlation with the 
percentage of contrast-enhancing residual tumor.

Recognizing cognitive biases and understanding decision-making 
processes are pivotal in enhancing patient care, especially in 
neurosurgery where errors carry significant consequences. The Dual 
Process Theory (DPT) illuminates two cognitive processes – analytical 
and rapid, unconscious and biased implicit processes. Despite the 
prevalent belief in analytical decision-making, much of daily clinical 
decisions are influenced by the rapid and unconscious implicit system, 
leading to inherent human biases (4). The growing adoption of AI, 
machine learning (ML), and deep learning (DL), particularly with the 
analysis of extensive datasets, presents a compelling foundation for 
developing an AI-based prediction and probably decision-
making systems.

AI encompasses the use of computers and technology to mimic 
intelligent behavior and critical thinking, similar to humans. Within 
AI, ML is a subset that employs methods capable of automatically 
identifying patterns in data for predicting future data or making 
decisions under uncertainty. The learning process in ML can take the 
form of supervised or unsupervised learning. Supervised learning 
establishes a pattern connecting inputs to outputs using a labeled set 
of input–output pairs, for tasks like classification and regression. In 
contrast, unsupervised learning extracts patterns or structures from 
input data without relying on labeled data or predefined outcomes. 
Such learning algorithms extract patterns from input data without 
predefined outcomes, revealing insights that may not be immediately 
apparent, for example, personalized treatment strategies and hidden 
disease patterns. ML/AI techniques have become increasingly 
important in healthcare applications, providing innovative solutions 
to various challenges in clinical settings (Table  1). For example, 
supervised learning methods, such as classification and regression, are 
often developed for disease diagnostics and prediction, as well as 
stratifying individuals based on risk factors. Notably, ML algorithms 
have been shown to analyze medical imaging data using Convolutional 
Neural Networks (CNNs)-based networks, enabling accurate and 
efficient detection of anomalies in radiology or pathology images (11, 
12). The integration of DL, ensemble methods, and reinforcement 
learning further improves the capabilities of ML applications in 
healthcare, paving the way for more precise diagnostics, optimized 
treatment strategies, and improved patient outcomes. As these 
techniques continue to evolve, they hold the potential to transform 
healthcare delivery, making it more personalized, efficient, and 
data driven.

In recent years, AI applications in medicine, spanning various 
medical specialties, have experienced significant growth. A notable 

advancement in radiology involves the transformation of 
biomedical images, such as magnetic resonance imaging (MRI), 
into mineable data, coupled with their analysis using AI 
techniques—commonly referred to as “radiomics” (13). Radiomics 
aims to extract quantitative and reproducible information from 
diagnostic images, focusing on the analysis of complex patterns that 
may be challenging for the human eye to discern or quantify. This 
approach entails capturing properties of tissues and lesions, 
including shape and heterogeneity. In the realm of brain tumors, 
radiomic research is dedicated to identifying features that describe 
the tumor and its microenvironment. The overarching objective is 
to construct predictive models for various tumor variables and 
patient outcomes. Notably, these radiomic models surpass their 
clinical counterparts in performance, offering predictions for 
outcomes in GBM, such as overall survival (OS), progression-free 
survival, molecular subtypes, and genetic alterations (13). The 
literature is increasingly featuring AI tools designed to predict the 
resectability of GBM. Table  1 summarizes some of the 
methodologies, evaluation techniques, and outcomes for AI/ML 
models in glioma imaging and prediction.

The main goal of this study is to conduct a thorough literature 
review, concentrating on current AI tools. The objective is to 
analyze a wide range of predictive factors, both tumoral and 
non-tumoral, along with their potential interactions. This review 
explores the use of AI tools in the context of surgical decision-
making for GBM patients, with a specific focus on predicting 
resectability and surgery related early postoperative 
neurological outcomes.

Methods

The literature search for the study involved the use of three 
bibliographic databases (Pubmed, Web of Science, Google Scholar, 
and Scopus) from their respective inception date to January 2024. The 
search term constructs used in all three databases were “connectomics” 
or “radiomics” and “AI” or “deep learning” or “machine learning” and 
“glioblastoma” and “surgical” or “decision making.” This search string 
generated a total of 117 articles. Two investigators (AMM and FF) 
independently screened the titles, abstracts, and full texts retrieved 
from all three databases to determine the eligibility of the studies. 
Publications outside the scope of neurosurgery, preclinical studies, 
non-peer reviewed, duplicates, and GBM/HGG studies focused on AI 
or ML at the molecular level were excluded from the study. The study’s 
inclusion criteria involved the application of an AI model developed 
by the researchers to patients with GBM. The focus was on using the 
AI model for surgical decision-making, specifically assessing 
resectability and estimating surgery-related neurological outcomes 
and complications. Out of the 117 studies generated, only 10 studies 
were included in this study.

Results

Studies utilizing AI tools in surgical decision-making are grouped 
under 2 headings: predicting resectability and predicting postoperative 
complications and neurological outcome. The studies are listed in 
Table 2.
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Predicting resectability

Numerous prior studies conducting volumetric assessments and 
assessing resection extent have concentrated on the percentage of the 
removed tumor volume. A classification system that integrates both 
relative tumor reduction and absolute residual tumor volume has been 
suggested. However, there is a presumption that the absolute residual 
volume might carry more significance as a prognostic factor than the 
relative reduction of tumor volume. In 2022, the Response Assessment 
in Neuro-Oncology (RANO) Resect Group introduced a revised 
classification system, which, in contrast to the earlier systems, 
incorporates only absolute residual tumor volumes. Upon application 
of the resulting extent of resection (EOR) classification system, 
distinct survival outcomes were observed among the respective 
categories. Patients stratified into “supramaximal contrast enhancing 
(CE) resection” demonstrated superior outcomes compared to those 
with “maximal CE resection,” with the latter group being superior to 
patients with “submaximal CE resection.” Patients designated as 
“biopsy” exhibited the least favorable progression-free survival (14). 
The findings of this study offer a basis for developing an AI-powered 
prediction system to evaluate the extent of resection in gliomas.

Segmentation proves valuable not only for evaluating tumor 
borders but also for AI tools to efficiently segment and quantify the 
volume of both CE and non-CE areas of GBMs. An integral aspect of 
image processing in GBM, characterized by heterogeneity, is the 
precise segmentation of distinct tumor components, including viable 
tumor, edema, and necrosis. Fathi Kazerooni et al. (15) utilized a semi-
automatic multi-parametric approach, integrating anatomical 
magnetic resonance imaging (MRI) with physiological modalities like 
diffusion-weighted imaging (DWI) and perfusion-weighted imaging 
(PWI). Thirteen GBM patients underwent T2-weighted imaging, 

PWI, and DWI. The spatial fuzzy C-means algorithm combined with 
region growing enhanced the delineation of pathogenic regions.  
The multi-parametric approach, coupled with semi-automatic 
segmentation, demonstrated a sensitivity, specificity, and dice score 
exceeding 80%, showcasing its potential for precise tumor 
characterization and efficient pre-surgical treatment planning.

Marcus et  al. (16) developed a grading system based on 
preoperative MRI features to predict surgical resectability in gliomas. 
The study utilized an artificial neural network (NN) for improved 
prediction compared to traditional methods. The grading system 
incorporated anatomical features from pre-operative MRI, including 
the contrast-enhancing tumor was within 10 mm of the ventricles; 
bilateral location if the contrast-enhancing tumor extended into the 
corpus callosum; eloquent location if the tumor extended into motor 
or sensory cortex, language cortex, insula, or basal ganglia; large size 
if the diameter exceeded 40 mm; and associated edema if hypointensity 
extended more than 10 mm from the contrast-enhancing tumor. Each 
feature was equally weighted, and lesions were categorized based on 
the sum of points; as low (0–1 points), moderate (2–3 points), or high 
complexity (4–5 points). The study demonstrated varying rates of 
complete removal of CE tumors, ranging from 3.4% in high 
complexity lesions to 50.0% in low complexity lesions. Despite study 
limitations, including a small dataset and retrospective design, the 
authors believe the ANN can aid surgical decision-making and 
contribute to more meaningful comparisons in future research.

Kommers et  al. (17) proposed a Standardized Glioblastoma 
Surgery Imaging Reporting and Data System (GSI-RADS) based on 
an automated method of tumor segmentation to provide standardized 
reports on tumor features relevant for GBM surgery. Tumor parts were 
segmented using both a human rater and an automated algorithm, 
and the extracted tumor features were compared. The study 

TABLE 1 Examples of AI tools for glioma imaging and prediction.

Focus of the Study Methodology Evaluation 
Technique

Outcome/Performance Remarks

Predicting surgical 

resectability (5)

Artificial NN Receiver Operator 

Characteristic (ROC) curves; 

Area Under Curve (AUC) and 

accuracy calculations

AUC of 0.87–0.92; Accuracy of 83–87% Compared against 

logistic regression and a 

standard grading 

system

Differentiation between 

non-enhancing tumor and 

vasogenic edema (6)

Support Vector Machine 

(SVM) Classifier

ROC analysis Misclassification error reduced to 2.4% with 

post-processing

Utilized T1 perfusion 

MRI parameters

Prediction of tumor 

recurrence or necrosis (7)

Convolutional NN combined 

with Long Short-Term 

Memory (CNN-LSTM)

AUC, AUPRC, F1-score AUC of 0.83; AUPRC of 0.87; F1-score of 0.74 Combined MRI data 

and clinical features

Differentiating vasogenic 

edema from non-

enhancing tumor (8)

DL with multimodal MRI Accuracy, sensitivity, 

specificity

Accuracy up to 90.3%; sensitivity and specificity 

significantly better than neurosurgeons

Histology examination 

of the resected tissue for 

validation

Differentiation between 

pseudo-progression and 

true progression (9)

DL model ROC analysis; Leave-one-out 

cross-validation

AUC up to 0.92; Accuracy up to 87% for 

predicting PsP

Utilized preoperative 

and intraoperative MRI 

data

Predicting regions of local 

recurrence in GBM (10)

ML with voxel-based 

radiomic features

AUC, Accuracy, Precision, 

Recall, F1 Score, Cohen’s 

Kappa

AUC of 0.81 ± 0.09, Accuracy of 0.84 ± 0.06, 

Precision of 0.48 ± 0.24, Recall of 0.76 ± 0.22, F1 

Score of 0.53 ± 0.17, Cohen’s Kappa of 

0.45 ± 0.18

Utilized postoperative 

MRI data

NN, Neural network; DL, Deep learning; ML, Machine Learning; MRI, Magnetic resonance imaging.
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demonstrated agreement between automated and manual 
segmentations in various tumor features, including laterality, 
contralateral infiltration, tumor volumes, multifocality, location 
profiles, residual tumor volumes, resectability indices, and tumor 
probability maps via an open access software.

Zanier et  al. (18) developed and validated a ML model for 
segmentation on MRI scans, enabling the assessment of percentage-
wise tumor reduction post-intracranial surgery for gliomas. The 
preoperative segmentation model (U-Net) utilized MRI scans from 
1,053 patients from the Multimodal Brain Tumor Segmentation 
Challenge (BraTS) 2021 and those who underwent surgery at the 
University Hospital in Zurich. Evaluation was conducted on a holdout 
set of 285 images from the same sources. The postoperative model was 
created with 72 scans and validated on 45 scans from the BraTS 2015 
and Zurich dataset. The algorithm determined the extent of resection 
in 44.1% of the cases.

The conventional strategy in surgical neuro-oncology aims to 
preserve function in eloquent areas, primarily within the left dominant 
hemisphere to prevent aphasia. In non-eloquent regions, particularly 
outside the left perisylvian areas, surgery is often performed in asleep 
patients, potentially utilizing motor-evoked potentials to prevent 
hemiplegia in cases involving or near the central area. Surgical 
selection and planning traditionally focus on the local topography of 
the glioma, with limited considerations for the entire brain circuitry. 
However, the emerging field of mapping macro-scale neural 
connectivity has led to a reevaluation of classical cognitive models. 
This paradigm shift advocates moving from a localized understanding 
of brain processing to adopting a meta-networking theory of cerebral 
functions (19). Adopting the perspective of dynamic interactions 
characterized by fluctuations between segregation and integration in 
functional connectivity, contemporary surgical neuro-oncology is 
oriented toward achieving a connectome-based resection (20). This 
entails removing the diffuse neoplasm until real-time detection of 
critical cortico-subcortical circuits that underlie various functions 
such as movement execution, somatosensory feedback, visual 

function, visuospatial cognition, language (including articulatory, 
phonological, verbal semantic, and syntactic processing), and higher 
cognitive functions like executive functions (notably working memory 
and mental flexibility), multimodal semantics, and mentalizing. A 
notable insight is the substantial variability observed at the cortical 
level, contrasting with minimal variability at the subcortical level. A 
two-level model of inter-individual variability proposed by Duffau is 
characterized by high cortical variation and low subcortical variation 
suggests careful assessment of connectomics for surgical planning (21).

Many researchers performed AI tools to predict the resectability 
based on connectomics to better assess the postoperative 
neurological outcome. Connectomics, the investigation of the brain’s 
entire neural connections, known as the ‘connectome,’ is centered 
around the complex white matter pathways responsible for 
transmitting information between cortical and subcortical 
structures. The initiation of the Human Connectome Project (HCP) 
in 2010 has been a driving force behind the surge in interest in 
connectomics within both cognitive neuroscience and neurosurgery, 
serving as a watershed moment, instigating extensive exploration 
into the realm of functional brain connectivity. The persistent effort 
to unravel the intricate functional networks and connections within 
the nervous system remains an area of compelling potential for 
glioma surgery (22).

The definition of eloquence in neurosurgery has evolved, with 
the primary objective of brain tumor surgery being the optimal 
balance between oncologic treatment and preserving neurological 
function (23). While maximizing tumor resection enhances survival, 
the occurrence of new postoperative neurological deficits diminishes 
quality of life and overall survival (24–26). Traditional preoperative 
mapping methods focus on eloquent areas such as language, visual, 
and sensorimotor networks. However, these techniques, including 
diffusion tensor imaging (DTI), navigated transcranial magnetic 
stimulation (rTMS), and functional MRI, present logistical 
challenges and require specialized personnel (27). Beyond traditional 
eloquent areas, non-traditional regions affecting personality, 

TABLE 2 Studies utilizing AI tools in surgical decision-making.

Author, Year Data AI model description

Fathi-Kazerooni, 2015 MRI DL for segmentation, using advanced NN to delineate tumor boundaries

Marcus, 2020 MRI Artificial NN to recognize complex patterns in imaging data

Kommers, 2021 MRI Deep NN for enhanced segmentation, along with sophisticated algorithms for tumor and tissue 

differentiation

Zanier, 2023 Multimodal Brain Tumor Segmentation 

Challenge (BraTS)

ML for tumor segmentation

Yeung, 2021 Connectome ML with a connectome-based approach, analyzing brain network connectivity to assess tumor impact

Osipowicz, 2023 Connectome Connectomics software [for analyzing T1 MRI, DWI and resting-state fMRI data and Hollow-tree Super 

(HoTS) method for mapping and analyzing abnormal brain connectivity]

Morell, 2022 Connectome Connectomics platform, a ML tool for comprehensive brain network mapping and analysis to make 

surgical decisions

Luckett, 2023 Resting State fMRI 3D convolutional NN for fMRI data, extracting features from brain activity patterns to predict surgical 

outcomes

Caverzasi, 2016 Residual bootstrap q-ball fiber tracking ML for DTI analysis for surgical planning

Ille, 2022 nTMS, Connectome Integrated ML for non-invasive mapping with nTMS and connectome data to enhance surgical accuracy

ML, Machine learning; DL, Deep Learning; NN, Neural network; MRI, Magnetic resonance imaging; DWI, diffusion weighted imaging; DTI, Diffusion tensor imaging; fMRI, Functional 
Magnetic resonance imaging; nTMS, Navigated transcranial magnetic stimulation.
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executive function, visuospatial abilities, metacognition, semantic 
memory, and other cognitive functions also impact patients’ quality 
of life. Understanding and preserving these non-traditional eloquent 
areas, encompassing salience, default mode, limbic, central executive, 
and dorsal attention networks, is crucial. Moving beyond a 
localizationist paradigm, the modern brain mapping approach 
recognizes function within large-scale brain networks and 
sub-networks, rather than fixed anatomical areas. To minimize the 
risk of neurologic deficits, it is imperative to develop mapping tools 
capable of identifying both traditional and non-traditional eloquent 
areas. Quicktome™, a novel cloud-based platform utilizing 
machine-learning and reparcellation techniques, addresses the 
limitations of existing technologies by accurately mapping brain 
networks in anomalous anatomy, such as brains with tumors. 
Quicktome™ was developed through the integration of machine-
learning techniques to produce reliable visualizations of crucial brain 
networks. These visualizations can be utilized in conjunction with 
standard neuronavigation, aiming to reduce the occurrence of 
deficits (28, 29).

The potential of Quicktome™ appears promising for evaluating 
the influence of brain tumors on large-scale networks, including both 
traditional and non-traditional eloquent areas, during preoperative 
planning. Morrell et al. (30) used this machine-learning platform to 
evaluate eloquent brain regions in patients undergoing brain tumor 
resection, employing a thorough analysis of large-scale brain 
networks. Of the 100 participants, the central executive network 
exhibited the highest incidence of alteration (49%), followed by the 
default mode (43%) and dorsal attention networks (32%). Notably, 
patients with preoperative deficits demonstrated a significantly 
higher number of affected networks compared to those without 
deficits (average 3.42 vs. 2.19, p < 0.001). Moreover, individuals 
without neurologic deficits manifested 2.19 affected and 1.51 at-risk 
networks, predominantly associated with non-traditional eloquent 
areas (p < 0.001). Even in patients lacking evident deficits on standard 
neurologic exams, non-traditional eloquent areas were frequently 
affected. Integrating machine-learning techniques for non-invasive 
brain mapping into clinical practice holds promise for preserving 
higher-order cognitive functions linked to these affected networks in 
neuro-oncology patients.

Luckett et al. (31) introduced a 3D Convolutional Neural Network 
(3DCNN) designed for mapping language and motor resting-state 
networks using minimal resting-state functional MRI (RS-fMRI) data. 
The 3DCNN, trained on diverse datasets, demonstrated a robust 96% 
out-of-sample validation accuracy. Control data comparisons revealed 
an impressive 97.9% similarity in mappings with 50 or 200 RS-fMRI 
time points. In patients with GBM multiforme, the 3DCNN accurately 
mapped language and motor networks, showcasing its effectiveness in 
presurgical planning. The study revealed the AI potential of the 
3DCNN in revolutionizing preoperative planning for GBM 
multiforme resection, emphasizing the significant reduction in scan 
time and improved surgical outcomes.

Cepeda et al. (10) assessed a predictive model for identifying 
future recurrence areas in GBM using voxel-based radiomics analysis 
of MRI data. Conducted across multiple institutions, the retrospective 
analysis included GBM patients who underwent complete resection 
of enhancing tumors, with 55 meeting the study criteria. The cohort 
was divided into training (N = 40) and testing (N = 15) sets. Follow-up 
MRI provided ground truth for defining recurrence, while 

postoperative multiparametric MRI enabled extraction of voxel-
based radiomic features. Deformable co-registration aligned MRI 
sequences, facilitating segmentation of the peritumoral and 
enhancing tumor regions. Voxels overlapping between these areas 
were labeled as recurrence, others as nonrecurrence. Four machine 
learning classifiers were trained, with the Categorical Boosting 
(CatBoost) model achieving the best performance on the test set 
(AUC = 0.81 ± 0.09, accuracy = 0.84 ± 0.06) using region-based 
evaluation. The study demonstrated accurate prediction of future 
recurrence regions, suggesting potential benefits for optimizing 
surgical and radiotherapy strategies to enhance patient survival 
in glioblastoma.

Predicting postoperative complications 
and neurological outcome

Although complete resection is linked to improved survival, it 
poses risks of neurological deficits, occurring in approximately 1 in 10 
patients (32). A crucial determinant of survival outcomes is the 
development of new postoperative neurological impairments, 
especially among patients aged over 60, those experiencing at least one 
new impairment exhibited the poorest survival outcome (median of 
11.6 months), whereas those without new impairments achieved the 
best outcome (median of 28.4 months) after the complete resection of 
contrast enhancing tumor (24). The repercussions of these deficits can 
be profound, impacting both the quality of life and, ultimately, the 
survival of individuals affected by GBM. Choosing a universally 
applicable surgical modality stands as the first crucial step in the 
treatment of gliomas.

Predicting the outcome of a surgical procedure is a multifaceted 
and intricate decision-making process that takes into consideration 
various parameters. This encompasses factors specific to the tumor, 
individual patient characteristics, elements related to the health 
system, and considerations tied to the surgeon’s expertise. These 
considerations encompass the accessibility of surgical tools, the 
patient’s frailty, neurological condition, existing comorbidities, and 
even psychological aspects. Additional factors such as geographical 
location, ethical and social considerations, healthcare and 
malpractice systems, and the availability of post-operative 
management and care by the neuro-oncology team add layers of 
complexity to this prediction. Surgeon-related factors also play a 
crucial role in this comprehensive assessment. The surgeon’s 
experience and their approach to the functional neurooncology 
concept are pivotal elements in this convoluted assessment. Gerritsen 
et al. (2) conducted a survey with 224 responses from neurosurgeons 
across 41 countries, predominantly male (90.2%) and with diverse 
practice settings. The study revealed significant differences in 
decision-making processes among neurosurgeons, particularly 
between academic and non-academic/private practice respondents 
and European vs. US neurosurgeons. Key factors influencing 
treatment choice for GBM patients included tumor location, 
preoperative patient functioning, and neurological morbidity. While 
most agreed on resection followed by adjuvant therapy as the best 
choice, nearly a quarter favored biopsy in older patients, citing a 
perceived risk of morbidity outweighing survival benefits. 
Perioperative factors influencing an aggressive or defensive approach 
varied based on surgeon experience, practice setting, and 
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geographical location. Tumor location and eloquence were deemed 
crucial factors, with differences observed in responses related to the 
location of tumors in or near eloquent areas. The study emphasized 
the impact of multidisciplinary neuro-oncology tumor boards and 
highlighted varying perspectives on age-related considerations in 
GBM surgery.

Efforts to formulate the decision-making process have been made 
in the literature. Ferroli et al. (33) devised the Milan Complexity Scale 
as a result of a study that evaluated consecutive elective tumor 
resection surgeries. This scale aims to predict neurological clinical 
deterioration post-surgery, incorporating factors such as tumor size, 
cranial nerve manipulation, brain vessel manipulation, posterior 
fossa location, and involvement of eloquent areas. The retrospective 
study, involving 746 patients with meningiomas and GBMs, produced 
a grading scale ranging from 0 to 8, where higher scores suggest a 
potential worse clinical outcome. No AI-based system has utilized 
this score to predict postoperative outcomes, and its applicability may 
be further challenged by the evolving definition of “eloquence.”

Our search revealed only two studies to predict postoperative 
complication or surgical outcome by AI tools.

Caverzasi et  al. (34) used a residual bootstrap q-ball fiber 
tracking to map language pathways and rated tract injury impact on 
language function after glioma resection. Residual bootstrap q-ball 
fiber tracking was used to segment eight language pathways in 35 
glioma patients. The rating scale for pathway damage significantly 
correlated with language performance. Preservation of the left 
arcuate fasciculus and superior longitudinal fasciculus correlated 
with no long-term deficits, while damage ensured deficits. The 
authors predict long-term language deficits post-surgery based on 
white matter tract integrity.

Ille et  al. (27) enrolled 60 non-aphasic patients with left 
hemispheric perisylvian gliomas to investigate the prediction of 
surgery-related aphasia (SRA) based on function-specific connectome 
network properties under different fractional anisotropy thresholds 
combining navigated transcranial magnetic stimulation. Preoperative 
connectome analysis helped predict SRA development with an 
accuracy of 73.3% and sensitivity of 78.3%. This study provided a new 
perspective of function-specific connectome analysis to investigate 
language function in neurooncological patients. A preoperative 
connectome analysis seems promising to perform risk assessments 
predicting the development of postoperative neurological deficit.

Discussion

The optimal surgical approaches for GBM remain a subject of 
ongoing debate among surgeons due to the intricate heterogeneity of 
gliomas, including factors such as location, grade, and patient-specific 
considerations. The AI tools have emerged as transformative elements 
in addressing these challenges, enhancing resectability and outcome 
prediction by capturing intricate relationships among variables. Real-
time decision support, integrating automated segmentation systems 
with immediate feedback during preoperative and intraoperative 
evaluations, is a groundbreaking concept empowering neurosurgeons 
to make informed decisions based on imaging data.

The advancement and deployment of advanced AI algorithms are 
pivotal in enhancing imaging capabilities for GBM surgery. These 
algorithms excel in precisely delineating tumors and continuously 

refining their performance through learning from diverse datasets. 
The utilization of DL techniques becomes essential for managing the 
intricate patterns and variability inherent in GBM imaging. 
Integration of multimodal imaging, incorporating data from 
functional MRI, diffusion tensor imaging (DTI), and positron 
emission tomography (PET), offers a comprehensive perspective of 
tumors and surrounding structures, thereby enhancing diagnostic 
precision and treatment strategies. Bianconi et al. (35) demonstrated 
the effectiveness of an automated U-Net algorithm for GBM 
segmentation in clinical MRI datasets, both before and after surgery. 
Their validated approach addresses challenges such as low-quality 
imaging and improves the reliability of postoperative assessments, 
crucial for advancing surgical planning and prognostic predictions 
in neuro-oncology.

While preoperative connectome analysis holds promise for 
predicting the risk of neurological deficits before surgery, the 
challenge lies in developing an AI system to evaluate postoperative 
complications and neurological outcomes. Creating such a system 
would provide neurosurgeons with access to an evidence-based 
therapeutic blueprint tailored to the diverse needs of individual 
patients. Future AI models in intracranial tumor surgery may draw 
insights from existing literature based on surgeons’ predictions for 
surgery related neurological outcomes and postoperative 
complications. The dependence on surgeons’ predictions, whether 
through AI tools or other methods, presents a fundamental flaw. 
Currently, there is a lack of studies, including those involving AI 
tools, specifically focused on developing a tool for predicting 
postoperative deterioration or surgical outcomes. Surgeons typically 
make treatment decisions based on factors such as tumor location, 
size, and interaction with surrounding structures. In a prospective 
study involving 299 patients undergoing intracranial tumor surgery, 
neurosurgeons displayed a consistent tendency to overestimate 
postoperative functional levels, especially regarding the ability to 
perform normal activities at 30 days. The assessment, using the 
Karnofsky Performance Scale, revealed that neurosurgeons 
underestimated in 15% of cases, accurately estimated in 23%, and 
overestimated in 62% (36). Future AI models in intracranial tumor 
surgery may draw from existing literature based on surgeons’ 
predictions for surgical outcomes and postoperative complications. 
However, it is noted that despite the significance of functional status, 
surgeons tend to exhibit an overly optimistic bias when predicting 
postoperative functional levels. The challenge lies in developing an 
AI system based on predictions with limited accuracy and value. 
Since surgeons often exhibit an overly optimistic bias when predicting 
postoperative functional levels, shared decision-making, involving 
patients in complex treatment choices, is considered a viable 
approach. Nevertheless, accurately predicting the impact and 
trajectory of deficits, along with their implications for the quality of 
life, remains a challenging endeavor (37–42). Designing an AI system 
to assess postoperative complications and neurological outcomes, 
granting neurosurgeons access to an evidence-based therapeutic 
blueprint for a diverse range of individual patients, presents a 
challenging task.

Utilizing AI tools in the education and training of residents raises 
additional concerns. A proactive approach is crucial to mitigate 
biases and enhance decision-making quality, beginning with 
acknowledging inherent biases in thought processes. Many clinicians, 
particularly during their early training years, lack formal education 

https://doi.org/10.3389/fneur.2024.1387958
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Mut et al. 10.3389/fneur.2024.1387958

Frontiers in Neurology 07 frontiersin.org

on the cognitive aspects of medical decision-making and bias 
recognition. Therefore, the introduction of training programs, 
especially in graduate medical education, becomes essential. These 
programs should empower physicians to identify cognitive biases, 
understand decision-making processes, and reflect on past errors. 
Integrating AI into such programs could further enhance bias 
recognition and decision-making by providing data-driven insights, 
potentially transforming the way physicians navigate cognitive 
challenges throughout their careers (4).

Limitations and challenges

The application of AI in neurosurgery introduces both promise 
and challenges. To effectively leverage AI in this field, several key 
considerations and hurdles must be addressed.

 • Dataset Challenges:

 ⚬ Extensive datasets are essential for AI training, but often lack 
verification in clinical settings.

 ⚬ Variability in model performances and controversial findings 
add complexity.

 • Radiomic Workflow Optimization:

 ⚬ Optimizing parameters in radiomic workflows, covering tumor 
segmentation, feature extraction, and model training, is crucial.

 ⚬ Comparing multiple ML algorithms within the same population 
is vital for understanding performance impacts.

 • Focus on Resectability Prediction:

 ⚬ Current studies predominantly focus on developing AI tools for 
predicting resectability.

 ⚬ Surgeons base treatment decisions on factors such as tumor 
location, size, and interaction with surrounding structures.

 • Challenges in Predicting Neurological Outcomes:

 ⚬ AI faces hurdles in predicting postoperative 
neurological outcomes.

 ⚬ Data quality and quantity are critical, emphasizing the need for 
interpretability in medical applications.

 • Surgeon Bias and Shared Decision-Making:

 ⚬ Surgeons tend to exhibit an optimistic bias in predicting 
postoperative functional levels.

 ⚬ Shared decision-making, involving patients in complex treatment 
choices, is considered viable.

 • Clinical Validation for Generalizability:

 ⚬ Clinical validation is a rigorous requirement to ensure the 
reliability and generalizability of AI models.

 ⚬ Testing models on independent datasets and diverse patient 
populations is necessary.

 • Collaboration and Continuous Feedback:

 ⚬ Collaboration with research institutions and participation in 
clinical trials are imperative.

 ⚬ Establishing a continuous feedback loop in AI systems is pivotal 
for ongoing improvements and knowledge incorporation, in 
accuracy, and reliability.

 • Ethical and Regulatory Considerations:

 ⚬ Patient privacy, transparent decision-making, and adherence to 
regulatory standards are critical ethical and 
regulatory considerations.

 ⚬ Responsible integration of AI in neurosurgery is essential for 
patient safety and trust.

 • AI in Education and Training:

 ⚬ Using AI tools in the education and training of residents raises 
concerns without establishing formal education based on 
established curriculum.

 ⚬ A proactive approach is crucial, starting with acknowledging 
inherent biases in thought processes.

 ⚬ Introducing training programs, particularly in graduate medical 
education, becomes essential, with the potential integration of 
AI to enhance bias recognition and decision-making.

Addressing these challenges and considerations is essential for the 
successful integration of AI in neurosurgery. This involves not only 
technical advancements but also ethical, regulatory, and educational 
initiatives to ensure the responsible and effective use of AI in 
improving patient outcomes.

Future directions

AI relies significantly on high-quality and annotated data for 
accurate and trustworthy predictions. Particularly, the fields of 
radiomics and connectomics are advancing, incorporating enhanced 
imaging technologies. Collaboration with research institutions and 
participation in clinical trial initiatives remains imperative for 
integrating automated segmentation systems into ongoing studies. 
This collaborative effort contributes valuable data to research 
endeavors focused on understanding GBM heterogeneity, treatment 
responses, and patient outcomes. Establishing a continuous feedback 
loop in AI systems, wherein the system learns from new patient data 
and outcomes, is pivotal. This iterative process leads to ongoing 
improvements in accuracy, reliability, and the incorporation of 
emerging knowledge in GBM research. Looking ahead, the goal is to 
enhance automated GBM segmentation and reporting systems, 
ultimately improving patient care and contributing to a deeper 
understanding of GBM radiomics and connectomics. While 
navigating through these challenges and considerations, the 
integration of AI tools in GBM management has immense potential 
for advancing patient care, refining treatment strategies, and 
contributing to the broader comprehension of surgical 
decision making.
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Conclusion

The primary aim is to contribute to comprehensive effectiveness 
research and offer valuable insights for well-informed decision-making 
in surgeries for GBM. An innovative AI system should seamlessly 
integrate imaging, radiomics, RANO criteria, resectability studies, and 
connectomics, along with surgery related neurological outcomes, to 
enhance assessment and contribute to education and training. Despite 
challenges, these approaches are transforming medicine, and healthcare 
providers should prepare for the era of AI. However, it is crucial to 
acknowledge that despite these advancements, the technology remains 
distant from replicating the nuanced and educated decision-making of 
an experienced neurosurgeon.
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