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Aim: The objective of this study is to develop accurate machine learning

(ML) models for predicting the neurological status at hospital discharge of

critically ill patients with hemorrhagic and ischemic stroke and identify the risk

factors associated with the neurological outcome of stroke, thereby providing

healthcare professionals with enhanced clinical decision-making guidance.

Materials and methods: Data of stroke patients were extracted from the eICU

Collaborative ResearchDatabase (eICU-CRD) for training and testing sets and the

Medical Information Mart for Intensive Care IV (MIMIC IV) database for external

validation. Four machine learning models, namely gradient boosting classifier

(GBC), logistic regression (LR), multi-layer perceptron (MLP), and random forest

(RF), were used for prediction of neurological outcome. Furthermore, shapley

additive explanations (SHAP) algorithm was applied to explain models visually.

Results: A total of 1,216 hemorrhagic stroke patients and 954 ischemic stroke

patients from eICU-CRD and 921 hemorrhagic stroke patients 902 ischemic

stroke patients from MIMIC IV were included in this study. In the hemorrhagic

stroke cohort, the LR model achieved the highest area under curve (AUC) of

0.887 in the test cohort, while in the ischemic stroke cohort, the RF model

demonstrated the best performance with an AUC of 0.867 in the test cohort.

Further analysis of risk factors was conducted using SHAP analysis and the results

of this study were converted into an online prediction tool.

Conclusion: ML models are reliable tools for predicting hemorrhagic and

ischemic stroke neurological outcome and have the potential to improve critical

care of stroke patients. The summarized risk factors obtained from SHAP enable

a more nuanced understanding of the reasoning behind prediction outcomes

and the optimization of the treatment strategy.

KEYWORDS

critical care, machine learning, model interpretability, prediction model, stroke

Introduction

Stroke encompasses a set of conditions characterized by the sudden rupture or

occlusion of cerebral blood vessels, ultimately resulting in insufficient blood flow and

subsequent damage to brain tissue. Clinically, stroke is broadly classified into two

main types—ischemic and hemorrhagic—with the latter comprising intracerebral and
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subarachnoid hemorrhage forms (1). Stroke affects a staggering

one in every four individuals over 25 years of age, rendering it the

second most common cause of mortality and third leading cause of

disability among adult populations worldwide (2). Approximately

16 million people worldwide suffer from various motor and

cognitive impairments as a result of stroke, which are often

unavoidable sequelae for stroke patients, and severely affects the

mobility and quality of life of stroke victims (3).

Acute stroke patients often enter the intensive care unit (ICU)

due to consciousness disorders, cardiopulmonary complications,

circulatory instability, or acute thrombolytic therapy (4).

Compared with patients admitted to a dedicated neurological ward

or stroke unit, those with stroke who are admitted to the ICU

exhibit heightened neurological severity, notable impairment of

consciousness at a moderate to severe level, often necessitating

mechanical ventilation, and encounter an elevated risk of hospital

mortality (5, 6). ICU provides complex and resource-intensive

treatment for hospitalized patients with severe conditions, but

current medical resources are often insufficient to meet the needs

of ICU patients, and hospitals face pressure to improve critical care

efficiency and reduce costs (7). Early prediction of neurological

outcome in critically ill stroke patients can provide important

references for patients and their families, and can also guide

clinicians to give the best intervention measures to patients.

In contrast to conventional predictive models that rely on

established variables for computation, machine learning (ML)

approaches offer the distinct advantage of incorporating a

broader range of variables that more comprehensively capture

the intricacies and inherent unpredictability of human physiology

(8, 9). Consequently, ML has emerged as a promising tool in the

medical field, with its capacity to integrate abundant variables,

extract nuanced insights, and generalize acquired knowledge

to novel cases with remarkable efficiency and precision (10,

11). Furthermore, interpretable machine learning is increasingly

being applied in clinical research, demonstrating robust clinical

applicability and guiding capabilities (12, 13).

In this work, we aimed to construct ML models for early and

effective prediction of neurological outcome at hospital discharge

in critically ill patients with hemorrhagic and ischemic stroke, and

employed the shapley additive explanations (SHAP) methods to

elucidate the underlying reasons and decision-making processes

involved within the optimal algorithm.

Materials and methods

Study design

The implementation of the study design was shown in Figure 1.

The present study was a retrospective modeling study utilizing

data from two widely used databases—the eICU Collaborative

Research Database (eICU-CRD v2.0) spanning 2014–2015 and

the Medical Information Mart for Intensive Care IV (MIMIC

IV version 2.2) covering 2008–2019. The author of this study

underwent rigorous training, culminating in certification (number

49437998), and was tasked with data extraction following secure

access to both databases.

Participants

In this study, patients diagnosed with stroke according to

the ninth and 10th revisions of the international classification of

diseases were included (Table 1). These patients were then stratified

into hemorrhagic and ischemic cohorts for comparative analysis.

Inclusion criteria included individuals over 18 years of age but

under 89 years of age who had been in the ICU for at least more

than 24 h, along with a Glasgow Coma Scale (GCS) score within

24 h of admission and a documented motor GCS score within

24 h prior to discharge. It is important to note that in the case of

repeat ICU admissions, only data relating to the first ICU admission

were retained.

Variables extraction and outcome

In this study, detailed demographic data were collected on

age, gender, race, weight, height, and body mass index (BMI). The

maximum, minimum and mean values of vital signs during the

initial 24 h of ICU admission were extracted, encompassing heart

rate (HR), systolic blood pressure (SBP), diastolic blood pressure

(DBP), mean blood pressure (MBP), temperature, respiratory

rate (RR), and oxygen saturation (SpO2). Laboratory parameters

obtained within the first 24 h of admission were also extracted.

For certain parameters with multiple measurements, both the

maximum and minimum values were evaluated. Moreover, the

medical interventions employed during the 1st day of admission,

such as mechanical ventilation and renal replacement therapy,

along with the illness severity scoring systems, namely Charlson

comorbidity index, GCS, acute physiology score III (APS III), and

sequential organ failure assessment (SOFA), were recorded. Table 2

summarized the variables extracted.

The objective of this study was to investigate neurological

status at the time of hospital discharge. In the stroke population,

the National Institute of Health stroke scale (NIHSS) is a widely

accepted metric to determine neurological outcomes. However,

since NIHSS was not recorded in eICU-CRD or MIMIC IV, we

adopted a surrogate neurological outcome marker based on the

motor subscore of the Glasgow Coma Score (mGCS) at discharge.

The mGCS score was stratified into two categories, favorable

(mGCS score of 6) and unfavorable (mGCS score < 5).

Data preprocessing

In our data preprocessing approach, variables with

missing values exceeding 40% were identified as unreliable

and thus removed from the dataset to ensure data integrity.

Outliers were then detected using the Interquartile Range

(IQR) method, computed as the difference between the

75th and 25th percentiles (Q3 and Q1, respectively). Data

points falling outside the range of Q1 - 1.5 ∗ IQR or Q3

+ 1.5 ∗ IQR were flagged as outliers and subsequently

eliminated based on statistical conventions. Finally, the

multiple imputation method was employed for the imputation

of missing numerical values. Renowned for its robustness
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FIGURE 1

Workflow of the study and flow diagram of study participants inclusion.

and capacity to handle intricate datasets, this algorithm

efficiently imputes missing values while preserving the inherent

data structure.

Model development

In order to prevent overfitting and simplify the model,

we simplified the feature data for each outcome, thereby

enabling the models to identify underlying patterns in the

data and enhance their generalization capability. To achieve

this goal, we utilized the least absolute shrinkage and selection

operator (LASSO), a machine learning algorithm, and selected

the optimal regularization coefficient lambda through a cross-

validation process. Specifically, we opted 10-fold for cross-

validation to determine the regularization parameter λ (penalty

parameter) in the LASSO algorithm. This parameter facilitates

variable selection and shrinkage, enabling the compression of

some non-essential variables to zero once λ surpasses a certain

threshold, thereby excluding them from the model. Through

the computation of performance metrics, such as mean squared

error, across various λ values during the cross-validation process,

we identified the λ value corresponding to the minimum

mean squared error as the final regularization parameter. At

this λ value, the non-zero coefficients denote the selected

significant features. Our study involved four machine learning

models, namely Gradient Boosting Classifier (GBC), Logistic

Regression (LR), Multi-Layer Perceptron (MLP), and Random

Forest (RF). They are all classification models in supervised

learning, with GBC being an ensemble learning model, MLP

being a deep learning model, while LR and RF are traditional

machine learning models. To optimize model performance, we

performed hyperparameter tuning with pre-set hyperparameters

(Supplementary Tables 1, 2). The hyperparameter tuning was

carried out using 10-fold cross-validation during the training

set loop.

External validation

We conducted external validation using the MIMIC IV

dataset, ensuring consistency in patient inclusion criteria and data

processing methods with those described for the eICU patient data.

Additionally, we ensured that the clinical indicators analyzed in

the MIMIC database maintained consistent units with those in the

eICU patient data to ensure the accuracy of validation.
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TABLE 1 The international classification of diseases codes of the patients

included in the study.

Stroke
subtype

ICD code ICD
version

Description

Hemorrhagic stroke 430 9 Subarachnoid

hemorrhage

431 9 Intracerebral

hemorrhage

432 9 Other and

unspecified

intracranial

hemorrhage

I60 10 Subarachnoid

hemorrhage

I61 10 Intracerebral

hemorrhage

I62 10 Other

non-traumatic

intracranial

hemorrhage

Ischemic stroke 433 9 Occlusion and

stenosis of

precerebral

arteries

434 9 Occlusion of

cerebral arteries

I63 10 Cerebral

infarction

I65 10 Occlusion and

stenosis of

precerebral

arteries, not

resulting in

cerebral

infarction

I66 10 Occlusion and

stenosis of

cerebral arteries,

not resulting in

cerebral

infarction

Statistical analysis

We evaluated the predictive performance of our model

by measuring several common performance metrics, including

accuracy, positive predictive value (PPV), negative predictive value

(NPV), sensitivity, specificity, F-measure (F1), and area under

the curve (AUC). To determine statistical significance, we used

a threshold of P < 0.05 and applied Two-tailed Student’s t-tests

or Mann-Whitney U-tests for continuous variables, as well as

Chi-squared or Fisher’s exact tests for categorical variables.

Results

Participants

A total of 1,216 hemorrhagic stroke patients and 954 ischemic

stroke patients from the eICU-CRD dataset, as well as 921

TABLE 2 Clinical features overview.

Categories Features

Demographics Age, gender, race, weight, height, and BMI

Vital signs Heart rate, systolic blood pressure, diastolic

blood pressure, mean blood pressure,

temperature, respiratory rate, oxygen

saturation, and urineoutput

Laboratory results Anion gap, bicarbonate, creatinine, chloride,

glucose, hematocrit, hemoglobin, lactate,

platelet, potassium, ptt, inr, pt, sodium, bun,

wbc, and calcium

Medical treatment Mechanical ventilation, renal replacement

therapy, and vasopressor

Illness severity scoring

systems

Charlson comorbidity index, Glasgow Coma

Scale, Acute Physiology Score III, and

Sequential Organ Failure Assessment

BMI, bodymass index; PTT, partial thromboplastin time; INR, international normalized ratio;

PT, prothrombin time; BUN, blood urea nitrogen; WBC, white blood cell.

hemorrhagic stroke patients and 902 ischemic stroke patients

from the MIMIC IV dataset, were included in this study. The

comparison of baseline features is presented in Table 3, while

Supplementary Table 3 provides a summary of specific information

for all patients.

In cohort extracted from the eICU-CRD, 33.47% (n = 407) of

hemorrhagic stroke patients had unfavorable neurological outcome

at discharge, while 25.47% (n= 243) of ischemic stroke patients had

unfavorable neurological outcome at discharge. The proportion of

unfavorable neurological outcome for hemorrhagic and ischemic

stroke patients from MIMIC IV was 50.71% (n = 467) and 40.13%

(n = 362), respectively. Supplementary Table 4 showed the specific

information on hemorrhagic and ischemic stroke patients across

training and testing sets.

Feature selection

The results of feature selection based on the LASSO algorithm

was shown in Figures 2A–D. The optimal regularization coefficient

lambda for each clinical outcome was selected through a cross-

validation process. In hemorrhagic cohort, the optimal lambda

value for predicting neurological outcome was 0.01023367 and

0.01618563 in ischemic cohort. Figure 2E showed a Venn diagram

of the features selected to predict neurological outcome in

hemorrhagic and ischemic stroke. Upon application of the LASSO

algorithm, a total of 26 and 23 features were discerned to

be associated with neurological outcomes in patients diagnosed

with hemorrhagic stroke and ischemic stroke, respectively.

Encouragingly, it was observed that 13 features exhibited shared

significance across both stroke types, emphasizing potential

converging mechanisms influencing neurological outcomes.

Model performance

Four models, GBC, LR, MLP, and RF were generated to

predict neurological outcome in the extracted cohort using the
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TABLE 3 Baseline characteristics of included patients.

Hemorrhagic stroke Ischemic stroke

eICU-CRD MIMIC IV P-value eICU-CRD MIMIC IV P-value

(n = 1,216) (n = 921) (n = 954) (n = 902)

Demographic

Age 64.47 (15.53) 65.63 (15.04) 0.0839 66.38 (14.16) 67.75 (14.02) 0.037

Gender 0.00104 0.00682

Female 656 (53.95 %) 430 (46.69 %) 502 (52.62 %) 417 (46.23 %)

Male 560 (46.05 %) 491 (53.31 %) 452 (47.38 %) 485 (53.77 %)

Race <0.001 <0.001

Asian 17 (1.40 %) 46 (4.99 %) 6 (0.63 %) 23 (2.55 %)

Black 212 (17.43 %) 90 (9.77 %) 110 (11.53 %) 89 (9.87 %)

Hispanic 23 (1.89 %) 40 (4.34 %) 11 (1.15 %) 25 (2.77 %)

Other/unknown 74 (6.09 %) 233 (25.30 %) 35 (3.67 %) 207 (22.95 %)

White 890 (73.19 %) 512 (55.59 %) 792 (83.02 %) 558 (61.86 %)

Weight 82.61 (22.55) 80.01 (22.49) 0.00896 83.88 (23.25) 82.31 (23.30) 0.149

Severity scores on admission

Charlson comorbidity

index

3.37 (2.48) 5.29 (2.77) <0.001 3.76 (2.35) 6.11 (2.90) <0.001

GCS 11.43 (4.37) 12.40 (3.84) <0.001 12.34 (3.61) 13.03 (3.36) <0.001

APSIII 46.29 (26.13) 43.49 (23.86) 0.0113 43.15 (24.15) 44.07 (23.93) 0.422

SOFA 3.57 (2.76) 4.21 (3.65) <0.001 3.28 (2.88) 4.30 (3.81) <0.001

First day treatment

Vasopressor 62 (5.10 %) 186 (20.20 %) <0.001 73 (7.65 %) 197 (21.84 %) <0.001

Renal replacement

therapy

13 (1.07 %) 24 (2.61 %) 0.0114 13 (1.36 %) 23 (2.55 %) 0.092

Mechanical ventilation 445 (36.60 %) 421 (45.71 %) <0.001 277 (29.04 %) 303 (33.59 %) 0.191

Hospital length of stay,

day

8.78 (8.74) 8.57 (9.72) 0.622 7.50 (11.59) 9.30 (11.46) <0.001

ICU length of stay, day 5.86 (6.39) 7.61 (8.06) <0.001 4.44 (5.72) 7.90 (9.86) <0.001

Neurological outcome

Favorable 809 (66.53 %) 454 (49.29 %) <0.001 711 (74.53 %) 540 (59.87 %) <0.001

Unfavorable 407 (33.47 %) 467 (50.71 %) 243 (25.47 %) 362 (40.13 %)

Data are n (%) or mean (SD).

GCS, Glasgow Coma Scale; APSIII, Acute Physiology Score III; SOFA, Sequential Organ Failure Assessment.

selected features. Acute physiology and chronic health evaluation

IV (APACHE IV), a wildly used method for evaluating critically

ill patients, was assessed to compared with the generated models

in testing set. A set of detailed performance metrics for various

machine learning models was presented in Table 4. Figures 3A, C

depicted the predictive performances of the four models and

APACHE reference in terms of AUC curve and decision curve

analysis (DCA) curve. Among the four models, LR model showed

the highest accuracy (0.83), PPV (0.734), specificity (0.86), F1

(0.752) and AUC (0.887). The performance of the optimal model

was improved compared to APACHE reference. According to the

DCA curves of the four predictive models, the net benefit for LR

model was larger over the range of the other models.

In the same way, the four models were generated to predict

neurological outcome in ischemic stroke cohort. Figures 3B, D

exhibited the discrimination performance of these models via AUC

and DCA curves in the testing set. The predictive performance of

each model was presented in Table 5. Of the four models, RF model

had the best predictive performance (AUC = 0.867). Besides, RF

model had the highest F1 (0.66). In addition, GBC model had the

highest NPV (0.973) and sensitivity (0.945) and LR model had the

highest accuracy (0.794), PPV (0.57) and specificity (0.799).
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FIGURE 2

Feature selection using LASSO algorithm. Tuning parameter λ selection by 10-fold cross-validation with minimum criteria. The binomial deviance is

plotted on the y-axis against the logarithm of λ on the x-axis. Vertical dotted lines are drawn at the optimal value of λ, which corresponds to the

point where the model achieves the best fit to the data. (A, C) Depicting partial likelihood deviance of the LASSO regression for neurological

outcome of patients with hemorrhagic and ischemic stroke, respectively. (B, D) Coe�cient profile of the clinical features associated with

neurological outcome of patients with hemorrhagic stroke and ischemic stroke. (E) Venn diagram of selected features associated with neurological

outcome in hemorrhagic and ischemic stroke. LASSO, least absolute shrinkage and selection operator.
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TABLE 4 Model performance summary of all models in hemorrhagic stroke test cohort.

Model Accuracy PPV NPV Sensitivity Specificity F1 AUC

GBC 0.814 0.68 0.907 0.836 0.802 0.750 0.865

LR 0.830 0.734 0.882 0.770 0.860 0.752 0.887

MLP 0.781 0.635 0.890 0.811 0.765 0.712 0.855

RF 0.789 0.645 0.895 0.820 0.774 0.722 0.868

APACHE reference 0.817 0.716 0.869 0.735 0.858 0.725 0.868

GBC, gradient boosting classifier; LR, logistic regression; MLP, multi-layer perceptron; RF, random forest; APACHE, acute physiology and chronic health evaluation; PPV, positive predictive

value; NPV, negative predictive value; F1, F-measure; AUC, area under curve.

FIGURE 3

Model performance in hemorrhagic stroke test cohort and ischemic stroke test cohort. Receiver operating characteristic (ROC) analysis of GBC, LR,

MLP, RF models, and APACHE reference. (A) Hemorrhagic stroke; (B) Ischemic stroke. Decision curve analysis (DCA) curves of four machine learning

models. (C) Hemorrhagic stroke; (D) Ischemic stroke. GBC, gradient boosting classifier; LR, logistic regression; MLP, multi-layer perceptron;

RF, random forest; APACHE, acute physiology and chronic health evaluation.

Model interpretation

In order to comprehensively elucidate the effect of various

clinical features on the neurological outcome of stroke patients,

we employed the SHAP algorithm to determine their overall

positive or negative impact on the optimal model output. As shown

in Figure 4A, GCS score ranked the first in importance among

the features for predicting neurological outcome in hemorrhagic

stroke cohort, followed by APS III score, age, glucose_min,

and sodium_max. Figure 4B showed that GCS score had the

most potent predictive power in predicting neurological outcome

in ischemic stroke patients, followed by APS III score, SOFA
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TABLE 5 Model performance summary of all models in ischemic stroke test cohort.

Model Accuracy PPV NPV Sensitivity Specificity F1 AUC

GBC 0.735 0.489 0.973 0.945 0.664 0.645 0.861

LR 0.794 0.570 0.914 0.781 0.799 0.659 0.837

MLP 0.718 0.470 0.935 0.863 0.668 0.609 0.818

RF 0.763 0.520 0.956 0.904 0.715 0.660 0.867

APACHE reference 0.782 0.532 0.919 0.781 0.782 0.633 0.818

GBC, gradient boosting classifier; LR, logistic regression; MLP, multi-layer perceptron; RF, random forest; PPV, positive predictive value; NPV, negative predictive value; F1, F-measure; AUC,

area under curve.

score, mechanical ventilation and temperature_max. To offer a

comprehensive overview of feature importance ranking in optimal

model construction, Supplementary Figure 1 also provided the

summaries of the feature importance ranking for predicting

neurological outcome in hemorrhagic and ischemic stroke.

To facilitate a more intuitive understanding of how alterations

in individual clinical features impact the model’s output,

we included SHAP dependence plots that depict the top

10 contributing features for each model in Figure 5, SHAP

dependence plots of the remaining features were shown in

Supplementary Figures 2, 3. In the case of hemorrhagic stroke, as

illustrated in Figures 5A–J, patients with lower GCS score (<11),

sodium_min (<137 mmol/L), SpO2_mean (<97%) and lighter

weight (<80 kg) or higher APS III score (>50), glucose_min

(>125 mg/dL), sodium_max (>142 mmol/L), heart rate_max

(>100 beats/minute), temperature_max (>37.5◦C), and order age

(>65 years) are more likely to be predicted as having unfavorable

neurological outcome. In the ischemic stroke group, the effects

of GCS score, APS III score, temperature_max, heart rate_max,

glucose_min, and sodium_max on the model’s predictions

aligned with those observed in the hemorrhagic stroke group.

Additionally, ischemic stroke patients with higher SOFA score (>3)

and wbc_max (>109/L), lower bicarbonate_min (<23 mEq/L) or

treated with mechanical ventilation are more prone to be predicted

as having unfavorable neurological outcome (Figures 5K–T).

External validation

Our predictive analyses of the MIMIC IV validation cohorts

demonstrated a consistent pattern with that observed in the

eICU-CRD cohorts (Supplementary Figure 4). In the validation

set, the LR model demonstrated an AUC of 0.836 for predicting

neurological outcome in hemorrhagic stroke patients, which

represented a decrease of 0.051 compared to the testing set. For

the ischemic stroke validation set, the AUC of the RF model

was 0.856 for neurological outcome, demonstrating a reduction of

0.011. A comprehensive overview of external validation results is in

Supplementary Tables 5, 6.

Online tool for prediction

Based on the optimal model for predicting neurological

outcome in hemorrhagic and ischemic stroke, along with the

relevant clinical variables that it encompasses, we devised an online

prediction tool (Figure 6). By selecting the stroke type and entering

the relevant clinical data, the user can obtain an automatically

generated ID for outcome query. After entering the above ID into

the query interface, the user can obtain the neurological outcome

prediction result. This prediction tool is accessible at: http://www.

strokeprophet.cn.

Discussion

This retrospective analysis delved into the medical records of

stroke patients, utilizing data from the eICU-CRD multicenter

database, and effectively validated the findings using the MIMIC

IV database. By employing multiple algorithmic techniques and

various machine learning models, we successfully identified the

features of clinical indicators within the first 24 h of admission that

are highly correlated with the neurofunctional state at discharge.

Importantly, we integrated the SHAP algorithm and existing

literature to provide comprehensive interpretability and inference

for these factors, which holds significant value in guiding future

prospective research and supporting clinical decision-making in

stroke care. Most importantly, the results of this study have

been translated into a practical online tool that enables precise

prediction of neurologic prognosis in hemorrhagic and ischemic

stroke patients using features from the first 24 h in the ICU.

Categorically, stroke can be divided into two primary subtypes:

ischemic stroke, accounting for 87% of all cases, and hemorrhagic

stroke, comprising intracerebral hemorrhage and subarachnoid

hemorrhage, which collectively make up 10 and 3% of stroke

occurrences, respectively. Prompt emergency interventions aimed

at restoring blood flow prove crucial in improving patient prognosis

in the context of ischemic stroke. Conversely, effectivemanagement

of hemorrhagic stroke necessitates surgical hemostasis and the

control of intracranial pressure (14). Existing studies primarily

consist of single-center, retrospective observational research aimed

at understanding the differences in neurofunctional influencing

factors between these two subtypes of stroke (14). However, there

is a lack of reported research investigating the neurofunctional

prediction and exploration of risk factors specifically in these two

stroke patient populations. Our study significantly contributes to

filling this gap in knowledge.

Our comprehensive study reveals that within 24 h of hospital

admission, ventilator use, age, temperature, GCS score, APS

III score, heart rate, blood sodium levels, blood calcium

levels, respiratory rate, blood bicarbonate levels, blood glucose
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FIGURE 4

SHAP analysis of the optimal model for neurological outcome in hemorrhagic stroke cohort (A) and ischemic stroke cohort (B). SHAP, Shapley

additive explanations.

levels, and ethnicity all demonstrate noteworthy significance

in influencing the prognosis of neurological function for both

stroke types. It is imperative to carefully scrutinize and monitor

these factors in patients diagnosed with either hemorrhagic or

ischemic stroke to facilitate a more accurate assessment of their

neurological prognosis.

Recent discoveries indicate that the requirement formechanical

ventilation among stroke patients may exhibit a stronger

correlation with the site of brain injury rather than the stroke

subtype itself. Consequently, optimizing ventilation strategies

assumes a crucial role in enhancing the prognosis of patients

within the hemorrhagic stroke cohort (15). In stark contrast, our

investigation unveils an intriguing observation: aside from its

influence on hemorrhagic stroke outcomes, mechanical ventilator

employment also exerts a significant detrimental impact on the

prognosis of neurological function in patients suffering from

ischemic stroke. Furthermore, our findings identify respiratory

rate as a contributing factor affecting the neurological prognosis

in both stroke subtypes. These observations may be germane to

the development of complicating conditions such as ventilator-

associated pneumonia and acute respiratory distress syndrome

(16). Therefore, when treating stroke patients, individual

circumstances should be carefully considered, mechanical

ventilation therapy should be optimized.

Several studies have yielded compelling evidence regarding

the influence of hypernatremia and hypernatremia on the

neurological prognosis of stroke patients (17, 18). Notably, we

have identified a novel association between blood bicarbonate

ion levels and the neurological prognosis in both hemorrhagic

and ischemic stroke patients, a correlation that has not been

previously reported in the literature. The presence of acute

hypernatremia and underlying diabetes, recognized risk factors

for cerebrovascular disease, further exacerbate the neurological

prognosis in stroke patients (19). Additionally, heightened

heart rate and elevated body temperature emerge as crucial

factors contributing to an unfavorable prognosis among this

patient population (20, 21). Our investigation also reveals that

advanced age significantly impairs neurological recovery, with

older stroke patients exhibiting diminished prognosis relative to

their younger counterparts (22). Intriguingly, the observations

in elderly mice suggest an enhanced propensity for neutrophil

plugging in the ischemic brain microcirculation post-stroke,

resulting in compromised blood flow and worsened prognosis

(23). Furthermore, dysfunctionality within microglia in aged

mouse brains may contribute to the deteriorating neurological

prognosis following stroke (24). Similarly, Peng et al.’s report

on stroke cohorts from 1990 to 2019 also indicates a relative

inadequacy in healthcare for stroke patients across all age groups,

underscoring the need for further investigation into the impact

of age on mortality trends (25). Disparities in neurological

prognosis between racial groups have been noted, with Black

patients exhibiting poorer outcomes compared to White patients,

potentially linked to stroke subtype (26). Furthermore, Huang

et al.’s study also found that race is one of the top 11most important
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FIGURE 5

SHAP dependence plots of the top 10 features of predicting neurological outcome in hemorrhagic stroke cohort (A–J) and ischemic stroke cohort

(K–T). SHAP, Shapley additive explanations; GCS, Glasgow Coma Scale; APS III, Acute Physiology Score III; SpO2, Oxygen saturation; SOFA,

Sequential Organ Failure Assessment; WBC, white blood cell.

features for predicting 28-day all-cause in-hospital mortality

among hypertensive ischemic or hemorrhagic stroke patients (27).

Our study corroborates these findings, highlighting that White

patients and Hispanic patients experience inferior neurological

prognosis in hemorrhagic stroke, while other ethnic groups fare

worse in ischemic stroke. Remarkably, Black patients exhibit

poorer prognoses across both stroke subtypes (28). Nevertheless,

comprehensive investigations are warranted to validate and

elucidate these observations.

Scoring systems play a pivotal role in evaluating the condition

and predicting the prognosis of patients, thereby guiding treatment

strategies and facilitating informed decision-making. Among these

scoring systems, the GCS has widespread application in stroke

patients, individuals undergoing open-heart surgery, and those

with varying degrees of coma arising from diverse etiologies (29).

Our investigation highlights a significant correlation between GCS

score and APS III scores and the neurological outcome of patients

afflicted by both hemorrhagic and ischemic stroke. Notably,

hemorrhagic stroke patients exhibited diminished neurological

prognosis when their GCS score was ≤11, whereas ischemic

stroke patients experienced compromised functional prognosis

when their GCS score fell below ≤12. However, the underlying

mechanisms contributing to these findings necessitate further

inquiry. Furthermore, our study reveals that the SOFA score exerts

a more pronounced impact on the neurological prognosis of

individuals with ischemic stroke relative to the aforementioned

scoring metrics (30).

Electrolyte imbalance manifests earlier in individuals

suffering from ischemic stroke and holds the potential to serve

as a prognostic indicator for neurological outcomes among

stroke patients (31). In light of our investigation, it has been

established that excessive serum chloride ion concentration (>110

mmol/L) exerts a more pronounced influence on neurological

function within the hemorrhagic stroke patient cohort, thereby

emphasizing the role of averting hyperchloremia in enhancing

neurological outcomes for individuals with hemorrhagic stroke

(32). Remarkably, our novel observation reveals that heightened

anion gap exhibits a greater impact on the neurological prognosis

of ischemic stroke patients compared to ischemic individuals,

an unprecedented discovery in current literature. Clinical

practitioners should therefore dedicate substantial attention to

blood gas analysis results, ensuring prompt correction of electrolyte

imbalances while avoiding overcorrection.

Studies in the field of stroke hemodynamics have

predominantly concentrated on ischemic stroke due to its higher

incidence rate compared to hemorrhagic stroke. Both hypertension

and hypotension have detrimental effects on acute ischemic stroke.

Generally, antihypertensive therapy is recommended when systolic

blood pressure (SBP) exceeds 220 or 180 mmHg in patients eligible

for thrombolytic therapy. In the case of acute hemorrhagic stroke,

SBP exceeding 140 mmHg is associated with an unfavorable

neurological prognosis (33). Notably, our investigation reveals

that when monitoring circulatory dynamics in stroke patients,

it is crucial to adopt distinct approaches depending on whether

the patient has a hemorrhagic or ischemic stroke. For patients

with hemorrhagic stroke, the prognostic significance of maximum

diastolic blood pressure on neurological function is of greater

importance. Conversely, in ischemic patients, both the highest and
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FIGURE 6

An example of online tool for prediction.

lowest mean blood pressure levels exert an impact on prognosis.

Furthermore, the administration of vasopressors escalates the

risk of poor neurological prognosis among individuals with

hemorrhagic stroke.

In conjunction with the aforementioned findings, it is

imperative to consider several additional factors that warrant

separate attention and pertain to patients afflicted with different

stroke types. Among individuals with hemorrhagic stroke,

maintaining an optimal level of SpO2 proves advantageous for

prognosis. Notably, accumulating evidence suggests that oxygen

therapy is not devoid of risks and should be withheld when

SpO2 exceeds 90%. Moreover, in patients at risk of hypercapnia,

the threshold for oxygen therapy ought to be even lower,

specifically≤ 88%. Once oxygen therapy has been initiated, diligent

monitoring of the patient’s oxygen saturation and inhaled oxygen

concentration becomes paramount in order to maintain SpO2

within the targeted range (93–96%) and avert the detrimental

consequences of hypercapnia (34). Furthermore, it is worth noting

that hemorrhagic stroke patients with lower body weight exhibit

an inferior neurological prognosis (35), while diminished levels of

blood urea nitrogen are likewise associated with an unfavorable

neurological outcome (36).

In the context of individuals suffering from ischemic stroke,

heightened emphasis should be placed on monitoring the patient’s

blood leucocyte count as a means to mitigate infection risk

and enhance neurological prognosis (37). Moreover, it is crucial

to duly acknowledge the substantial influence exerted by the

international normalized ratio (INR) and plasma prothrombin

time on ischemic stroke patients, especially following thrombolytic

therapy, warranting careful attention (38, 39). These discoveries

offer valuable insights into the management of stroke patients

necessitating intensive care unit treatment and furnish guidance for

improved resource allocation in clinical decision-making.

The final point we wish to emphasize is that machine learning

algorithms excel at constructing complex models and making

informed decisions when provided with ample and relevant

data. In our study, the choice of machine learning models

was carefully guided by their unique strengths and documented

effectiveness in similar tasks. The GBC model was selected

for its exceptional performance in managing high-dimensional
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data and intricate feature relationships. By leveraging ensemble

learning techniques, GBC adeptly captures non-linear associations

within the data, making it well-suited for addressing complex

classification challenges (40). The RF model was chosen owing to

its resilience and efficiency in handling high-dimensional datasets

with numerous features (41). Notably, Elsaid et al.’s study on

hemorrhagic transformation prediction found that both RFC

and GBC models, capable of capturing non-linear interactions

among predictor variables, yielded the best predictive performance

(AUC: 0.91, 95% CI: 0.85–0.95; AUC: 0.91, 95% CI: 0.86–0.95,

respectively) (42). For binary classification tasks, the simplicity,

interpretability, and effectiveness of LR made it a prudent choice.

Su et al.’s investigation on post-stroke cognitive impairment (PSCI)

underscored LR’s efficacy in discerning the varying impacts of

different factors on cognitive impairment (43). TheMLPmodel was

selected for its ability to handle complex non-linear relationships, as

demonstrated in Zhou et al.’s study on dementia cognitive footprint

recognition (44). MLP emerged as the top-performing model,

showcasing satisfactory performance in dementia identification. In

our study, the LR model demonstrated the highest AUC of 0.887

in the hemorrhagic stroke cohort, whereas the RF model exhibited

superior performance in the ischemic stroke cohort, with an AUC

of 0.867. Considering the insightful observations derived from

SHAP regarding the importance of variables in predicting each

stroke subtype, we analyze and speculate that the primary reason

for the differences in optimal models lies in the interactions among

predictive factors. Specifically, in hemorrhagic stroke prediction,

the most crucial variables predominantly consisted of continuous

variables such as age, weight, and glucose. This suggests that

LR, with its linear decision boundary, may be better suited to

capture the linear relationships among these predictors, thereby

achieving higher predictive performance. Conversely, in ischemic

stroke prediction, notable variables included the use of mechanical

ventilation (mechvent). This intriguing finding suggests that RF,

with its capacity to capture complex non-linear relationships,

may excel in identifying intricate patterns involving categorical

variables like mechvent, which LR may overlook due to its linear

nature. These findings lead us to hypothesize that LR’s superior

performance in hemorrhagic stroke prediction may be attributed

to the predominantly linear relationships among predictors, while

RF’s effectiveness in predicting ischemic stroke-induced damage

may stem from its ability to capture non-linear associations.

However, further research and validation are warranted to confirm

these hypotheses and gain deeper insights into the underlying

mechanisms driving model performance discrepancies between

stroke subtypes.

The present study has several limitations that warrant

consideration. Firstly, our analysis was retrospective in nature,

which resulted in the exclusion of certain variables with high

missing rates but potentially significant predictive value, such

as lactate levels. Secondly, our inability to directly evaluate

patients necessitated reliance on diagnostic codes to define our

patient cohort, raising the possibility of incorrect associations

due to misclassifications. Thirdly, our focus on patients who

remained in the ICU for over 24 h and had an mGCS score

24 h before discharge resulted in the exclusion of a sizable

number of patients, and this may have introduced some

bias into our results. In addition, some important features,

namely neuroimaging and electrophysiological examinations,

were not included in this study due to the limitations of

the database.

Conclusions

In summary, we employed advanced machine learning

techniques to identify and compare the shared and distinct

factors that influence hospital discharge outcomes in both

hemorrhagic and ischemic stroke. By elucidating these factors,

our research will contribute to the advancement of knowledge in

the field of stroke, inform medical decision-making, and guide

personalized treatment strategies. Our results also demonstrate

that machine learning models outperform single standard

scoring systems, with the potential to ultimately improve

patient outcomes.
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