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Introduction: Accurately and objectively quantifying the clinical features of

Parkinson’s disease (PD) is crucial for assisting in diagnosis and guiding the

formulation of treatment plans. Therefore, based on the data onmulti-site motor

features, this study aimed to develop an interpretable machine learning (ML)

model for classifying the “OFF” and “ON” status of patients with PD, as well

as to explore the motor features that are most associated with changes in

clinical symptoms.

Methods: We employed a support vector machine with a recursive

feature elimination (SVM-RFE) algorithm to select promising motion features.

Subsequently, 12ML models were constructed based on these features, and we

identified the model with the best classification performance. Then, we used the

SHapley Additive exPlanations (SHAP) and the Local Interpretable Model agnostic

Explanations (LIME) methods to explain the model and rank the importance of

those motor features.

Results: A total of 96 patients were finally included in this study. The naive Bayes

(NB) model had the highest classification performance (AUC = 0.956; sensitivity

= 0.8947, 95% CI 0.6686–0.9870; accuracy = 0.8421, 95% CI 0.6875–0.9398).

Based on the NB model, we analyzed the importance of eight motor features

toward the classification results using the SHAP algorithm. The Gait: range of

motion (RoM) Shank left (L) (degrees) [Mean] might be the most important motor

feature for all classification horizons.

Conclusion: The symptoms of PD could be objectively quantified. By utilizing

suitable motor features to construct ML models, it became possible to

intelligently identify whether patients with PD were in the “ON” or “OFF”

status. The variations in these motor features were significantly correlated with

improvement rates in patients’ quality of life. In the future, they might act as

objective digital biomarkers to elucidate the changes in symptoms observed in
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patients with PD and might be used to assist in the diagnosis and treatment of

patients with PD.

KEYWORDS

Parkinson’s disease, wearable sensor device, motor feature, interpretable machine

learning model, MDS-UPDRS-Part III

Introduction

Parkinson’s disease (PD) is a chronic degenerative disease of the
central nervous system and is characterized by the degeneration
or loss of dopaminergic neurons in the substantia nigra and
the appearance of Lewy bodies. The clinical features of PD
include bradykinesia, rest tremor, muscular rigidity, and postural
impairment (1–3). As a result, the objective quantitative assessment
of these clinical features plays a crucial role in diagnosis and guiding
the formulation of treatment plans. The Movement Disorder
Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS)
is commonly used to measure the severity of patients with PD
(4). The MDS-UPDRS-Part III is widely used to assess movement
disorder in patients with PD. It is a semi-quantitative measurement
and consists of 18 items (4). However, some limitations might
be found in the clinical assessment by the MDS-UPDRS-Part III.
First, it is not an objective, quantifiable evaluation method, and
the evaluation process requires a specific physician and a lot of
time. Second, the evaluation results are affected by the doctor’s
experience, the cognitive performance of the patients, and the
surrounding environment; thus, the accuracy and objectivity of
the evaluation results are limited (5–7). Finally, the symptoms
of patients with PD fluctuate significantly, which poses great
challenges for clinical assessment (8).

In recent years, the use of different sensor devices for the
quantitative evaluation of motor ability in patients with PD has
been increasingly explored. Many studies supported the reliability
of motor data collected by wearable sensor devices (WSD) to
assist in the diagnosis of patients with PD and the assessment of
disease progression and to guide clinical practice (9–14). Some
studies have combined machine learning (ML) or deep learning
(DL) algorithms with WSD to estimate MDS-UPDRS-Part III
and assist in the diagnosis of PD (15–17). Although it brought
great opportunities and potential for an intelligent evaluation of
PD, some challenges might affect the accuracy of their results
(15, 16, 18). First, there is still no consensus on what motor
features are most relevant to the changes in clinical symptoms
(between the “OFF” and “ON” status, or between patients with
PD and healthy elderly people). In addition, some studies had
small sample sizes, and the WSDs were placed only on a single
site to collect patient motor features. Moreover, some WSDs were
cumbersome and inconvenient to wear, causing inconvenience to
patients with PD during use. Finally, although the classification
performance of multiple predictive models proved to be promising,
their interpretability for classifying the “OFF” and “ON” status
of patients with PD is still limited (19). These factors hinder the
application of WSDs in objectively quantifying the clinical features
of patients with PD. The question is whether we can maximize the
accurate quantification of clinical features in patients with PD using
simpler wearing methods and fewer motor features.

Therefore, based on the data on multi-site motor features, this
study aimed to develop an interpretable ML model for classifying
the “OFF” and “ON” status of patients with PD, as well as to
explore the motor features most associated with changes in clinical
symptoms. In addition, we used SHapley Additive exPlanations
(SHAP) and Local Interpretable Model agnostic Explanations
(LIME) methods (20, 21) to explain the model and rank the
importance of those motor features.

Materials and methods

Study design

This was a retrospective observational study. It was approved
by the Institutional Ethics Committee of Xuanwu Hospital
and performed according to the principles of the Declaration
of Helsinki. All personal information was made anonymous
before analysis. We retrospectively analyzed the following clinical
information: personal and medical history, the history of drug
substance intake, current medication usage, MDS-UPDRS-Part III
(4), the results of motor assessment, Hoehn and Yahr scale (HY)
(22), and Activities of Daily Living (ADL, assessed by the Barthel
Index) (23). We applied the levodopa challenge test to assess the
responsiveness of patients with PD to levodopa medication and to
distinguish between patients in the “ON” and “OFF” status (24, 25).
The “OFF” status was defined as being off dopamine agonists for
72 h and off antiparkinsonian drugs for 12 h. The “ON” status
was the best statement after taking antiparkinsonian medications
(∼2 h after taking the medicine). The MDS-UPDRS-Part III scores
and motor assessment were evaluated at 8:00 AM during the
“OFF” status. After taking the medicine, MDS-UPDRS-Part III
was recorded at 1, 2, 3, and 4 h, and the best performance was
selected for statistical analyses.MDS-UPDRS-Part III improvement
rate = (MDS-UPDRS-Part III score “OFF” – MDS-UPDRS-Part
III score “ON”)/MDS-UPDRS-Part III score “OFF” × 100%. ADL
improvement rate= (ADL score in the “ON” status – ADL score in
the “OFF” status)/ADL score in the “OFF” status× 100%.

Patients

From January 2019 to December 2020, data on patients with
PD who were recruited from the neurology clinic of Xuanwu
Hospital, Beijing, China, were retrospectively collected. According
to the Movement Disorder Society Clinical Diagnostic Criteria for
PD (26), they were diagnosed with clinically established PD by a
movement disorders specialist. The inclusion and exclusion criteria
are shown in Supplementary Table S1.
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Tools for motor assessment

Six OpalTM Movement Monitors (APDM, Inc., Portland, OR,
United States) were placed on the bilateral wrists and ankles, the
anterior sternum, and the lower back (Figure 1A). Each movement
monitor included a three-axis accelerometer, a three-axis gyro, a
three-axis magnetometer, and a temperature sensor. It was secured
to the patient using optional straps that could be connected to the
host via wireless communication. For detailed information about
OpalTM Movement Monitors and gait data, please visit the official
website (APDM, Inc., Portland, OR, United States, https://apdm.
com/wearable-sensors/).

Motor assessment procedures

We utilized the Instrumented Long Walk (IWalk) Test
protocol for gait data collection. The IWalk analysis algorithms
automatically process recorded movement data and provide
objective measures related to gait and turning. For more detailed
information, please visit the official website (APDM, Inc., Portland,
OR, United States, https://apdm.com/wearable-sensors/). The
patients were asked to wear comfortable clothing and walking shoes
that did not bind or impede their movement in any significant way.
After signing the informed consent form, they wore six OpalTM

Movement Monitors and walked on a straight 10m walkway at a
comfortable pace. All patients walked from the start point to the
end of the 10m walkway and then turned around to return to the
starting point (Figure 1B). All patients were required to walk for at
least 1min. These recorded parameters could be transmitted to the
computing center in real time by wireless transmission technology
for three-dimensional movement posture reconstruction, and then
the gait, posture balance, arm swing, movement coordination, etc.
could be evaluated.

Statistical analysis

The R software (version 4.1.3; R Core Team) was used to
perform all statistical analyses. If there were missing values in the
data included in this study, the k-nearest neighbors interpolation
method was used for imputation (27). Continuous quantitative
variables are expressed as means, standard deviations, medians,
and interquartile ranges (IQRs). Categorical variables are expressed
as total numbers and percentages. The support vector machine –
recursive feature elimination (SVM-RFE) algorithm was used to
filter the motor features with a five-fold cross validation and five re-
samplings (28). We used theWilcoxon signed-rank test to compare
the differences in motor features between the “OFF” and “ON”
status. The correlation between the ADL improvement rate and the
improvement rate of motor features was explored using the Pearson
correlation test.

Classification model construction

A total of 12ML models, namely, Adaboost, LogitBoost,
XGBoost, logistic regression (LR), random forest (RF), support

vector machine (SVM), neural network (NN), k-nearest neighbors
(KNN), decision tree C5.0, naive Bayes (NB), gradient boosting
machine (GBM), and multilayer perceptron (MLP), were used
to develop the classification models. The 10-fold cross-validation
and RandomSearch for hyperparameters were used for training
each ML model. We calculated the area under the receiver
operating characteristic curve, sensitivity, specificity, accuracy,
positive predictive values, negative predictive values, recall, and F1
score. The area under the curve (AUC) was used as the main index
to evaluate the classification performance of eachmodel. If the AUC
value was the same or similar, the sensitivity, specificity, accuracy,
positive predictive values, negative predictive values, recall, and F1
score were referred.

Interpretation tool for the model

The interpretation of the ML model of the best classification
performance was performed using the SHAP and LIME methods
(20, 21). SHAP is a common method to analyze the contribution
and influence of eachmotor feature toward the overall performance
of the classification model. The SHAP value is calculated to show
how important each motor feature is for the target variable, either
positively or negatively. The SHAP and LIME methods were
used to explore the contributions of each variable to the overall
performance of the classification model and the classification of an
instance, respectively.

Results

Patient characteristics

From January 2019 to December 2020, a total of 110 patients
with PD were screened, and based on the inclusion and exclusion
criteria, 96 patients were ultimately included in this study. The
reasons for excluding 14 patients were as follows: some patients
were unable to complete the IWalk Test task owing to heart
and orthopedic diseases; some patients had other neurological or
psychiatric disorders; some had concurrent other neurological or
psychiatric disorders; and a significant amount of information
was missing for some patients. Supplementary Figure S1 presents
the patient screening process. The demographic and clinical
information of patients with PD are presented in Table 1. We
randomly divided a total of 192 patients (the “OFF” and “ON”
status of 96 patients) into two parts: 80% (training dataset, n= 154)
of the subjects were used to train the classification model, and 20%
(validating dataset, n = 38) were used to validate. Then, based on
the training dataset, we used the SVM-RFE algorithm to find eight
potential motor features for developing the classification model.

Machine learning model construction and
evaluation

Based on the training dataset, Adaboost, LogitBoost, XGBoost,
LR, RF, SVM, NN, KNN, decision tree C5.0, NB, GBM, and
MLP classification models were constructed, and the AUCs of
the validating datasets were 0.898, 0.802, 0.927, 0.934, 0.909, 0.95,
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FIGURE 1

(A) Schematic diagram showing the positions of six OpalTM Movement Monitors on the patient: the bilateral wrists and ankles, the anterior sternum,

and the lower back. (B) Schematic diagram of the IWalk Test. All patients were required to walk at least 1 min.

TABLE 1 Demographic and clinical information of patients with PD.

Characteristics Baseline

Demographic

Patient numbers 96

Age, Median [IQR] 62 [10.25]

Gender, male [%] 41 [42.71%]

Education, high school or higher [%] 57 [59.38%]

Clinical

Disease duration, Median [IQR] 9 [6]

HY stage (the “OFF” status)

I/II/III/IV/V 0/53/35/6/2

MDS-UPDRS-III (the “OFF” status), Median [IQR] 57 [26]

MDS-UPDRS-III (the “ON” status), Median [IQR] 30.5 [20]

MDS-UPDRS-III improvement rate, Median [IQR] 47.3% [26.19%]

LEDD (mg), Median [IQR] 300 [75]

LEDD, levodopa-equivalent daily dose; SD, standard deviation; IQR, interquartile range; HY

stage, Hoehn & Yahr stage.

0.953, 0.945, 0.88, 0.956, 0.9, and 0.917, respectively (Table 2 and
Figure 2). After a comprehensive comparison, the NB model had
the highest classification performance (AUC = 0.956; sensitivity =
0.8947, 95% CI 0.6686–0.9870; accuracy = 0.8421, 95% CI 0.6875–
0.9398; positive predictive values = 0.8095, 95% CI 0.5809–0.9455;
negative predictive values = 0.8824, 95% CI 0.6356–0.9854; recall
= 0.8947; F1 score= 0.85).

Interpretation of the NB model with the
SHAP and LIME methods

Based on the NB model, we analyzed the importance of
eight motor features toward the classification results using the
SHAP algorithm. The motor feature importance ranking is shown
in Figure 3A. The Gait: range of motion (RoM) Shank left (L)
(degrees) [Mean] might be the most important motor feature for
all classification horizons, followed by the Gait: Stride Length L

(%stature) [Mean], the Gait: Stride Length R (%stature) [Mean], the
Gait: RoM Arm R (degrees) [Mean], the Gait: Peak Shank Velocity
R (degrees/s) [Mean], the Gait: Peak Horiz. Trunk Velocity
(degrees/s) [Mean], the Gait: Peak Shank Velocity L (degrees/s)
[Mean], and the Turn: Peak Velocity (degrees/s) [Mean]. There
were positive and negative correlations between the motor features
and classification results. In Figure 3B, the colors of points show
whether the motor feature was high (in aurantium) or low (in
purple) in this study. We found that the increase in the value of
all motor features had a positive effect on the “ON” status, driving
the prediction of the “ON” status.

The LIME method was also used to explain how eight motor
features contributed to the classification results (Figure 4). The
sequentially important motor features that contributed to the
“OFF” status included the Gait: RoM Shank L (degrees) [Mean]
< = 53.4, the Gait: Stride Length L (%stature) [Mean] < = 55.7,
the Gait: Stride Length R (%stature) [Mean] < = 55.4, the Turn:
Peak Velocity (degrees/s) [Mean] < = 94.8, the Gait: RoM Arm R
(degrees) [Mean] < = 7.4, the 7.4 < Gait: RoM Arm R (degrees)
[Mean] < = 13.4, the 13.4 < Gait: RoM Arm R (degrees) [Mean]
< = 22.9, the Gait: Peak Shank Velocity L (degrees/s) [Mean]<
= 269, the Gait: Peak Shank Velocity R (degrees/s) [Mean] < =

271, the Gait: Peak Horiz. Trunk Velocity (degrees/s) [Mean] < =

15.5, and the 15.5 < Gait: Peak Horiz. Trunk Velocity (degrees/s)
[Mean] < = 21.8. The sequentially important motor features that
contributed to the “ON” status included the 71.0 < Gait: RoM
Shank L (degrees) [Mean], the 63.3 < Gait: RoM Shank L (degrees)
[Mean] < = 71.0, the 74.6 < Gait: Stride Length L (%stature)
[Mean], the 67.5 < Gait: Stride Length L (%stature) [Mean] < =

74.6, the 74.8 < Gait: Stride Length R (%stature) [Mean], the 67.3
< Gait: Stride Length R (%stature) [Mean] < = 74.8, the 144.3
< Turn: Peak Velocity (degrees/s) [Mean], the 22.9 < Gait: RoM
Arm R (degrees) [Mean], the 364 < Gait: Peak Shank Velocity
L (degrees/s) [Mean], the 318 < Gait: Peak Shank Velocity L
(degrees/s) [Mean] < = 364, the 373 < Gait: Peak Shank Velocity
R (degrees/s) [Mean], the 320 < Gait: Peak Shank Velocity R
(degrees/s) [Mean] < = 373, and the 27.8 < Gait: Peak Horiz.
Trunk Velocity (degrees/s) [Mean]. Similar to the SHAP method,
we also found that the increase in the value of all motor features has
a positive effect on the “ON” status, driving the prediction of the
“ON” status.
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TABLE 2 Performance of each classification model in the validating dataset.

Model AUC Sensitivity Accuracy Positive Pred Value Negative Pred Value Recall F1 score

Adaboost 0.898 0.7895 (0.5443, 0.9395) 0.8158 (0.6567, 0.9226) 0.8333 (0.5858, 0.9642) 0.8000 (0.5634, 0.9427) 0.6842 0.7428

LogitBoost 0.802 0.6842 (0.4345, 0.8742) 0.6842 (0.5135, 0.8250) 0.6842 (0.4345, 0.8742) 0.6842 (0.4345, 0.8742) 0.6842 0.6842

XGBoost 0.927 0.7895 (0.5443, 0.9395) 0.8421 (0.6875, 0.9398) 0.8824 (0.6356, 0.9854) 0.8095 (0.5809, 0.9455) 0.7894 0.8333

LR 0.934 0.7895 (0.5443, 0.9395) 0.8421 (0.6875, 0.9398) 0.8824 (0.6356, 0.9854) 0.8095 (0.5809, 0.9455) 0.7894 0.8333

RF 0.909 0.7895 (0.5443, 0.9395) 0.8158 (0.6567, 0.9226) 0.8333 (0.5858, 0.9642) 0.8000 (0.5634, 0.9427) 0.7894 0.8108

SVM 0.95 0.7895 (0.5443, 0.9395) 0.8421 (0.6875, 0.9398) 0.8824 (0.6356, 0.9854) 0.8095 (0.5809, 0.9455) 0.7894 0.8333

NN 0.953 0.7895 (0.5443, 0.9395) 0.8421 (0.6875, 0.9398) 0.8824 (0.6356, 0.9854) 0.8095 (0.5809, 0.9455) 0.7894 0.8333

KNN 0.945 0.8421 (0.6042, 0.9662) 0.8684 (0.7191, 0.9559) 0.8889 (0.6529, 0.9862) 0.8500 (0.6211, 0.9679) 0.8421 0.8648

DT C5.0 0.88 0.7895 (0.5443, 0.9395) 0.7368 (0.5690, 0.8660) 0.7143 (0.4782, 0.8872) 0.7647 (0.5010, 0.9319) 0.7894 0.75

NB 0.956 0.8947 (0.6686, 0.9870) 0.8421 (0.6875, 0.9398) 0.8095 (0.5809, 0.9455) 0.8824 (0.6356, 0.9854) 0.8947 0.85

GBM 0.9 0.7895 (0.5443, 0.9395) 0.8158 (0.6567, 0.9226) 0.8333 (0.5858, 0.9642) 0.8000 (0.5634, 0.9427) 0.7894 0.8108

MLP 0.917 0.7895 (0.5443, 0.9395) 0.8421 (0.6875, 0.9398) 0.8824 (0.6356, 0.9854) 0.8095 (0.5809, 0.9455) 0.7894 0.8333

AUC, area under the curve; LR, logistic regression; RF, random forest; SVM, support vector machine; NN, neural network; KNN, k-nearest neighbors; DT, decision tree; NB, naive Bayes; GBM,

gradient boosting machine; MLP, multilayer perceptron.

FIGURE 2

The receiver operating characteristic curve among the 12 classification models for patients with PD (A). The NB model had the highest classification

performance (B). PD = Parkinson’s disease, NB = naive Bayes.

Di�erences of eight motor feature values
between the “OFF” and “ON” status and
correlation analysis

The Wilcoxon signed-rank test was performed to compare
the values of eight motor features in the “OFF” and “ON”
status, and the results showed that the motor features had
significantly higher values in the “ON” status than in the
“OFF” status (p < 0.05). The details are available in Figure 5

and Supplementary Table S2. The Pearson correlation analysis
presented that the improvement rate of each motor feature was
significantly and positively correlated with the ADL improvement

rate of patients (p < 0.05), except for Gait: RoM Arm R (degrees)

[Mean] (p = 0.083) (Figure 6). This indicated that, compared to
the “OFF” status, in the “ON” status, the values of the eight

motor features of patients with PD were significantly higher,
thus providing patients with a better motor status and quality
of life.
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FIGURE 3

(A) The SHAP interpretability for the contributions of each motor feature. (B) The SHAP values of all motor features in the NB model in the training

dataset.

Discussion

In our study, we aimed to develop an interpretable ML model
for classifying the “OFF” and “ON” status of patients with PD,
as well as to explore the motor features most associated with
changes in clinical symptoms. In total, 12ML classification models
were developed and validated to classify the “OFF” and “ON”
status of patients with PD. The classification performance of
the XGBoost model outperformed the Adaboost, LogitBoost, LR,
RF, SVM, NN, KNN, decision tree C5.0, NB, GBM, and MLP

models. We performed the interpretation for the NB model by
the SHAP and LIME methods, which provided a guarantee for its
performance and clinical interpretability. In addition, it helped us
better understand the classification process of the NB model. Some
important motor features and the importance of ranking those
features were identified to be associated with identifying the status
of patients with PD; this was performed by the SHAP and LIME
methods to interpret the NB model. A total of five motor features
describing the lower extremities, two motor features describing the
trunk of the body, and one motor feature describing the upper
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FIGURE 4

The LIME plot of the NB model in the training datasets. The blue bar represents a positive e�ect, and the darker and denser the blue bar, the more

likely it is to have a positive e�ect. The red bars represent negative e�ects, and the darker and denser the red, the more likely they are to have

negative e�ects.

limb were included (Figure 3). Then it was confirmed that each
of the motor features included in the NB model had significant
differences between the “OFF” and “ON” status. The correlation
analysis showed the ADL improvement rates were closely related to
the improvement rates for each motor feature. The most important
finding was that the motor features of the lower limbs might be
better for classification performance and could more truly reflect
the motor symptoms of patients, mainly including the Gait: RoM
Shank L (degrees) [Mean], the Gait: Stride Length L (%stature)
[Mean], the Gait: Stride Length R (%stature) [Mean], the Gait:
Peak Shank Velocity R (degrees/s) [Mean], and the Gait: Peak
Shank Velocity L (degrees/s) [Mean]. The symptoms of PD could
be objectively quantified. By utilizing suitable motor features to
construct ML models, it became possible to intelligently identify
whether patients with PD were in the “ON” or “OFF” status.

The clinical diagnosis of PD is mainly based on motor
symptoms, including muscular rigidity, rest tremor, bradykinesia,
and postural impairment. As the duration of levodopa treatment
in patients with PD increases, the duration and stability of
symptom benefits decrease. As a result, the wake time is divided
into the time of reduction in PD symptoms and improvement
in functional status, that is, the time when levodopa provides
favorable benefits (the “ON” status), and the time of PD symptom
re-onset and functional status decline, that is, the time when
levodopa does not provide good benefits (the “OFF” status) (25, 29).
Transitions between the “ON” and “OFF” status are referred to
as motor fluctuations. Motor fluctuations may be an important
cause of later disability in patients with PD (30). In addition

to the decline in physical function, mood swings and adverse
psychological problems in patients with PD are often found in
patients with motor fluctuations (31). The MDS-UPDRS-Part III is
the main diagnostic tool used in clinical diagnostics and research.
However, the results of many studies show the MDS-UPDRS-Part
III scores are always not satisfactory in diagnosing PD because
they may also lead to a certain degree of misdiagnosis (32). In
addition, the evaluation process is time-consuming and heavy,
which increases the burden on patients and doctors, and it is
reported that many patients with PD have no opportunity to
consult with a PD specialist or neurologist for professional clinical
assessment, which could lead to rapid progression and disease-
related complications (33).

Therefore, doctors and researchers have a strong demand
for more objective and continuous evaluation and monitoring
methods. With the rise of new sensor-based wearable technology,
the traditional diagnosis and treatment model is changing to
achieve a more objective diagnostic assessment. The WSD refers
to portable and mobile devices worn on the body or embedded in
clothing, such as smart glasses, watches, clothes, and pressure shoes,
which contain hardware and software technologies and have special
functions for collecting spatiotemporal kinematic parameters, data
processing, transmission, and storage. At present, the WSD used in
the field of PD can realize quantitative evaluation of PD through
specific motor tasks and establish data models so that doctors can
accurately analyze the movement status of patients (5, 14, 34).
Compared with the results of MDS-UPDRS-Part III evaluated by
doctors, WSDs were reported as a method with higher objectivity,
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FIGURE 5

The comparison of eight motor feature values between the “OFF” and “ON” status. All motor features had significantly higher values in the “ON” status

than in the “OFF” status (p < 0.05). (A) Gait: RoM Shank L (degrees) [Mean] (p = 3.11e-13), (B) Gait: Stride Length L (%stature) [Mean] (p = 9.76e-13),

(C) Gait: Stride Length R (%stature) [Mean] (p = 1.75e-12), (D) Gait: RoM Arm R (degrees) [Mean] (p = 1.54e-14), (E) Gait: Peak Shank Velocity R

(degrees/s) [Mean] (p = 1.13e-11), (F) Gait: Peak Horiz. Trunk Velocity (degrees/s) [Mean] (p = 1.52e-13), (G) Gait: Peak Shank Velocity L (degrees/s)

[Mean] (p = 1.72e-12), and (H) Turn: Peak Velocity (degrees/s) [Mean] (p = 4.83e-14).
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FIGURE 6

The correlation (Pearson correlation analysis) between the improvement rate of each motor feature and the ADL improvement rate. The

improvement rate of each motor feature was significantly correlated positively with the ADL improvement rate of patients (p < 0.05), except for Gait:

RoM Arm R (degrees) [Mean] (R = 0.18, p = 0.083). (A) Gait: RoM Shank L (degrees) [Mean] (R = 0.22, p = 0.029), (B) Gait: Stride Length L (%stature)

[Mean] (R = 0.21, p = 0.038), (C) Gait: Stride Length R (%stature) [Mean] (R = 0.21, p = 0.045), (D) Gait: RoM Arm R (degrees) [Mean] (R = 0.18, p =

0.083), (E) Gait: Peak Shank Velocity R (degrees/s) [Mean] (R = 0.24, p = 0.018), (F) Gait: Peak Horiz. Trunk Velocity (degrees/s) [Mean] (R = 0.4, p =

6.1e−05), (G) Gait: Peak Shank Velocity L (degrees/s) [Mean] (R = 0.24, p = 0.017), and (H) Turn: Peak Velocity (degrees/s) [Mean] (R = 0.27, p =

0.0085).
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accuracy, and sensitivity for evaluating the status of patients’ motor
abilities, such as bradykinesia, dyskinesia, tremor, and freezing of
gait (5, 15). Therefore, by using WSDs to collect motor data from
patients with PD, the internal relationship between motor data and
MDS-UPDRS-Part III scores was studied, and finally, the purpose
of quantifying the MDS-UPDRS-Part III scores of patients with PD
was achieved. It is very important for the diagnosis and treatment
of PD.

In this study, the Gait: RoM Shank L (degrees) [Mean] might
be the most important motor feature. It refers to the flexion and
extension range of motion of the knee joint (sagittal plane). Both
the patients with PD and healthy elderly people could show reduced
RoM of the shank. The reduction in RoM of the shank was more
pronounced in patients with PD, and it was significantly associated
with PD progression (16, 17). It had also been suggested that the
RoM of the lower limb joint in patients with PD was severely
reduced, and at the same time, the hip and knee significantly
moved in the direction of flexion (16). Compared with healthy
people individuals, the patients with PD not only had more
severely reduced RoM of the lower limb joint but also showed
more lower limb flexion movements throughout the gait cycle.
Biomechanically, this might be to counteract the enhanced trunk
flexion (16). The Gait: Stride Length L (%stature) [Mean], Gait:
Stride Length R (%stature) [Mean], Gait: Peak Shank Velocity R
(degrees/s) [Mean], and Gait: Peak Shank Velocity L (degrees/s)
[Mean] bilaterally described the stride length and peak velocity of
the shank. Both stride length and peak velocity of the shank were
significantly larger in the “ON” status than in the “OFF” status.
Previous studies have argued that variability analysis might bemore
sensitive in distinguishing gait disorders than other motor features,
such as step length and step speed (18, 35, 36). In our study,
however, the RoM of the lower limb joint, stride length, and peak
velocity of the shank could clearly distinguish the status of patients
with PD. However, in our study, the Gait: Peak Horiz. Trunk
Velocity (degrees/s) [Mean] and Turn: Peak Velocity (degrees/s)
[Mean] were less important than the lower limbmotor features, the
turn-related motor features were considered the most important
factors to distinguish between patients with PD and healthy elderly
people (36, 37). Similar to previous studies, patients with PD turned
more slowly into the “OFF” status. Turning was a complex act
that required everyone to change direction while keeping the trunk
stable (37). The patients with PD seemed to have more difficulty
turning because they could not precisely control the RoM of the
lower limb joint, stride length, and peak velocity of the shank
(37). In addition, previous studies suggested that the efficacy of
levodopa in improving trunk-related symptoms in patients with
PD was limited (38, 39). However, we found that the values of the
Gait: Peak Horiz. Trunk Velocity (degrees/s) [Mean] and Turn:
Peak Velocity (degrees/s) [Mean] were significantly higher in the
“ON” status than in the “OFF” status (p = 1.52e-13; p = 4.83e-14).
Furthermore, the improvement rates of two motor features were
significantly and positively correlated with the ADL improvement
rate of patients (R = 0.4, p = 6.1e−05; R = 0.27, p = 0.0085).
This might indicate a significant effect of levodopa on improving
trunk-related motor features in patients. A reduction in the RoM
of arm swing was also an important motor feature for patients with
PD (40). Similarly, in our study, the Gait: RoM Arm R (degrees)

[Mean] was significantly smaller in the “OFF” status than in the
“ON” status. However, in the correlation analysis, we did not find
a significant positive correlation between the ADL improvement
rate and the improvement rate of the Gait: RoM Arm R (degrees)
[Mean]. It might be because walking was an important factor
affecting the quality of life of patients with PD and occupied most
of the exercise time in daily life (41, 42).

With their inspiring classification performances, the ML and
DL algorithms have been used for constructing models for
classifying between patients with PD and healthy elderly people
(43–46). However, the interpretability of the model and the
importance of the features incorporated into the model were
ambiguous. This is the first study to develop an interpretable ML
model to classify the “OFF” and “ON” status of patients with PD
based on the motor features of different body parts. Our study
showed that the use of more sensors in the hospital or laboratory
to cover the trunk and limbs of the body more comprehensively
reflects the patient’s mobility, balance, walking ability, and fall risk.
However, this would increase the burden and discomfort of patients
and is not conducive to the development of daily monitoring of
patients with PD. Therefore, the current research is moving toward
a minimum number of sensors worn and daily monitoring (41, 47).
In the previous studies, the optimal locations for WSDs, including
on the lower limbs, trunk (waist), and upper limbs, have been
discussed (41, 48–55). According to published systematic reviews,
the lower limbs might be the most common location (41, 48–
51). Some studies also suggested that the waist and upper limbs
were the optimal locations for collecting kinematic parameters
in patients with PD (41, 52–54). Peraza et al. (55) proposed an
automatic gait analysis process based on DL algorithms, with data
sourced from triaxial accelerometers placed on the lower limbs,
trunk (waist), and upper limbs. The results showed that data from
single triaxial accelerometers on the lower limbs and trunk (waist)
performed better than those from the upper limbs in assessing gait
in patients with PD and healthy elderly people (55).Mikos et al. (56)
developed a freezing of gait detection feedback system for patients
with PD, which was integrated into a single wearable device sensor
attached to the ankle. The system exhibited excellent performance
in classification (a sensitivity of 95.6% and a specificity of 90.2%)
(56). Recently, Chen et al. (41) proposed a method for patients with
PD based on an optimized interpretable DL architecture. They fixed
five sensors on the lower limbs, trunk (waist), and upper limbs, to
collect the motor data from patients with PD and healthy elderly
people during a 10m walking test (41). After analyzing the raw
data and constructing a convolutional neural network classification
model, they found that the data collected by the sensor at the
waist performed best in classifying patients with PD and healthy
elderly people (41). We not only constructed a classification model
but also quantified the importance of motion features. In general,
the importance of motor features in the lower limbs might be the
highest compared to other parts of the body, which provided an
evaluation method for the further selection of the best single sensor
wearing position. We also found a significant effect of levodopa on
improving trunk-related motor features in patients with PD, and
this seemed to be contrary to previous research findings. All of these
might become new directions for study in the field of Parkinson’s
disease and WSDs.
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Some limitations are found. First, this was a retrospective study,
and the absence of some data might have caused some bias in the
study results. Second, all data were based on patients with PD from
China, and the applicability of the NBmodel to other ethnic groups
is unclear. Third, external verification was lacking. Therefore, the
study results should be interpreted cautiously. Finally, our study
did not compare patients with PD and healthy elderly people.
However, contrasting the “ON” and “OFF” status of patients with
PD has already demonstrated the capability of WSDs to objectively
quantify the symptoms. Therefore, our study is effective.

Conclusion

The symptoms of PD could be objectively quantified. By
utilizing suitable motor features to construct the ML models, it
became possible to intelligently identify whether patients with PD
were either in the “ON” or “OFF” status. The variations in these
motor features were significantly correlated with improvement
rates in patients’ quality of life. In the future, they might act as
objective digital biomarkers to elucidate the changes in symptoms
observed in patients with PD and might be used to assist in the
diagnosis and treatment of patients with PD.
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