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Gut microbiota’s role in 
glioblastoma risk, with a focus on 
the mediating role of metabolites
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This study employed Mendelian randomization (MR) analysis to systematically 
investigate the potential connections between gut microbiota and the risk of 
glioblastoma (GBM). We identified 12 microbial groups closely associated with 
the incidence risk of GBM. Subsequently, MR analysis was conducted on 1,091 
blood metabolites and 309 metabolite ratios, revealing 19 metabolites that exert 
an impact on the occurrence of GBM. Hypothesizing that gut microbiota may 
influence the risk of glioblastoma multiforme by modulating these metabolites, 
we  performed MR analyses, considering each microbial group as exposure 
and each metabolite as an outcome. Through these analyses, we constructed 
a regulatory network encompassing gut microbiota, metabolites, and GBM, 
providing a novel perspective for a deeper understanding of the role of the 
gut-brain axis in the pathogenesis of GBM. This research offers crucial insights 
into how gut microbiota may affect the risk of GBM by regulating specific 
metabolites. The identified regulatory network of the gut-brain axis may play 
a significant role in the formation and development of GBM, providing valuable 
information for future research and therapeutic interventions.
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Introduction

Glioblastoma (GBM), the most malignant primary brain tumor within the central nervous 
system, represents a formidable challenge in neuro-oncology (1). Current standard treatment 
modalities include surgery, radiotherapy, and temozolomide chemotherapy (2). Despite the 
implementation of these interventions, the prognosis for GBM patients remains bleak, and the 
underlying pathogenic mechanisms of the disease remain incompletely understood.

In recent years, research on the gut microbiota has garnered widespread attention, 
encompassing various physiological processes, including immune regulation, nutritional 
metabolism, and the generation of bioactive molecules. The associations with a variety of 
diseases are gradually coming to light (3–5). Meanwhile, there exists a bidirectional signaling 
pathway between the gut and the brain, known as the gut-brain axis. This axis involves various 
pathways, including neural, endocrine, and immune signaling, allowing the gut microbiota to 
influence the central nervous system (6–8). Researches have already identified a potential 
association between alterations in the composition of the gut microbiota and the risk of GBM 
(6, 9). A recent Mendelian randomization (MR) study has also identified several gut microbiota 
species that have a causal relationship with GBM. However, the precise mechanisms through 
which the gut microbiota exerts its influence on GBM have not been fully elucidated (10).
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Metabolites play a pivotal role in various physiological functions, 
and the intricate interplay between metabolic pathways and the 
biology of GBM has emerged as a focal point of research. Metabolites 
derived from both endogenous cellular processes and exogenous 
sources (including diet and the gut microbiota) can participate in 
GBM processes such as proliferation, apoptosis, and angiogenesis 
through diverse pathways. This includes influencing dysregulated 
signaling pathways within GBM cells, modulating the tumor 
microenvironment, and impacting immune responses (11–13).

Nevertheless, there is currently a lack of systematic studies 
exploring which metabolites can control the risk of GBM. A recent 
study has provided convenient Genome-Wide Association Study 
(GWAS) data for 1,091 blood metabolites and 309 metabolite ratios, 
offering a valuable resource for addressing this research gap (14).

Method

Data sources

The gut microbiota data were sourced from Mibiogen.1 After 
excluding unidentified microbial taxa, GWAS data for 196 gut 
microbiota species were obtained, spanning 9 Phyla, 16 Class, 20 
Order, 32 Family, and 119 Genus. Metabolite GWAS data were derived 
from the latest GWAS study, encompassing data for 1,091 blood 
metabolites and 309 metabolite ratios, (PMID36635386) (14). GWAS 
data for GBM were obtained from Finngen (finn-b-C3_GBM_
EXALLC), comprising 91 patient cases and 174,006 control subjects, 
all of European descent.

Mendelian randomization design

Selection of instrumental variables (IVs)
The selection of IVs is based on the three requirements of MR: (1) 

Strong Correlation with the Exposure Factor: Single nucleotide 
polymorphism (SNPs) chosen as IVs need to exhibit a strong 
correlation with the exposure factor. The standard requirement is 
typically set at p-value <5e-8, while in instances where an insufficient 
number of IVs meet this criterion, it may be  relaxed to p < 1e-5. 
Specific criteria will be outlined in each MR analysis. To emphasize 
the strength of correlation, a requirement is imposed that the F-value 
be greater than or equal to 10. The formula for calculating F is as 
follows (15, 16):

 
F N R R= −( ) ∗ −( )2 1

2 2
/

 
R beta beta N se2 2 2 2

2 2 2= ∗( ) ∗ + ∗ ∗( )/

N represents the sample size of the exposure data. (2) 
Independence of IVs: To ensure the independence of IVs, when the 
data are considered as the exposure factor, a requirement is set for the 

1 https://mibiogen.gcc.rug.nl/

linkage disequilibrium coefficient (r2) to be less than or equal to 0.001, 
with a region width of 10,000 kb. This standard is applicable to each 
subsequent MR analysis (17, 18). (3) Not Regulated by Other 
Confounding Factors for the Outcome: For this purpose, each 
remaining SNP was individually scrutinized through the 
Phenoscanner website2 to exclude associations with any confounding 
factors potentially linked to the outcome.

Analysis methods
In each step of the MR analysis, three methods were employed: 

inverse variance weighting (IVW), MR-Egger regression, and the 
weighted median estimator (WME).

IVW is a widely used method that involves weighting the effect 
sizes of candidate SNPs by the inverse of their variances. This method 
assumes that all SNPs are valid IVs, and their weights are inversely 
proportional to their variances (19). MR-Egger regression estimates 
the average pleiotropy through an intercept, even when all IVs cannot 
completely eliminate pleiotropy. It provides a test for non-zero average 
pleiotropy and can be used to detect potential horizontal pleiotropy 
(20). WME estimates the causal effect through the median, making it 
robust to up to 50% of IVs being subject to pleiotropy (20). Which 
method dominates the final result depends on data heterogeneity and 
pleiotropy. If neither heterogeneity nor pleiotropy is present, the IVW 
method’s estimates are preferred. If heterogeneity exists without 
pleiotropy, the Weighted Median method’s results are favored. If 
pleiotropy is detected, the MR-Egger method’s results take 
precedence (20).

Based on the heterogeneity and pleiotropy test, primary results are 
based on IVW, with MR-Egger and WME serving as supplementary 
analyses, providing additional insights when necessary.

Heterogeneity, pleiotropy, and sensitivity tests
Heterogeneity among IVs’ estimates was assessed to examine the 

consistency of causal effects across different genetic variants. The 
Cochran Q test was employed, where a significant Q statistic suggests 
heterogeneity. MR Pleiotropy and Horizontal Pleiotropy and 
Mendelian Randomization-Pleiotropy Residual Sum and Outlier 
(MR-PRESSO) are used to evaluate genetic pleiotropy and refine 
estimates by identifying and eliminating outliers (21). Sensitivity 
analyses were conducted to evaluate the robustness of results by 
excluding outliers or influential genetic variants by “leave-one-out” 
method. Results demonstrating significant pleiotropy and 
heterogeneity (p < 0.05) were systematically excluded from the analysis.

In accordance with the aforementioned criteria, we conducted 
separate MR analyses for the gut microbiota and GBM, as well as for 
metabolites and GBM. Subsequently, individual MR analyses were 
performed for the selected gut microbiota and metabolites identified 
as being associated with the risk of GBM.

Evaluation of mediating effect

In the two-step MR analyses, the calculation of the mediation 
effect is as follows: the effect of the microbiota on GBM is denoted as 

2 http://www.phenoscanner.medschl.cam.ac.uk/
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beta0, the effect of the microbiota on the metabolite is denoted as 
beta1, and the effect of the metabolite on GBM is denoted as beta2. 
The mediation effect (b) is computed as beta1*beta2, and the direct 
effect is beta0 – b. In statistics research, the mediation effect explains 
how a variable influences a dependent variable. This mechanism 
typically involves a mediating variable. Mediation effects can 
be positive, enhancing the relationship, or negative, diminishing it. 
Positive mediation strengthens the effect of the independent variable 
on the dependent variable, while negative mediation weakens or 
nullifies this effect (Figure 1). As the gut microbiota can regulate GBM 
not only through metabolites but also through other mechanisms, this 
mediation effect is considered incomplete and, in some cases, may 
even be opposite to the direct effect. In such situations, the metabolite 
is considered a negative mediator. Finally, we visually represented the 
regulatory network of the gut microbiota-metabolite-GBM through a 
Sankey diagram.

Results

MR analysis for gut microbiota and GBM

A total of 196 gut microbiota species were considered as 
exposures, with each microbiota having SNPs with p-values less than 

1e-5 selected as IVs. GBM served as the outcome, and MR analyses 
were separately conducted for each microbiota. Results deemed 
meaningful were those with p-values less than 0.05  in the IVW 
method. After excluding results exhibiting heterogeneity and 
pleiotropy, a total of 12 microbiota species were identified as associated 
with GBM.

Among these, families of Erysipelotrichaceae, Prevotellaceae, 
genuses of Eubacterium nodatum group, Lachnoclostridium, and 
phylum of Cyanobacteria were identified as protective factors against 
GBM. Conversely, families of Rikenellaceae, Victivallaceae, 
Ruminococcus gnavus group, Lactococcus, Ruminococcaceae UCG002, 
Sellimonas, and order of Desulfovibrionales were associated with an 
increased risk of GBM (Figure 2).

The SNPs used as IVs in this step were shown in 
Supplementary Table S1; The detailed MR results can be found in 
Supplementary Table S2; The heterogeneity and pleiotropy test results 
were illustrated in Supplementary Table S3; Result of sensitivity 
analyses by “leave-one-out” method were presented in 
Supplementary Figure S1.

We further performed reverse Mendelian randomization and 
found reverse causality between genus Lactococcus and GBM (IVW, 
p = 0.018, OR = 1.070, 95%CI = 1.012–1.133), indicated that the 
occurrence of GBM can change the composition of this genus. 
Meanwhile, the effect of other microflora on GBM is unidirectional.

FIGURE 1

The diagram of mediating effects.
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MR analysis for metabolites and GBM

A total of 1,091 blood metabolites and 309 metabolite ratios were 
considered as exposures, with SNPs for each metabolite having 
p-values less than 5e-8 selected as IVs. GBM served as the outcome in 
the MR analysis. Results considered meaningful were those with 
p-values less than 0.05 in the IVW method and lacking heterogeneity 
and pleiotropy. A total of 19 metabolites were identified as associated 
with GBM.

Metabolites such as Imidazole lactate, N4-acetylcytidine, 1-ribosyl-
imidazoleacetate, 1-stearoyl-2-oleoyl-GPE (18:0/18:1), 1-palmitoyl-2-
linoleoyl-GPE (16:0/18:2), Androstenediol (3beta,17beta) monosulfate 
(2), 1-stearoyl-2-linoleoyl-GPE (18:0/18:2), 1-stearoyl-2-
arachidonoyl-GPE (18:0/20:4), 1-palmitoyl-2-arachidonoyl-GPE 
(16:0/20:4), 1-oleoyl-2-arachidonoyl-GPE (18:1/20:4), 1-oleoyl-2-
linoleoyl-GPE (18:1/18:2), Pimeloylcarnitine/3-methyladipoylcarnitine 
(C7-DC), Dihomo-linoleoylcarnitine (C20:2), 1-palmitoyl-2-
oleoyl-GPE (16:0/18:1), X-15523 were associated with an increased risk 
of GBM. Conversely, Beta-hydroxyisovalerate, 1-palmitoyl-2-
oleoyl-GPE (16:0/18:1), X-21607, Decadienedioic acid (C10:2-DC), 
Retinol (Vitamin A) to oleoyl-linoleoyl-glycerol (18:1–18:2) (2) ratio 
were associated with a decreased risk of GBM (Figure 3).

The MR results can be found in Supplementary Table S4, The 
SNPs used as IVs was showed in Supplementary Table S5; The 
heterogeneity and pleiotropy test results can be  found in 
Supplementary Table S6; Result of sensitivity analyses by “leave-
one-out” method were illustrated in Supplementary Figure S2.

Reverse MR Analysis showed that only Pimeloylcarnitine/3-
methyladipoylcarnitine (C7-DC) was significant (IVW, p = 0.003, 
OR = 0.957, 95%CI = 0.930–0.985), indicating that it was regulated by 
the occurrence and development of GBM, while the rest metabolites 
all had a one-way causal relationship with GBM.

MR for microbiota-metabolite interactions

Utilizing the 12 microbiota species identified earlier, each 
microbiota with SNPs having p-values <1e-5 as IVs, and considering 
the 19 metabolites as outcomes, multiple MR analyses were 
conducted. The results revealed that eight microbiota species had a 
significant impact on the metabolites. Meanwhile, the regulation of 
GBM by the remaining four microbiota species was found to 
be independent of the influence on metabolites. Figure 4 illustrated 
the relationship between these gut microbiota and metabolites.

We summarized the specific MR Analysis results of these flora and 
metabolites, the IVs used, and the results of heterogeneity and 
pleiotropy tests and presented them in Supplementary Tables S7–S9.

Assessment of mediation effects

We separately calculated the mediation effects of gut microbiota 
on GBM risk through metabolites, categorizing these effects into 
positive and negative mediations, and illustrated them in 
Supplementary Table S10.

Discussion

MR study stands out as a robust method for causal inference, 
leveraging the natural distribution of genetic variants to emulate 
randomized experiments. Its distinctive strengths include the 
mitigation of confounding factors prevalent in observational studies, 
the avoidance of selection bias due to the predetermined nature of 
genetic variation, and enhanced translatability of results to 
clinical applications.

FIGURE 2

Forest plot of the associations between 12 bacterial traits with the risk of GBM.
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There are several previous MR studies focusing on the impact of 
gut microbiota in GBM. Wang et al. revealed a positive correlation 
between GBM risk and family of Peptostreptococcaceae and genus of 
Eubacterium brachy group and a negative correlation with the family 
of Ruminococcaceae, and genus of Anaerostipes, Faecalibacterium, 
Lachnospiraceae UCG004, Phascolarctobacterium, Prevotella 7, 
Streptococcus (22). In addition, the protective effect of family 
Ruminococcaceae and the harmful effects of family Bacteroidaceae and 
Peptococcaceae and genus Eubacterium (brachy group), Actinomyces, 
Bacteroides and Ruminiclostridium 6 for GBM were illustrated by Ju 
et al. (23). In our study, utilizing the same exposure and outcome, MR 
analysis was conducted, but discrepancies in results were observed, 
potentially attributed to variations in data processing and statistical 
methods, of which the most significant difference was the multistep 
way of choosing SNPs.

Besides MR methods, researchers also using Metagenomic 
PCR-DGGE, Illumina-based Hiseq  2500 Highthrough-put 
sequencing, and real-time PCR to explore the impact of gut microbiota 
on GBM (24). However, they only found the difference of microflora 
between patients and normal individuals without evidence of a 
causal relationship.

In comparison to the aforementioned studies, the highlight of our 
study is the MR analysis method with multistep approach to selecting 
SNPs. Additionally, a notable strength of our research lies in the 
integration of metabolomics, offering further exploration into the 
mediating role of metabolites in this context.

The presence of a brain-gut axis allows the gut and brain to 
interact. Gut microbes are able to regulate the function of various cells 
in the brain through a variety of metabolites they produce (25). Prior 
researches indicated that the gut microbiota may play a role in the 
occurrence, progression, and treatment of gliomas through metabolic 

regulation of the epigenetic and immune microenvironment. This 
effect can be  achieved by altering the nervous system 
microenvironment or the epigenetics of tumor cells (9). These 
molecules play a crucial role in the initiation and progression of 
glioblastomas (26). Some explored mechanisms include the gut 
microbiota’s ability to inhibit SDF-1 through the production of certain 
metabolites, thus inhibiting the migration of glioma cells (27). 
Tryptophan metabolites activate the aryl hydrocarbon receptor 
(AHR) pathway, promoting tumor cell proliferation in gliomas, 
including astrocytomas, medulloblastomas, and glioblastomas (28). 
Imbalances in the gut microbiota leading to reduced concentrations 
of circulating short-chain fatty acids have been associated with 
disrupted morphology and function of microglial cells (29). This 
disruption, via stress-related pathways, influences tumor occurrence 
and prognosis. Butyrate affects the immune system by inducing Treg 
differentiation and modulating inflammation (30). Acetate and 
glucose collectively participate in the tricarboxylic acid (TCA) cycle, 
influencing the production of acetyl-coenzyme A, and participate in 
the apparent modification of isocitrate dehydrogenase (IDH), whose 
mutation is an important marker of glioma, thereby driving 
proliferation and survival (31). Moreover, in murine models, 
dysregulation of the gut microbiota downregulates the expression of 
Foxp3 in the brain and promotes the growth of gliomas (32). The gut 
microbiota can also regulate neurotransmitters, thereby playing a role 
in the onset and development of central nervous system diseases (33). 
On the therapeutic side, crosstalk of gut flora and blood–brain barrier 
can also alter the effectiveness of antitumor drugs in treating 
glioma (34).

A recent study has provided Genome-Wide Association Study 
(GWAS) data for 1,400 plasma metabolites, offering a robust 
foundation for exploring the roles of metabolites in diseases (14).

FIGURE 3

Forest plot of the associations between 19 metabolites traits with the risk of GBM.
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Based on these findings, the researchers are also working to 
explore what factors can regulate gut microbes and thus affect glioma 
progression. Here are some of the results that have worked so far: 
Bifidobacterium inhibits MEK/ERK cascade by altering the gut 
microbiome and improves the prognosis of glioma (35). Another 
possible stimulator of gut microbiota is high-glucose drink, which 
increase the content of Desulfovibrionaceae family in gut and inhibits 
the growth of GBM. The mechanism may be to induce changes in gene 
expression of CD8 T cells and thus affect the anti-tumor immune 
response (36). At the same time, edible fungi have also recently been 
identified as an important factor in altering the composition of gut 
microbes (37).

For the 12 gut microbiota species identified in this study, specific 
investigations revealing the impact of any individual species on GBM 
have not yet been identified. We hope that this study can provide 
novel insights for future researchers, further elucidating the 
mechanisms through which these gut microbiota may 
influence GBM.

Given these considerations, we  systematically investigated the 
mediating role of metabolites in the gut microbiota on the GBM 
process. It is noteworthy that some of these mediating effects are 
negative, suggesting that certain gut microbial communities regulate 
not only metabolites but also other factors with more significant 

effects on GBM. This leads to an acknowledgment that the gut 
microbiota-metabolite-GBM network we constructed is incomplete. 
However, considering the complex signaling of the brain-gut axis, this 
incompleteness is understandable. We hope that future researchers 
can refine and enhance this network.

Conclusion

Through multiple two-step MR analyses, this study preliminarily 
reveals the relationship between the gut microbiota and the risk of 
GBM, exploring potential mediating roles of metabolites. This 
discovery provides a new research direction for further investigating 
the pathogenic mechanisms of neurological tumors and establishes a 
theoretical foundation for the development of relevant 
therapeutic strategies.
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FIGURE 4

Sankey diagram of the correlation between 12 gut microbiota and 19 metabolites.
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