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Background: Cross-modality image estimation can be  performed using 
generative adversarial networks (GANs). To date, SPECT image estimation from 
another medical imaging modality using this technique has not been considered. 
We evaluate the estimation of SPECT from MRI and PET, and additionally assess 
the necessity for cross-modality image registration for GAN training.

Methods: We estimated interictal SPECT from PET and MRI as a single-channel 
input, and as a multi-channel input to the GAN. We  collected data from 48 
individuals with epilepsy and converted them to 3D isotropic images for 
consistence across the modalities. Training and testing data were prepared in 
native and template spaces. The Pix2pix framework within the GAN network 
was adopted. We evaluated the addition of the structural similarity index metric 
to the loss function in the GAN implementation. Root-mean-square error, 
structural similarity index, and peak signal-to-noise ratio were used to assess 
how well SPECT images were able to be synthesised.

Results: High quality SPECT images could be  synthesised in each case. 
On average, the use of native space images resulted in a 5.4% percentage 
improvement in SSIM than the use of images registered to template space. 
The addition of structural similarity index metric to the GAN loss function did 
not result in improved synthetic SPECT images. Using PET in either the single 
channel or dual channel implementation led to the best results, however MRI 
could produce SPECT images close in quality.

Conclusion: Synthesis of SPECT from MRI or PET can potentially reduce the 
number of scans needed for epilepsy patient evaluation and reduce patient 
exposure to radiation.
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Introduction

Localisation of the seizure focus is a key aspect of the pre-surgical workup of individuals with 
drug-refractory epilepsy and routinely requires Magnetic Resonance Imaging (MRI), Positron 
Emission Tomography (PET), and Single Photon Emission Computed Tomography (SPECT) 
scans. Comparison of SPECT scans performed after the injection of a cerebral blood flow tracer 
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during a seizure (ictal scans) with SPECT scans of tracer distribution 
during normal brain activity (interictal scans) reveal hyperperfusion in 
brain structures involved in seizure activity. The computation of the 
difference image between the ictal and interictal SPECT co-registered 
to MRI (SISCOM) is a routine approach for localising the seizure onset 
zone with a high level of sensitivity and specificity (1). The ictal SPECT 
scan is usually obtained during inpatient continuous video-EEG 
monitoring, when medication reduction or cessation is undertaken to 
provoke their habitual seizures. Because of the unpredictability of 
obtaining an ictal scan, one common workflow is to obtain the interictal 
SPECT scan only after a successful ictal scan has been acquired and 
because the interictal state is assumed to pertain following a period of 
24 h seizure freedom, the interictal scan is commonly performed after 
video-EEG monitoring has been discontinued and the patient 
discharged from hospital. This leads to uncertainty around the 
representativeness of the scan of normal brain activity, especially in 
individuals with subclinical or unobserved seizures. The interictal 
SPECT scan also entails an additional radiotracer dose. Perissinotti et al. 
directly replaced the interictal SPECT scan with the individual’s PET 
scan (2) and found only 65% concordance in localisation of the seizure 
focus compared to when the interictal SPECT scan was used. 
We therefore sought to develop methods of generating interictal SPECT 
scans from already-acquired interictal PET and MRI images.

While cross-modality image synthesis using machine learning is 
a well-established area of research (3), it has not been investigated in 
the context of SPECT. To date, machine learning implementations 
have involved the synthesis of PET from MRI or CT, and using similar 
frameworks, CT was estimated from both MRI and PET. Image 
synthesis experiments using machine learning were founded on 
Convolutional Neural Networks (CNNs) (4–6). Generative Adversarial 
Networks (GANs) were invented later (7), and thus applied after 
CNNs were investigated (8–12). The use of GANs instead of CNNs 
results in estimated images of higher quality (3).

In image synthesis, a CNN is used to establish the intensity 
projection between two imaging modalities. Here, autoencoder 
networks are typically responsible for projecting image intensities and 
forming the new image (i.e., the generator). GANs are essentially CNNs 
with an adversarial component, wherein the generator network 
competes with a second network (i.e., the discriminator). The 
discriminator network is trained to distinguish between real and fake 
images. Through the adversarial loss function, the discriminator 
network forces the generator network to create more realistic images 
during training. Quantitative measures, namely Root Mean Square 
Error (RMSE), Structural Similarity Index Measure (SSIM), and Peak 
Signal-to-Noise Ratio (PSNR), standard image quality metrics, were 
used to compare implementations. Our extensive review of over 80 
cross-modality image synthesis studies concluded that pix2pix is a 
reliable choice for synthesising cross-modality images, and performs as 
well as a cycle GAN for brain images (3). Irrespective of the medical 
imaging modalities synthesised, pix2pix performed in a consistent 
manner. Furthermore, SPECT image synthesis has not been performed 
to date. Hence, our work is limited to the use of pix2pix for synthesising 
interictal SPECT images from PET, MRI, and both PET and MRI images.

Irrespective of whether CNNs or GANs are used, datasets of 
sufficient size are required to achieve an adequate level of network 
training. Preparation of the training dataset involves transforming 
input and output images to a common space. Existing studies have 
used either native (11, 13–17) or template space (10, 18–20), but to 
our knowledge, the impact of choosing one space over another has not 
been evaluated to date. As such, it remains unclear whether 
registration to a template space prior to training a GAN improves 
image synthesis.

Our main contributions of this article are as follows:

 • To date, SPECT brain images have not been synthesised from 
other imaging modalities;

 • We have used a state-of-the-art approach to translate PET and 
MRI scans to synthesised SPECT images;

 • This provides a method of generating interictal SPECT scans 
without actual scanning being performed, as a means of 
streamlining the management of epilepsy patients undergoing 
pre-surgical evaluation; and

 • We establish the impact of choosing template space or native 
space for input images into the image synthesis machine 
learning framework.

Materials and methods

Data collection

Data collection commenced following Royal Brisbane & 
Women’s Hospital Human Research Ethics Committee (Brisbane, 
Australia) approval. Through the epilepsy clinic at the Royal 
Brisbane & Women’s Hospital, we identified 86 subjects diagnosed 
with refractory focal epilepsy within the last 20 years. Forty-eight 
subjects had standard PET, SPECT and MPRAGE T1-Weighted 
MRI images available. PET and SPECT scans were collected in the 
axial orientation, whereas T1 MRI were acquired in the sagittal 
orientation. We should note that the resolution and quality of PET 
and SPECT images changed over time, and Table 1 summarises the 
dimension and resolution variations across each imaging modality 
within the dataset.

Image pre-processing

All image processing methods were implemented using MIPAV 
(v10.0.0), SPM 12, and FSL 6.0.5.1. Using MIPAV, MRI images were 
reoriented to axial slices to match the PET and SPECT orientation. 
Individual brains were extracted from MRI and PET scans using the 
BET tool in FSL. The brains were extracted from the SPECT images 
using an intensity threshold based on the histogram computed in 
MIPAV. For experiments performed in native space (i.e., involving 
alignment of PET and SPECT images to MRI images in native space), 
all MRI images were resized to a 256 × 256 × 192 matrix and 
resampled to a resolution of 1 × 1 × 1 mm3 (3rd order Bspline in 
MIPAV). For each subject, PET and SPECT image volumes were 
aligned to the native space of the MRI image volume using rigid body 
registration in MIPAV, then resampled to the resolution of the MRI 

Abbreviations: CNN, Convolutional neural network; GAN, Generative adversarial 

network; RMSE, Root Mean Squared Error; PSNR, Peak Signal-to-Noise Ratio; 

SSIM, Structural Similarity Index Measure.
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images. For experiments performed in template space, PET, SPECT, 
and MRI images were registered to the MNI ICBM152 space (21) 
using affine registration in MIPAV (automatic registration with 12 
parameters), achieving a final matrix size of 256 × 256 × 192 and 
resolution of 1 × 1 x 1 mm3. Figure 1 depicts the steps involved in 
pre-processing the template and native space images prior to image 
synthesis. Irrespective of the experiment type, all images were 
standardised in a slice-by-slice manner to have their image intensities 
in the (−1, 1) range.

GAN implementation

Our recent review of cross-modality image estimation methods 
(3) concluded that GANs using the Pix2pix framework (22) are well 
suited to this task. Pix2pix is a supervised conditional GAN, which 
requires paired sets of input and target images for training (see 
Figure 2 for network structure). We implemented this framework to 
synthesise brain images under three distinct scenarios: (i) MRI to 
SPECT, (ii) PET to SPECT, and (iii) both MRI and PET to SPECT. The 
original conditional GAN described by Isola et  al. (22) was 
implemented, and modified by changing the batch size to 8, and 
decreasing the learning rate from 0.001 to 0.0001.

Loss functions define how trainable weights evolve during 
training in a machine learning framework. Different GAN 
implementations have considered different loss functions. 
Modifications to the full loss function have previously been proposed 
to improve machine learning model performance for image 
estimation. Examples include limiting the differences between the 
actual and estimated images through the 1-norm (22), SSIM (23), 
gradient difference (11), and image content (24). Additionally, Lin 
et al. proposed softmax cross entropy loss to prevent the mode collapse 
caused during training, and to reduce image blurriness in synthesised 
images (25). Here, we used the 1-norm (mean absolute error) and 
cross-entropy losses in our GAN implementation as our standard case 
and evaluated the addition of SSIM loss.

For the pix2pix model depicted in Figure 2, we used Binary Cross-
Entropy for the adversarial loss and Mean Absolute Error (MAE), also 
known as 1-norm, for the pixel-wise loss. The total loss function (Ltotal) 
is sum of the adversarial loss (Ladv) and the MAE loss (LMAE) which are 
weighted by their respective hyperparameters (λadv and λMAE):

total adv adv MAE MAEL .L .L= λ + λ

where Ladv measures the difference between discriminator’s 
predictions between real and generated images according to:

TABLE 1 Summary of the dimension and resolution of the subject dataset collected.

SPECT PET MRI

Dimension Resolution (mm) Dimension Resolution (mm) Dimension Resolution (mm)

128 × 128 × 83 2.34 × 2.34 × 2.34 440 × 440 × 132 0.82 × 0.82 × 2.0 256 × 256 × 192 0.93 × 0.93 × 0.9

128 × 128 × 47 3.89 × 3.89 × 3.89 512 × 512 × 111 0.79 × 0.79 × 2.0 512 × 512 × 192 0.44 × 0.44 × 0.89

128 × 128 × 44 4.79 × 4.79 × 4.79 - - 512 × 512 × 155 0.44 × 0.44 × 1.0

- - - - 256 × 256 × 144 0.89 × 0.89 × 0.99

FIGURE 1

The medical image pre-processing steps used to prepare the machine learning input images. On the left the steps are shown for the case when 
images were registered to the template space, and on the right when images were aligned to the native space of the MRI acquisition.
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where yi  is a ground truth label (1 for real and 0 for fake 
images), D yi( ) is discriminator’s output for real images, G xi( ) 
is a generated image corresponding to the input image xi, and 
finally D G xi( )( ) is discriminator’s output for generated images. 
The MAE loss (LMAE) measures the absolute difference between 
the generated images and the corresponding ground 
truth images:
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where G xi( ) is a generated image corresponding to the input 
image xi, yi is a ground truth image corresponding to xi, and N is a 
total number of images in the dataset.

GAN training and testing

The dataset included a total of 48 patients from which 30 
patient datasets were used for training, six for testing during 
training, and 12 datasets for validation which remained unseen to 
the model. The validation datasets were not used to train and test 
the model and included patient images with structural brain 
alterations following surgical resection. Here, one of our objectives 
was to establish how well the image synthesis algorithm, trained 
and tested using only structurally normal images, would perform 
in patients with abnormal brain structure. One hundred 2D slices 
were taken from each patient, resulting in a total of 4,800 2D slices 
for each imaging modality in this study. The GAN was trained 
using batch normalisation with a batch size of 8 and it was allowed 
to train for 1,000 epochs.

Image quality metrics and statistical 
comparison

We employed RMSE, SSIM, and PSNR to quantify differences 
between the actual and estimated SPECT images as these are standard 
metrics used in cross-modality image synthesis studies (3). All metrics 
were computed for each synthesised unseen image slice and visualised 
using a violin plot across the entire test set of images. Statistical 
significance was set at p < 0.01 (denoted by *) and determined using a 
two-tailed, paired, t-test to evaluate the difference between the means 
of the two groups assessed.

Results

We synthesised SPECT images from MRI, PET and using both 
MRI and PET as input to the GAN. Figures 3, 4 illustrate the native 
and template space image estimation results for example slices from 
five randomly chosen subjects. Image quality metrics are provided in 
Tables 2, 3, respectively. These results highlight that high quality 
SPECT images can be synthesised using MRI, PET or both image 
types as inputs. The mean and coefficient of variation for RMSE, 
SSIM, and PSNR for the 1,100 test image slices are listed in Table 4. 
While we describe further analyses of these results in specific contexts 
below, two key observations can already be made. First, native space 
input images tend to produce better synthesised images than images 
in template space. Second, the use of PET as input (either PET only 
or in combination with MRI) results in a lower coefficient of 
variation, suggesting that a PET input produces a more consistent 
SPECT image estimate than MRI alone. The differences between the 
results of using PET alone and PET combined with MRI as inputs are 
marginal and, based on these observations, it seems difficult to justify 
the use of a two-channel input (MRI and PET). Nonetheless, in what 
follows we provide the analysis for specific factors using MRI, PET 
and both MRI and PET as inputs to the GAN for SPECT 
image synthesis.

FIGURE 2

The pix2pix model used in this study. The input is of the form of MRI, PET or MRI and PET together, and the output is the synthetic SPECT image. The 
green parts are 2D medical images, the blue are artificial neural networks. MAE is mean absolute error.
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GAN training using native or template 
space

In Figure  5, statistical comparisons of performance metrics 
between image synthesis using native or template space are provided. 
Significantly smaller RMSE, larger SSIM, and larger PSNR are seen 
for 14 of 18 comparisons. The RMSE using PET and MRI plus PET 
does not appear to differ significantly, see Figure 5A. There is also a 
tendency for native space input images to produce a larger PSNR 
than template space input images (see PET and MRI & PET in 
Figure 5C), however this was not statistically significant. Based on 
any of the image synthesis metrics evaluated, the use of native space 

input images never performed worse than the use of template space 
input images.

Effect of additional SSIM loss function on 
image estimation

Data presentation in Figure 6 aims to facilitate the comparison 
between loss functions based on RMSE, SSIM and PSNR image 
metrics. The only notable impact of adding SSIM loss is on estimation 
based on input PET (RMSE and PSNR improve significantly) or MRI 
and PET (SSIM and PSNR improve) images in native space. 

FIGURE 3

The native space image estimation result for select slices in five subjects using 1-norm and cross-entropy loss. Corresponding image metrics have 
been provided in Table 2. Subjects 1 to 5 are from the testing set, and Subject 6 is from the additional validation dataset.
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Otherwise, adding SSIM loss to 1-norm and cross-entropy losses does 
not appear to benefit GAN training.

Choice of image modality as input for 
SPECT synthesis

Figure 7 shows the violin plots for the four cases considered: input 
images in native and template space without and with the addition of 
SSIM loss. Comparisons are based on the imaging modality used to 
train the GAN. We expect both SSIM and PSNR to decrease (i.e., 
image quality worsens) as RMSE increases. From Figure  6 

we concluded that the addition of SSIM loss does not improve image 
estimation quality. However, in Figure 7 the case with SSIM loss makes 
the predictions more consistent across the various imaging modalities.

The use of template instead of native space images diminishes the 
differences in the metrics when considering the different imaging 
modalities as input into the GAN. We  should note that while 
statistically significant differences in the mean of the RMSE, SSIM and 
PSNR metrics have been identified between MRI, PET and dual input 
cases, it is difficult to discern potentially impactful image quality 
differences between whether MRI or PET is used for image synthesis 
of SPECT (refer back to Figure 4). Benefits of using MRI and PET 
together as a dual input into the GAN are lacking based on Figure 7. 

FIGURE 4

The template space image estimation result for select slices in five subjects using 1-norm and cross-entropy loss. Corresponding image metrics have 
been provided in Table 3. Subjects 1 to 5 are from the testing set, and Subject 6 is from the additional validation dataset.
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Notably, the best image synthesis SPECT result is achieved when 
native MRI is used as the input into the GAN, which is significantly 
better than using PET or both MRI and PET (see RMSE and PSNR in 
Figure  7A). However, based on the results presented, one could 
be indifferent between choosing MRI and PET.

Discussion

We performed the synthesis of intra-ictal SPECT as this scan is 
necessary for clinical management of epilepsy patients, comes with 
additional exposure to radiation, and can be an unreliable baseline 
measure because the time since last seizure may not be available. 
We implemented a machine learning framework to synthesise SPECT 
from PET and/or MRI images using a GAN. Our results confirm that 
interictal SPECT can be generated using either modality alone or in 
combination. MRI and native space images with 1-norm and cross-
entropy loss in the GAN framework led to the best image synthesis 
results. Interestingly, SPECT could be synthesised from PET almost 
equally well. An additional important finding is that native space input 
training images produce superior results than template space training 
images. This result implies that affine image registration between 
subjects and between imaging modalities is not necessary. Our 
detailed analysis did not suggest that multi-modality input (i.e., MRI 
and PET together) improved SPECT image synthesis.

Can MRI and PET synthesise high quality 
SPECT?

Our results reaffirm (3) that a properly chosen GAN can be used 
effectively in cross-modality image synthesis. The impact of registering 
images to template space versus using broadly aligned native space 
images has not been evaluated previously. We found SPECT synthesis 
based on native space images was significantly superior to that using 
template space input images. Previous studies have not synthesised 
SPECT from either MRI or PET, but synthesis of PET from MRI has 
been performed. The studies reported PSNR of 29.33 (20) and 24.49 
(19), which is consistent with our PSNRs of 26.28 and 27.15 for the 
synthesis of SPECT from MRI and PET.

Our method will likely work with other types of MRI sequences, 
including T2-weighted MRI, as this problem still involves a similar 
image synthesis scenario, but the GAN would have to be retrained to 
learn the new cross-modality image intensity projection. A remaining 
question is whether replacing T1-weighted with T2-weighted MRI or 
employing both MRI sequences as a two-channel input can benefit the 
quality of the image estimation results achieved here. Previously Wei 
et al. suggested that estimation of PET using multi-sequence MRI input 
images resulted in the fusion of complex information, yielding improved 
results over single MRI sequence inputs (17). In Chen’s study (26), 
however, prediction of high dose PET using low dose PET and multiple 
MRI sequences (i.e., T1-weighted, T2-weighted & T2 fluid attenuated 
inversion recovery) yielded similar results to prediction using only 
T1-weighted MRI by DaCosta-Luis and Reader (27). Based on these 
mixed findings, multi-sequence MRI should be evaluated separately for 
different image estimation tasks and datasets. In our study, estimation 
of the SPECT image from T1-weighted MRI and PET together (i.e., 
multi-channel input to the GAN) had slightly superior performance, T
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only in the native space implementation. The use of T2-weighted MRI 
images as input to the GAN may provide similar results but should 
empirically be tested in the future. It appears that both single sequence 
MRI and PET have sufficient structural information for the GAN to 
adequately learn the SPECT image synthesis mapping.

Choice of image space for image synthesis

While most studies have registered subject specific images to a 
template space (19, 20, 28), only a few have applied methods in native 
space (10, 29). To our knowledge, the choice of using template space 
versus native space images as input to the GAN has not been evaluated, 
nor has a justification been provided for the choices made in the 
disparate studies. For this reason, we evaluated the two approaches. 
Our findings conclude that image estimation in native space performs 
better than in template space. During training and testing, the initial 
epochs had a better loss function convergence in template space, but 
with increasing epochs the native space loss value tended to a lower 
loss value. This observation may indicate learning using native space 
images is a more diverse problem, the result of which is broadening of 
image projections leading to higher accuracy.

Clinical relevance of the findings

In pre-surgical evaluations of epilepsy, precise localisation of 
epileptogenic zone is critical for achieving a favourable surgical 
result and to reduce the surgery side effects (30). Interictal SPECT 
is typically acquired following patient discharge from hospital 
where they are not monitored by medical staff or 
video-EEG. Therefore, confirmation of seizure events within that 
period is doubtful. Any unknown seizure event or seizure 
propagation in the past 24 h prior to radiotracer injection of 
interictal SPECT can impact localisation of the epileptogenic zone 
(31). Our cross-modality image synthesis approach to generate 
interictal SPECT from MRI or PET may become a better reference 
image (i.e., synthesised interictal SPECT) preventing ambiguity 
regarding the accuracy of a normal brain activity. This approach 
may improve the clinical workflow by removing the interictal 
SPECT scan, reduce nuclear medicine workloads, reduce the cost 
to the patient and to the healthcare system, and remove exposure 
to radiation associated with the interictal SPECT scan. The next 
step for future clinical evaluation would be  to process SISCOM 
(subtraction of ictal SPECT from interictal SPECT, co-registered to 
MRI) using both real and synthetic interictal SPECT images and to 
compare the reliability with which nuclear medicine physicians 
localise the seizure onset zone using both types of images.

Considerations

Careful review of previous studies highlights the fact that only 
increasing the number of training datasets in the machine learning 
model does not result in better image synthesis quality (17, 19, 28). A 
lack of data for training and testing of the GAN is unlikely to be a 
limitation of this study, as the large number of test and training image 
slices provides adequate variability for robust learning. Improving T
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image synthesis performance is more likely dependant on other 
factors including the machine learning model architecture, choice of 
loss functions such as 1- and 2-norms to minimise noise and 
blurriness, setting an appropriate learning rate to optimise the learning 
process, choosing an optimal batch size to improve the learning 
quality and to be  compatible with computational resources (17). 
We modified the learning rate, batch size (32), and adopted L1-norm 
loss to avoid blurriness (22). Furthermore, we evaluated the addition 
of SSIM loss, which based on our findings, did not benefit SPECT 
image synthesis.

We synthesised 2D images instead of 3D volumes. A motivation 
for this approach was to create a larger number of training and testing 
pairs. Stacking of synthesised 2D slices to form 3D volumetric images 
can lead to through-slice signal variations, which was not considered 
here. However, image intensity variations across slices can be corrected 
using intensity normalisation, noise filtering, and inhomogeneity field 
correction (33).

Conclusion

The cross-modality image synthesis of SPECT images using a 
GAN has not been considered before. We implemented a GAN to 
synthesise SPECT images from MRI, PET, and using both MRI and 
PET as a dual channel input. We performed experiments in native and 
template spaces and added SSIM loss to the 1-norm and cross-entropy 
loss function. We  found that high quality SPECT images can 
be synthesised from MRI and PET, and using both imaging modalities 
as input into the GAN. The best results were generated using MRI in 
native space as the input without the addition of SSIM loss to the GAN 
framework. Notably, the use of PET images instead of MRI performed 
almost equally well for the SPECT synthesis task. Our interesting 
results suggest that registration of subject specific images to a template 
space does not increase image synthesis performance, while improving 
the machine learning workflow in cross-modality image synthesis. 
Our image synthesis of SPECT from MRI and/or PET may find use in 

TABLE 4 Listed are the performance metrics when template and native space inputs are used, and without and with the addition of SSIM loss to the loss 
function, for synthesis of SPECT images from MRI, PET, and both.

Space / Loss Metric MRI PET MRI & PET

Template

1-norm + cross-ent

RMSE 0.13 (38.46%) 0.12 (33.33%) 0.13 (30.77%)

SSIM 0.82 (6.10%) 0.83 (6.02%) 0.83 (6.02%)

PSNR 24.53 (11.01%) 25.12 (9.87%) 24.39 (8.69%)

Template

1-norm + cross-ent + SSIM

RMSE 0.14 (35.71%) 0.12 (33.33%) 0.13 (30.77%)

SSIM 0.83 (6.02%) 0.82 (6.10%) 0.83 (6.02%)

PSNR 23.72(9.65%) 24.76 (9.13%) 24.27 (8.49%)

Native

1-norm + cross-ent

RMSE 0.10 (30.00%) 0.10 (20.00%) 0.12 (16.67%)

SSIM 0.87 (5.75%) 0.88 (3.41%) 0.86 (4.65%)

PSNR 26.28 (9.74%) 25.92 (5.40%) 24.77 (5.85%)

Native

1-norm + cross-ent + SSIM

RMSE 0.11 (27.27%) 0.09 (22.22%) 0.09 (22.22%)

SSIM 0.86 (5.81%) 0.88 (3.41%) 0.88 (3.41%)

PSNR 25.89 (9.15%) 26.99 (7.08%) 27.15 (6.85%)

For each metric the mean and the coefficient of variation (in apprentices) have been provided. Each value is based on 1,100 test image slices from 10 volumetric datasets not used for training 
and testing of the GAN. Subjects 1 to 5 are from the testing set, and Subject 6 is from the additional validation dataset.

FIGURE 5

The native and template space results illustrated as violin plots and categorised by the input (x-axis). Shown are (A) RMSE, (B) SSIM as a percentage, and 
(C) PSNR. Both loss function implementations are provided. Here, *denotes p  <  0.01 based on a student t-test.
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epilepsy management where the baseline intra-ictal SPECT is 
unreliable or not available.
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FIGURE 6

Evaluation of the choice of loss function used for GAN training. Results are illustrated as violin plots and organised in the categories of imaging 
modality, and adjacent violin plots of similar colour should be compared. Shown are image metric results for (A) RMSE, (B) SSIM, and (C) PSNR. Here, 
*denotes p  <  0.01 based on a two-tailed paired t-test comparison of means and the dashed line is the median with the dotted line identifying the 
interquartile range.

FIGURE 7

Evaluation of the choice of imaging modality used as input to the GAN. Results are illustrated as violin plots and organised by the imaging modality 
input (x-axis). Shown are results for (A) native space with 1-norm and cross-entropy loss, (B) native space with 1-norm, cross-entropy and SSIM loss, 
(C) template space with 1-norm and cross-entropy loss, and (D) template space with 1-norm, cross-entropy and SSIM loss. Here, *denotes p  <  0.01 
based on a two-tailed paired t-test comparison of means and the dashed line is the median with the dotted line identifying the interquartile range.
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