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Acuity assessments are vital for timely interventions and fair resource allocation 
in critical care settings. Conventional acuity scoring systems heavily depend on 
subjective patient assessments, leaving room for implicit bias and errors. These 
assessments are often manual, time-consuming, intermittent, and challenging to 
interpret accurately, especially for healthcare providers. This risk of bias and error 
is likely most pronounced in time-constrained and high-stakes environments, 
such as critical care settings. Furthermore, such scores do not incorporate 
other information, such as patients’ mobility level, which can indicate recovery 
or deterioration in the intensive care unit (ICU), especially at a granular level. 
We  hypothesized that wearable sensor data could assist in assessing patient 
acuity granularly, especially in conjunction with clinical data from electronic 
health records (EHR). In this prospective study, we  evaluated the impact of 
integrating mobility data collected from wrist-worn accelerometers with clinical 
data obtained from EHR for estimating acuity. Accelerometry data were collected 
from 87 patients wearing accelerometers on their wrists in an academic hospital 
setting. The data was evaluated using five deep neural network models: VGG, 
ResNet, MobileNet, SqueezeNet, and a custom Transformer network. These 
models outperformed a rule-based clinical score (Sequential Organ Failure 
Assessment, SOFA) used as a baseline when predicting acuity state (for ground 
truth we labeled as unstable patients if they needed life-supporting therapies, 
and as stable otherwise), particularly regarding the precision, sensitivity, and 
F1 score. The results demonstrate that integrating accelerometer data with 
demographics and clinical variables improves predictive performance compared 
to traditional scoring systems in healthcare. Deep learning models consistently 
outperformed the SOFA score baseline across various scenarios, showing 
notable enhancements in metrics such as the area under the receiver operating 
characteristic (ROC) Curve (AUC), precision, sensitivity, specificity, and F1 score. 
The most comprehensive scenario, leveraging accelerometer, demographics, 
and clinical data, achieved the highest AUC of 0.73, compared to 0.53 when 
using SOFA score as the baseline, with significant improvements in precision 
(0.80 vs. 0.23), specificity (0.79 vs. 0.73), and F1 score (0.77 vs. 0.66). This study 
demonstrates a novel approach beyond the simplistic differentiation between 
stable and unstable conditions. By incorporating mobility and comprehensive 
patient information, we distinguish between these states in critically ill patients 
and capture essential nuances in physiology and functional status. Unlike 
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rudimentary definitions, such as equating low blood pressure with instability, 
our methodology delves deeper, offering a more holistic understanding and 
potentially valuable insights for acuity assessment.
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1 Introduction

Acuity refers to the severity of a patient’s condition, concomitant 
with the priority assigned to patient care in a critical care setting. 
Patients in the intensive care unit (ICU) exhibit volatile physiological 
patterns and the potential for developing life-threatening conditions 
in a short period. Therefore, the timely recognition of evolving illness 
severity is of immense value in the ICU. Swift and precise assessments 
of illness severity can identify patients requiring the administration of 
immediate life-saving interventions (1). Furthermore, these 
assessments can guide collaborative decision-making involving 
patients, healthcare providers, and families in determining care goals 
and optimizing resource allocation (2). Patient acuity is a foundational 
concept in critical care that ensures patient needs are met with 
precision, safety, and efficiency. Accurate acuity assessments are 
crucial for guiding clinical interventions, optimizing staffing ratios, 
and ensuring the presence of adequately trained personnel to address 
the needs of high-acuity patients (3, 4). From management and fiscal 
perspectives, an accurate understanding of in-patient acuity levels 
permits effective budgeting and resource allocation (5).

Traditional, manual, threshold-based scoring systems such as the 
Acute Physiology and Chronic Health Evaluation (APACHE) (6), the 
Simplified Acute Physiology Score (SAPS) (7), Sequential Organ 
Failure Assessment (SOFA) (8), Modified Early Warning Score 
(MEWS) (9) and others, have been developed to predict the risk of 
mortality in ICU patients and, by extension, gauge the complexity of 
their care needs (6). These tools evaluate physiological parameters, 
laboratory results, and other pertinent clinical information. However, 
static variable thresholds and additive scores have lesser predictive 
accuracy for outcomes of interest, and they tend to use a few 
rudimentary biomarkers to represent complex disease states.

Recent studies in clinical informatics have highlighted the efficacy 
of automated machine learning methods in leveraging comprehensive 
data from electronic health record (EHR) systems. EHR encompasses 
a variety of patient-level data categories, including demographic 
information, diagnoses, procedures, vital signs, medications, and 
laboratory measurements. The studies have emphasized the potential 
of machine learning in transforming healthcare by enhancing clinical 
decision-making processes and patient care. For example, Clifton et al. 
(10) have discussed the use of health informatics systems based on 
machine learning in clinical patient management, demonstrating the 
relevance of these technologies in healthcare settings. Additionally, 
Wang et  al. (11) have supported this idea by showcasing the 
widespread adoption of machine learning in mining EHRs to advance 
clinical research and practice.

Furthermore, Hu et al. (12) and Miotto et al. (13) have investigated 
the application of automated machine learning in distinguishing 

between types of cancers and predicting patient outcomes based on 
EHR data. These studies have underscored the potential of machine 
learning to accelerate workflow, enhance performance, and improve 
the accessibility of artificial intelligence in clinical research. Moreover, 
the work by Wang et al. (14) has highlighted the opportunity presented 
by EHR data for patient similarity assessment and personalized 
medicine through machine learning. Advanced algorithms using deep 
learning techniques have proven superior to conventional bedside 
severity evaluations in predicting in-hospital deaths, an indirect 
measure of immediate patient acuity. However, these systems are 
limited to physiological data captured within the EHR and neglect 
other significant aspects impacting the patient, such as mobility and 
functional status (1).

To overcome these limitations, Davoudi et al. (15) explored the 
benefits of augmenting traditional ICU EHR-based data with 
continuous and pervasive sensing technology. The study gathered 
detailed information on ICU patients’ activity levels, environmental 
factors, and behaviors by combining data from wearable sensors, light 
and sound sensors, and a camera. This multi-sensor approach 
provided a holistic perspective on patient care and monitoring, 
facilitating thorough analysis of delirium classification in critical 
conditions. Wearable device data significantly contributed to the 
study’s results by offering valuable insights into patients’ activity levels, 
movement patterns, and functional status. The study shows that 
integrating wearable sensor data with other modalities enables a 
comprehensive assessment of patients’ behaviors and conditions in the 
ICU, potentially leading to advancements in patient care and 
monitoring. Inspired by the positive impact of these novel clinical data 
streams, Shickel et  al. (1) proposed to augment EHR data with 
continuous activity measurements via wrist-worn accelerometer 
sensors to predict hospital discharge status as a proxy for acuity. The 
study employs deep learning techniques, specifically single-layer 
recurrent neural networks (RNN) with gated recurrent units (GRU), 
to process sequential data and make predictions about patient illness 
severity. The findings suggest that integrating pervasive sensing data 
with conventional EHR data can enhance real-time acuity estimation 
for critically ill patients. Furthermore, they propose that additional 
investigation and integration of even more innovative data streams 
could offer further benefits in this regard. Our previous work also 
highlighted the efficiency of accelerometer data in predicting pain 
levels (16).

In this work, we differ from the current literature by proposing 
to evaluate the viability of using accelerometer and EHR data to 
assess patients’ acuity directly instead of using patient discharge 
status as a proxy. Following the same acuity phenotyping approach 
proposed by Ren et al. (17), the goal is to discern the patient’s state 
as stable or unstable. To achieve this, we  have developed an 
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end-to-end deep learning pipeline based on accelerometer and EHR 
data (Figure 1).

We evaluated five different neural network architectures, namely, 
VGG (18), ResNet (19), MobileNet (20), SqueezeNet (SENet) (21), 
and a custom Transformer-based network (22) since both 
convolutional neural networks (CNNs) and Transformers 
architectures are well-accepted in the sensor-based human activity 
recognition field (23–27). The CNN architecture can detect patterns 
regardless of their position in the sequence and extract both simple 
and complex movement patterns due to its hierarchical structure. On 
the other hand, Transformers are advantageous for processing 
accelerometer data because their self-attention mechanism can 
capture long-term dependencies and weigh the importance of 
different elements in a temporal sequence (28). Consequently, each 
patient’s movement can be contextualized in relation to the other 
movements within a time window, directing the network’s attention 
to the key movement patterns for assessing the patient’s condition.

2 Materials and methods

2.1 Study cohort

The data used in this research were sourced from adult patients 
admitted to one of nine specialized ICUs at the University of Florida 
(UF) Health Shands Hospital main campus in Gainesville, Florida, in 
compliance with all relevant federal, state, and university laws and 
regulations. Approval for the study was granted by the University of 
Florida Institutional Review Board under IRB201900354 and 
IRB202101013. Before enrolling patients in the study, written 
informed consent was obtained from all participants. In cases where 
patients could not provide informed consent, consent was obtained 
from a legally authorized representative (LAR) acting on their behalf. 
Eligible participants were individuals aged 18 and older who were 
admitted to an ICU and expected to remain there for at least 24 h. 
Patients were enrolled independent of their disease, and their 

diagnoses were unknown to the study team at the time of recruitment, 
which took place in person by trained clinical research coordinators. 
Those who could not provide LAR or self-consent, were expected to 
be transferred or discharged from the ICU within 24 h, were receiving 
comfort measures only, were unable to provide informed consent at 
baseline, and those necessitating contact or isolation precautions, were 
excluded. Also excluded from this study were patients who expired 
within 24 h of recruitment or from whom we  could not collect 
accelerometer data due to the presence of intravenous lines, wounds, 
other hospital equipment, or the patient’s choice to opt out of 
accelerometer placement. Accelerometers were still applied to 
intubated and sedated patients.

Datasets were acquired from 87 critically ill patients between June 
2021 and February 2023. Figure 1 depicts the data sources: EHR and 
accelerometer readings. Patients wore Shimmer3 (28) or ActiGraph 
wGT3X-BT (29) accelerometers on one of their wrists. The 
accelerometers used in this study capture direction and magnitude of 
acceleration along 3 axes. The accelerometers convey information on 
the patient’s arm’s direction and intensity of movement as well as 
rotational position through continuous measurement of linear 
acceleration and angular velocity of the device. These types of devices 
capture various aspects of movement and activity, offering insights 
into physical dynamics such as speed, direction, and intensity of 
motion. These measurements enable the quantification of movement 
patterns and activity levels with a high degree of precision and detail. 
In this work we did not include clinical information reflected at the 
motor level such as assessments of muscle strength, coordination, 
balance, and overall mobility. Accelerometer readings were taken for 
a maximum of 7 days or until the patient’s discharge from the ICU, 
whichever came first. During this time, the study team performed 
daily visits to ensure that the device was correctly positioned on the 
patient’s wrist and requested that the nursing staff document any times 
when the device was removed. All known removal and reapplication 
times were documented as device downtimes to be excluded from 
analysis. Conservative estimations were used if the exact removal time 
was unknown. We gathered 9,286 h of accelerometer data, with an 

FIGURE 1

The proposed approach is an end-to-end neural network system that leverages accelerometer and EHR data to assess patient acuity, discerning 
between stable and unstable states.
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average of approximately 107 h per patient. Data from ActiGraph 
devices were retrieved using the ActiLife toolbox.1 Data from the 
Shimmer device was uploaded and exported to a secure server via the 
Consensys software.2

Using a daily pipeline, UF’s Integrated Data Repository service 
extracted clinical data relevant to the patient’s acuity state from the 
EHR. This information included demographics such as age, sex, race, 
height, weight, length of stay, medications, and physiological signals 
like blood pressure, heart rate, oxygen saturation (SpO2), respiratory 
device, continuous renal replacement therapy, blood transfusion, pain 
score, Braden score (30), and acute brain dysfunction status (whether 
the patient was in a coma, experiencing delirium, or had normal 
cognitive status) (31).

2.2 Data processing

In this work, we  employed supervised machine learning 
algorithms. This family of algorithms learns the relationship between 
data and a target. In our case, the target is a patient’s acuity state in a 
certain time range. In order to train these algorithms, each sample 
(time window) needs to be labeled with the correct acuity state so the 
algorithm can learn the patterns and correlations between data and 
the target. To phenotype the patient acuity state as stable or unstable, 
we applied the method devised by Ren et al. (17), which determines 
transitions in acuity status within the ICU. To capture the relevant data 
(accelerometer and clinical data) leading up to each assessment, 
we established a consecutive and non-overlapping 4-h segmentation 
window that concluded immediately before the acuity evaluation, to 
reflect patients’ status. For every 4 h leading up to the assessment, 
patients—excluding those who had passed away or were already 
discharged alive—were identified as unstable or stable. A patient was 
labeled as unstable if they required any of the following life-supportive 
therapies: vasopressors (epinephrine, vasopressin, phenylephrine, 
norepinephrine, droxidopa, or ephedrine), mechanical ventilation, 
continuous renal replacement therapy, or a massive blood transfusion 
(defined as at least ten units in the previous 24 h), as previously 
described. If none of these conditions were met, the patient was 
considered stable.

To address the varying sampling frequencies of the accelerometer 
data, we downsampled all accelerometer segmented windows to a 
consistent 10 Hz sampling frequency. This downsampling not only 
ensures uniformity in the input data rate, facilitating more accurate 
analysis but also limits the maximum length of the accelerometer 
sequence to 144,000 (14,400 s x 10 Hz) to avoid extremely long 
sequences. Additionally, accelerometer values were normalized to a 
range of [0, 1] in a sample-wise fashion (min and max values were 
calculated per sample) to accommodate the requirements of the deep 
learning methods evaluated in our study. Similarly, numerical 
demographic data, such as age, was normalized to the [0, 1] range, 
while categorical demographic information like sex and race was 
one-hot encoded. All clinical data consisted of time series captured 
within 4-h windows, each varying in length.

1 https://theactigraph.com/academic-research#actilife

2 https://www.consensys.net

2.3 Deep learning models

The prediction models evaluated in this work were VGG (18), 
ResNet (19), MobileNet (20), SqueezeNet (SENet) (21), and a custom 
Transformer-based network (22). The selection was grounded in their 
capabilities: VGG and ResNet for their depth, MobileNet, and SENet 
for their small number of parameters compared to ResNet and VGG, 
thus making them a suitable choice for edge deployment and for 
reducing the decision-making latency, which is crucial if deployed in 
the ICU setting. The transformer was selected for its unique attention 
mechanism, which enables modeling long-range dependencies in 
input signals. VGG, ResNet, MobileNet, and SENet were initially 
designed for image classification and required an architecture 
adaptation to suit accelerometer data. We tailored the original models 
to process 1D time series while preserving the fundamental layer-wise 
structure and defining characteristics. It entailed replacing 2D 
convolution, average pooling, and max pooling layers with their 1D 
counterparts and adjusting input channel configurations to match our 
data dimensions. For ResNet, SqueezeNet, and MobileNet, we retained 
essential components such as residual blocks (in ResNet), Squeeze-
and-Excitation blocks (in SqueezeNet), and Depthwise Separable 
Convolution blocks (in MobileNet), with modifications primarily 
consisting of substituting 2D convolution and pooling filters with their 
1D counterparts and updating channel parameters. The fully 
connected layers were kept unchanged. To further aggregate clinical 
and demographic features into the classification pipeline, 
we concatenated them with the dense features extracted from the fully 
connected layer.

In contrast, Transformer architectures are innately suited for 
sequence data processing due to their self-attention mechanism and 
parallel processing capabilities. In our methodology, we extracted 
sequential feature embeddings from raw accelerometer sensor data 
using a feature embedding convolution layer with a kernel size of 5 
and 64 channels. We then provided the extracted features, followed by 
adding positional encodings to capture the temporal order of the data 
into a Transformer encoding layer. We further processed the extracted 
contextual features through another set of convolution and fully 
connected layers to enable our downstream classification tasks. 
We concatenated clinical and demographic features with the dense 
features extracted from the fully connected layer, like the approach 
adopted in earlier models. The model architecture is demonstrated in 
Figure 2.

2.4 Experiments

In assessing the deep learning models, we  implemented a 
thorough evaluation protocol aimed at ensuring reliability and 
transparency, with a particular emphasis on subject independence. 
This protocol combined two established methods: 5-fold cross-
validation and the holdout approach.

Initially, the holdout method divided the dataset into a 
development set (70%) and a separate holdout test set (30%), adhering 
to subject independence principles. The 5-fold cross-validation was 
then applied within the development set to facilitate robust 
hyperparameter optimization and guard against potential overfitting. 
This step was crucial for obtaining a reliable performance estimate, 
especially given our dataset’s limited size. Within each fold, distinct 
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training and validation datasets were created, ensuring that each 
patient’s data were exclusively assigned to either the training or 
validation set used in that fold. This approach maintained the integrity 
of the evaluation process and upheld the principle of subject 
independence throughout.

The models underwent training and validation using the 
development dataset to determine the most effective hyperparameters. 
Following the completion of this step, they were assessed using the 
holdout test set to gauge their ability to generalize to unseen data.

Figure 3 shows the patient and sample distribution for our dataset.
During the 5-fold cross-validation process, we utilized Optuna 

(32) to search over the hyperparameters rather than a traditional grid 
search. Optuna reduces the runtime by pruning fewer promising trials 
during runtime. For every set of hyperparameters, we maximized the 
area under the ROC curve (AUC) for each fold. After deriving the 
AUC for every fold, we calculated the mean and standard deviation of 
these values over all folds of the 5-fold cross-validation. The 
hyperparameters yielding the highest mean validation AUC across all 
folds were deemed optimal and were used to train the final model.

In addition to using deep neural networks, we also incorporated 
the SOFA score as a rule-based scoring system into our evaluation 
process as a baseline. The SOFA score, well-established in assessing 
patients in ICUs, provides an objective and standardized means of 
tracking a patient’s condition over time. These properties make the 
SOFA score an indicator of the acuity state assessment task. To 
measure the acuity states, we scaled the SOFA scores within the range 
of [0, 1] using min-max normalization. We treated these normalized 
scores as probability values and utilized the Youden index (33) to 
determine the optimal threshold for classifying the normalized scores 
and generating predictions.

Once the models were trained using optimized hyperparameters 
over the entire training cohort, we  assessed its performance on a 
holdout test set using bootstrapping with replacement. We created 100 
synthetic bootstrapped versions of the holdout test set samples. These 
bootstrapped test sets were of the same length as the original test set. 
The model’s performance was then calculated on all bootstraps. 
We reported the median and 95% confidence interval (CI) of several 
performance metrics: AUC, precision, sensitivity, specificity, and F1 
score. The p-value was calculated to assess the statistical significance 
of the observed performance metrics values against a null hypothesis 
that was no better than the previous setups (34).

Finally, we performed SHAP (SHapley Additive exPlanations) 
(35) analysis on the best-performing models to interpret relative 
feature importance, providing insights into how various features 
contribute to model predictions. This analysis aids in understanding 
the model’s decision-making process and can guide further refinement 
or feature engineering efforts.

3 Results

3.1 Participants

We involved 87 patients based on our inclusion and exclusion 
criteria. The demographic and clinical variables of the patients 
analyzed were detailed in Table  1, while Table  2 provided a 
breakdown of demographics categorized by stable and unstable 
conditions. The distribution of patients by race and gender are 
approximately the same in both development and test sets. The 
average age was slightly higher in the development cohort, though 

FIGURE 2

The transformer architecture is used for the acuity state classification task. Accel: Accelerometer Sensor, Conv1D: 1D Convolution, Flatten: 2D-to-1D 
flattening layer, Fully Connected: fully connected layer.
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not significantly so. Heights were similar between cohorts, but the 
mean weight was notably greater in the development cohort. Length 
of stay did not significantly differ between cohorts. Notable 
differences in disease prevalence included a higher occurrence of 
cancer and diabetes in the test cohort, while liver-related diseases 
were more frequent in the development cohort.

3.2 Experiment results

We evaluated the performance of five deep learning models on 
different combinations of feature sets: accelerometer data only (Accel), 
accelerometer data with demographics (Accel + Demo), accelerometer 
data with clinical information (Accel + Clinical), and a combination 
of accelerometer data, demographics, and clinical information (Accel 
+ Demo + Clinical). We refer to demographics as the features of age, 
sex, race, height, and weight and as clinical data, the length of stay, 
blood pressure, heart rate, SpO2, pain score, Braden score, and 
cognitive status. In addition, we used the SOFA score as a baseline to 
compare performances across the rule-based and deep learning-based 
methods. We also evaluate the combination of demographics and 
clinical data (Demo + Clinical) to evaluate the accelerometer’s 
contribution to the acuity status assessment. The results are 
summarized in Table 3.

The performance of our baseline SOFA score-based predictor is 
notably limited, with suboptimal AUC (0.53), precision (0.23), 

sensitivity (0.30), and F1 score (0.66). However, the model 
demonstrates a relatively high specificity of 0.76.

Incorporating accelerometer data (Accel) alone or combined with 
demographic and clinical variables (Accel + Demo, Accel + Clinical, 
Accel + Demo + Clinical) significantly improved the model’s 
performance across all metrics. Notably, adding accelerometer data 
improves AUC, precision, sensitivity, specificity, and F1-score 
compared to the SOFA score baseline.

Combining accelerometer data with demographic and clinical 
variables (Accel + Demo + Clinical) yields the best overall 
performance among the scenarios involving accelerometer data. This 
model achieves the highest AUC of 0.73, indicating superior 
discriminative ability compared to other scenarios. Moreover, it 
exhibits the highest precision (0.80), sensitivity (0.60), specificity 
(0.79), and F1 score (0.77). Our best setup demonstrated a relatively 
lower p-value.

Optuna provided us with detailed information and 
hyperparameter selection suggestions. Table  4 outlines the best 
hyperparameters found by the search for each combination of feature 
sets. Table A1 comprehensively overviews the hyperparameters and 
their corresponding values. For the scenario where only accelerometer 
data was utilized (Accel), SqueezeNet architecture with a batch size of 
16, learning rate of 2.11 × 10−4, and weight decay of 9.23 × 10−6 yielded 
the best results. The accelerometer downsampling factor was set to 1. 
Incorporating demographic data along with accelerometer data (Accel 
+ Demo) led to the selection of Resnet architecture with similar 

FIGURE 3

Distribution of patients and samples distribution in the test set and the three-folded development set. (A) Sample distribution. (B) Patient distribution.
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hyperparameters, except for a slightly lower learning rate of 1.16 × 
10−4 and weight decay of 2.77 × 10−6. The downsampling factor was 
adjusted to 2  in this scenario. When clinical data was added to 
accelerometer data (Accel + Clinical Data), SqueezeNet architecture 
was again favored, with hyperparameters akin to the Accel scenario, 
except for a higher weight decay of 9.88 × 10−4 Finally, combining 
accelerometer, demographic, and clinical data (Accel + Demo + 
Clinical Data) led to the choice of Resnet architecture with a batch size 
of 16, a learning rate of 9.37 × 10−5, and weight decay of 2.13 × 10−4. 
The downsampling factor remained consistent with the Accel + Demo 
scenario at 2. We achieved the best Accel + Demo + Clinical scenario 
performance AUC of 0.73 (0.63–0.78).

Figure  4 illustrates the application of SHAP interpretability 
analysis in detecting relative feature importance for three specific 
feature combinations: accelerometer and demographic features, 
accelerometer and clinical features, and accelerometer clinical and 
demographic features. This analysis is conducted on the best models 
obtained for each feature combination scenario. The significance of 
these features can aid in potential feature selection or assessing their 
impact on patient diagnosis.

3.3 Discussion

This study explored the potential of accelerometry and EHR data 
in directly determining patients’ acuity state as an alternative to 
depending exclusively on rule-based scoring systems like the SOFA 
score. Our analysis revealed that the SOFA score-based predictor 
exhibited notable limitations, with suboptimal precision, sensitivity, 
and F1 score, reflecting its inadequacy in effectively evaluating patient 
conditions. Although the model demonstrated relatively high 
specificity, its AUC did not significantly surpass random chance, 
indicating the need for more sophisticated predictive models in 
clinical practice.

In contrast, incorporating accelerometer data alone or combined 
with demographic and clinical variables significantly enhanced model 
performance across all metrics. Notably, adding accelerometer data 
improved AUC, precision, sensitivity, specificity, and F1 score 
compared to the SOFA score baseline. These findings underscored the 
importance of integrating additional features beyond traditional 
clinical variables for accurate predictive modeling in medical settings. 
We believe that the additional features encompass aspects of patient 
physiology and functional status that are not effectively captured by 
SOFA inputs (or inputs for other traditional models such as APACHE 
and MEWS). The ability of accelerometer data to capture patient 
mobility and range of motion continuously can augment the current 
practice of hourly assessments that are subject to individual bias and 
is limited to observations of the bedside nurse. Therefore, we are not 
only enhancing predictive performance but also adding nuance to 
patient assessment, enriching the overall assessment process. Among 
the scenarios involving accelerometer data, the model incorporating 
accelerometer data with demographics and clinical information (Accel 
+ Demo + Clinical) demonstrated the best overall performance. This 
comprehensive approach yielded the highest AUC, precision, 
sensitivity, specificity, and F1 score, emphasizing the synergistic 
benefits of integrating multiple data types for predictive modeling. The 
robust performance of this model, with highly significant p-values, 
validated its effectiveness in predicting patient outcomes.

TABLE 1 Patients characteristics.

Variables
Development 

Cohort 
(N =  60)

Test 
cohort 
(N =  27)

p-
value

Female sex, N (%) 22 (36.7%) 9 (33.3%) 0.76

Hispanic ethnicity, N (%) 8 (13.3%) 2 (7.4%) 0.42

Age in years, mean (SD) 58.4 (15.9) 52.2 (18.3) 0.12

Height in cm, mean (SD) 173.6 (9.1) 172.4 (8.5) 0.56

Weight in kgs, mean (SD) 87.2 (23.6) 77.8 (15.0) 0.06

Length of stay in days, 

median (25th, 75th 

percentile)

11.0 (6.0, 29.0) 13.0 (8.0, 

23.0)

0.60

Race: N (%)

White 49 (81.7%) 18 (66.7%) 0.12

African American 9 (15.0%) 3 (11.0%) 0.63

Other 2 (3.3%) 6 (22.2%) <0.05

Comorbidities: N (%)

Cancer 0 (0.0%) 6 (22.2%) <0.05

Cerebrovascular disease 8 (13.3%) 4 (14.8%) 0.85

Dementia 1 (1.7%) 2 (7.4%) 0.18

Paraplegia hemiplegia 6 (10.0%) 2 (7.4%) 0.70

Congestive heart failure 7 (11.7%) 2 (7.4%) 0.55

Chronic obstructive 

pulmonary disease

4 (6.7%) 3 (11.1%) 0.48

Diabetes 7 (11.7%) 6 (22.2%) 0.20

Liver disease 15 (25.0%) 5 (18.5%) 0.51

Peptic ulcer 2 (3.3%) 0 (0.0%) 0.34

Renal disease 9 (15.0%) 4 (14.8%) 0.98

SD, standard deviation; N, number. In our analysis, we employed two distinct statistical tests 
to examine the differences between the development cohort and the test cohort. For the 
continuous variables, we used Welch’s t-test, while for the categorical variables, we used the 
two-proportion z-test, appropriately.

TABLE 2 Distribution of demographic variables of encounters (recorded 
every four hours) stratified by class labels (stable, unstable).

Variables Stable 
encounters 

(N =  434)

Unstable 
encounters 

(N =  101)

p-
value

Female sex, N (%) 187 (43.0%) 16 (15.8%) <0.05

Hispanic ethnicity, N (%) 64 (14.8%) 4 (4.0%) <0.05

Age in years, mean (SD) 59.2 (16.7) 57.5 (13.4) 0.34

Height in cm, mean (SD) 171.2 (9.1) 178.6 (7.2) <0.05

Weight in kg, mean (SD) 83.6 (21.50) 97.5 (20.2) <0.05

Length of stay in days, 

median (25th, 75th 

percentile)

16.0 (8.0, 31.0) 29.0 (12.0, 33.0)

<0.05

Race, N (%)

White, N (%) 336 (77.4%) 85 (84.2%) 0.97

African American, N (%) 42 (9.7%) 16 (15.8%) 0.07

Other, N (%) 56 (100.0%) 0 (0.0%) <0.05

SD, standard deviation; N, number.
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TABLE 4 Best hyperparameters for each scenario.

Model
Number of 
parameters 

(million)
Batch size Learning rate

Weight 
decay

Accelerometer 
downsampling 

factor

Accel Squeezenet 4.33 16 2.11 × 10−4 9.23 × 10−6 1

Accel + Demo Resnet 3.90 16 1.16 × 10−4 2.77 × 10−6 2

Accel + Clinical Data Squeezenet 5.61 16 2.14 × 10−4 9.88 × 10−4 1

Accel + Demo + Clinical Data Resnet 4.21 16 9.37 × 10−5 2.13 × 10−4 2

All models performed best with maintaining the original 
frequency of the accelerometer (downsampling scale of 1) which 
indicated that the long sequence was not a problem for the employed 
architectures. Notably, a bigger batch size was necessary for the models 
when clinical data was included in the model. It could indicate that 
the added complexity introduced by the clinical data required more 
samples to be processed simultaneously for the model to effectively 
identify patterns, optimize the gradients, and achieve better 
convergence during training.

While our study offers valuable insights, it is crucial to 
acknowledge limitations. Firstly, the generalizability of our findings 
may be constrained by the size and patient population of mainly white 
people studied at a single center, warranting validation on diverse 
datasets to enhance applicability. Despite the clinical research team’s 
daily checks to ensure proper placement of accelerometer devices and 
requests to the nursing staff to document the times of device removal 
and application, it is probable that a small amount of data included in 
this study’s analyses were recorded while the device was not placed on 
the patient. The exclusion of patients who died within 24 h of 
recruitment, coupled with the inability to place study devices on the 
arms of patients with numerous intravenous and/or intraarterial lines 
or other equipment (i.e., wrist restraints), may have introduced bias 
through the exclusion of these high acuity patients from our cohort. 
Furthermore, the collection of accelerometry data and use of a 
motion-monitoring system may be unsuited for the acuity assessments 
of intubated and sedated patients, since the active mobility in these 
patients is extremely limited.

Finally, it is essential to note that SHAP feature importance is 
correlated with model performance and may be  vulnerable to 
misclassification due to overfitting, potentially leading to erroneous 
feature interpretations.

Accelerometer data emerges as an area of high potential for future 
research endeavors. Its utility extends to evaluating patient mobility, 

i.e., measuring the ability to change and control body position. 
Expanding this research to include the integration of additional 
clinical features, such as medication history, laboratory test results, 
and admission information, holds potential for further advancements. 
Moreover, utilizing multimodal models incorporating various 
pervasive sensing data like depth images, color RGB images, 
electromyography, sound pressure, and light levels offers opportunities 
to enhance model performance.

In Figures  4A–C, it is evident that in the combinations of 
accelerometer with demographic features, accelerometer with clinical 
features, and all of them together, the accelerometer features exhibit 
higher importance compared to other features. The accelerometer 
features demonstrate a broad range of values in positive and negative 
directions, suggesting its strong indicative nature for acuity analysis, 
which aligns with our best model results.

Across scenarios utilizing only accelerometer data, accelerometer 
with demographic data, and accelerometer with clinical data, similar 
performance was observed on our test data, with an AUC of 0.62 for 
each combination. It suggests that clinical or demographic features 
alone, when combined with accelerometer data, do not significantly 
enhance the models’ ability to classify our dataset. It underscores the 
critical role of accelerometer data in acuity assessment tasks.

Furthermore, combining accelerometer data with clinical and 
demographic data improved the AUC from 0.62 to 0.73, indicating an 
inter-feature dependency among these variables, which benefits 
our model.

4 Conclusion

Critical care environments necessitate the timely assessment of 
patient acuity to determine the severity of illness and prioritize care 
accordingly. Our analysis revealed limitations in the SOFA-based 

TABLE 3 The best results reported as average and 95% confidence interval in each scenario.

Model
AUC (95% CI, 

p-value)
Precision (95% 

CI, p-value)
Sensitivity (95% 

CI, p-value)

Specificity 
(95% CI, p-

value)

F1-score (95% 
CI, p-value)

SOFA score – 0.53 (0.48–0.58) 0.23 (0.19–0.28) 0.30 (0.22–0.38) 0.76 (0.69–0.82) 0.66 (0.61–0.72)

Demo + Clinical* XGBoost 0.51 (0.45–0.57, 0.63) 0.65 (0.59–0.70, <0.05) 0.14 (0.06–0.21, <0.05) 0.74 (0.69–0.79, 0.65) 0.64 (0.59–0.68, 0.59)

Accel* Squeezenet 0.62 (0.53–0.70, 0.07) 0.75 (0.71–0.79, <0.05) 0.47 (0.35–0.57, <0.01) 0.76 (0.71–0.81, 1.00) 0.72 (0.68–0.76, 0.08)

Accel + Demo** Resnet 0.62 (0.52–0.69, 1.00) 0.76 (0.71–0.80, 0.76) 0.52 (0.40–0.63, 0.55) 0.74 (0.70–0.78, 0.55) 0.72 (0.68–0.76, 1.00)

Accel + Clinical** Squeezenet 0.62 (0.52–0.69, 1.00) 0.75 (0.70–0.79, 1.00) 0.49 (0.37–0.57, 0.80) 0.74 (0.70–0.78, 0.55) 0.72 (0.68–0.75, 1.00)

Accel + Demo + Clinical*** Resnet 0.73 (0.63–0.78, 0.06) 0.80 (0.75–0.84, 0.12) 0.60 (0.48–0.70, 0.33) 0.79 (0.74–0.82, 0.08) 0.77 (0.73–0.80, <0.05)

Accel – accelerometer data, demo – demographics (age, sex, race, height, weight, and length of stay), clinical – the clinical set of features (blood pressure, heart rate, spo2, pain score, Braden 
score, and acute brain dysfunction status). *Indicates that the p-values for the setups were calculated by comparison with the SOFA score baseline, **Indicates that the p-values for the setups 
were calculated by comparison with the Accel-only setup, ***Indicates that the p-values for the setups were calculated by comparison with the Accel + Clinical setup.
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predictor, highlighting the need for more sophisticated models in 
clinical practice. Integrating accelerometer data, either alone or with 
demographic and clinical variables, significantly enhanced model 
performance, underscoring the importance of diverse data sources in 
predictive modeling. The model combining accelerometer data with 
demographics and clinical information exhibited the highest 
performance, validating its efficacy in predicting patient acuity. This 
underscores the importance of a comprehensive approach to patient 
acuity assessment in critical care settings. While initial findings are 
promising, further research is imperative to optimize the accuracy and 
efficiency of these assessments, ensuring advancements in patient care 
and safety.

It is important to acknowledge that the observational studies for 
which this data was collected were conducted with the intent of being 
unobtrusive to patient care, and patients or their proxies were always 
given the opportunity to opt out of, or discontinue, accelerometer data 
collection. Additional research is required to ascertain the reliability of 
mobility data for evaluating intubated and sedated patients. Moreover, 
further investigation is warranted to evaluate their seamless integration 
into clinical workflows, ensuring they do not add to nursing workload 

or physician information overload. Additionally, thoughtful 
consideration needs to be given to how the outputs and assessments of 
these models can be communicated effectively, ensuring they offer 
actionable insights for healthcare providers.
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FIGURE 4

SHAP bee swarm plot illustrating feature importance for different types of feature combinations. (A) Accelerometer and demo (Accel + Demo) features. 
(B) Accelerometer and clinical (Accel + Clinical) features. (C) Accelerometer, demo and clinical (Accel + Demo + Clinical) features.
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Appendix

Tables A1, A2.

TABLE A2 Number of parameters and flop counts for each of our models 
for the accel + demo + clinical data combination with downsampling 
factor of 1.

Model name
Number of 

parameters (million)
Flops (G)

VGG 34.6 193.29

ResNet 4.21 158.45

MobileNet 1.06 79.87

SqueezeNet 4.65 173.91

Transformer 0.75 23.01

TABLE A1 Overview of the hyperparameters and their respective values 
explored in the hyperparameter optimization.

Hyperparameter Values

Model VGG, ResNet, MobileNet, SqueezeNet, 

and Transformers

Batch size 8, 16, 24 and 32

Learning rate Ranging from 10−5 to 10−1

Weight decay Ranging from 10−10 to 10−3

Accelerometer downsampling factor 1, 2, and 4
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