
Frontiers in Neurology 01 frontiersin.org

Considerations for the 
assessment of blast exposure in 
service members and veterans
Jared A. Rowland 1,2,3* and Sarah L. Martindale 1,2,3*
1 Salisbury VA Healthcare System, Salisbury, NC, United States, 2 Veterans Integrated Service Network 
(VISN)-6 Mid-Atlantic Mental Illness, Research Education and Clinical Center (MIRECC), Durham, NC, 
United States, 3 Wake Forest School of Medicine, Winston-Salem, NC, United States

Introduction: Blast exposure is an increasingly present occupational hazard for 
military service members, particularly in modern warfare scenarios. The study 
of blast exposure in humans is limited by the lack of a consensus definition for 
blast exposure and considerable variability in measurement. Research has clearly 
demonstrated a robust and reliable effect of blast exposure on brain structure and 
function in the absence of other injury mechanisms. However, the exact mechanisms 
underlying these outcomes remain unclear. Despite clear contributions from 
preclinical studies, this knowledge has been slow to translate to clinical applications. 
The present manuscript empirically demonstrates the consequences of variability 
in measurement and definition across studies through a re-analysis of previously 
published data from the Chronic Effects of Neurotrauma Study 34.

Methods: Definitions of blast exposure used in prior work were examined 
including Blast TBI, Primary Blast TBI, Pressure Severity, Distance, and Frequency 
of Exposure. Outcomes included both symptom report and cognitive testing.

Results: Results demonstrate significant differences in outcomes based on 
the definition of blast exposure used. In some cases the same definition was 
strongly related to one type of outcome, but unrelated to another.

Discussion: The implications of these results for the study of blast exposure 
are discussed and potential actions to address the major limitations in the field 
are recommended. These include the development of a consensus definition 
of blast exposure, further refinement of the assessment of blast exposure, 
continued work to identify relevant mechanisms leading to long-term negative 
outcomes in humans, and improved education efforts.
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Background

The long-term consequences of exposure to blasts have become an increasing concern 
among the military population. Although mild traumatic brain injury (TBI) is considered the 
signature injury of the recent wars in Iraq and Afghanistan, many more service members have 
been exposed to blasts during this time. Most TBIs that occur in combat zones involve a blast, 
yet incongruently, blast exposure does not typically result in TBI (1–4). Since the onset of these 
conflicts, our understanding of the effects of TBI and how to treat them has advanced 
significantly; however, far less progress has been made in understanding and treating the 
effects of blast exposure (with or without resulting TBI). Additionally, there are several 
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definitions of TBI that are widely accepted, yet no definition for blast 
exposure exists (5–7). The purpose of this manuscript is to present the 
current challenges in the study of blast exposure related specifically to 
variability in definitions and assessment approaches for blast exposure 
history. We initially provide context for the current challenges to the 
field and then present examples of how variability in the definition of 
blast exposure can alter study conclusions. Finally, we propose steps 
to address these challenges including a widely endorsed definition of 
blast exposure, continued mechanistic work to improve our 
understanding of blast exposure, education regarding the effects of 
blast exposure, and development of improved assessments of 
blast exposure.

Blast as a mechanism of neurotrauma

At present, there is little debate that blast overpressure 
independently affects the brain (8–11). Two complimentary lines of 
evidence strongly support that primary blast forces (i.e., the direct 
effect of the blast wave) interact with and alter brain structure and 
function in the absence of other mechanisms. First, preclinical studies 
have incontrovertibly demonstrated that primary blast forces can 
directly affect brain structure and function in the absence of blunt 
force and other non-blast mechanisms (12, 13). Consistent findings 
have been reported across several species including mice, rats, ferrets, 
pigs, and non-human primates, suggesting that the mechanism 
through which blast interacts with brain tissue is robust across species 
(12, 14–19). Over the past decade, preclinical models have evaluated 
low-level blast that does not create head movement, further clarifying 
that blast-related injuries are induced directly through properties of 
the blast wave rather than other mechanisms such as head motion (20, 
21). More recent work has applied an open-air blast model to better 
reflect environmental characteristics consistent with military 
deployment scenarios (22). These results clearly establish aspects of 
the blast wave as a mechanism that can directly induce changes to the 
brain in the absence of other injury mechanisms.

Second, studies of breachers (i.e., individuals participating in 
training programs for the use of explosives) offer additional support 
for the blast wave as a primary mechanism. Results indicate differences 
between career breachers and demographically-matched controls in 
brain structure and function (23), gene expression (1), and blood-
based markers (2). Other work has examined individuals before and 
after explosives training, demonstrating effects of exposure to 
low-level blast on cognition (3, 24), as well as brain structure (25) and 
function (23). Results of simulation studies offer further insight into 
the potential mechanisms of this effect and how they may differ from 
those related to blunt force impacts (26, 27). When considering results 
across preclinical and human studies, it is evident that primary blast 
forces directly interact with brain tissue in the absence of other 
mechanical forces. Further, it is clear that exposure to primary blast 
forces can result in the alteration brain function and structure under 
these circumstances.

Blast exposure has been associated with a wide range of negative 
outcomes in human studies including alterations in brain structure 
(23, 28–31) and function (23, 32–34), poorer cognitive functioning (3, 
35), as well as increased psychiatric and health symptom severity (36, 
37). These studies have established this relationship beyond the effects 
of PTSD, TBI, and other covariates. As noted previously, blast 

exposure can serve as a mechanism that induces TBI, similar to other 
established mechanisms such as blunt force impact and acceleration/
deceleration, among others (4). The evidence for significant negative 
outcomes following exposure to blast is compelling, especially when 
considered in the context of findings from preclinical work (38–41). 
Although the relationship between blast and negative outcomes is 
robust across studies, the methods used to assess, characterize, and 
define blast exposure are inconsistent and highly variable.

Defining blast exposure

Comparison of results across studies to determine robust 
mechanisms through which blast exposure influences long-term 
outcomes is limited by inconsistent methodological approaches. A 
significant factor influencing this inconsistency is the variability in 
definitions and measurement of blast exposure, considering the 
notable range in the frequency and severity of exposures (14, 15). 
Service members are exposed to different types of blast overpressure 
throughout their military career across different environments (i.e., in 
garrison, deployment) and contexts (i.e., training, combat, outgoing, 
incoming). Further, these exposures can be concussive (i.e., causing 
symptoms congruent with a TBI) or subconcussive. This variability in 
exposure ultimately forms a complex taxonomy that has hindered the 
development and standardization of definitions and methods used to 
measure blast across research studies.

A wide range of definitions for blast exposure have been utilized 
in published work including the distance from the source (32, 42, 43), 
reported severity of blast overpressure (31, 37), any report of exposure 
to blast overpressure (28), report of physical effects of blast 
overpressure (44), using military occupational specialty (MOS) to 
categorize blast risk (45), or objective data from wearable monitors 
(24). Each of these approaches has contributed to our understanding 
of the acute and chronic effects of blast exposure. However, there are 
considerable differences among these approaches that limit our ability 
to draw meaningful conclusions. As a result, it is not possible to 
synthesize these study outcomes into a coherent understanding of the 
effects of blast exposure on the brain, the underlying mechanisms, or 
the resulting consequences.

Assessment of blast exposure

Definitions of blast exposure have been operationalized using a 
variety of assessment measures. These include dedicated TBI 
evaluations, dedicated blast evaluations, ad hoc items to evaluate blast 
exposure, and body mounted sensors using various calculated 
outcomes. Many of these measures have been reviewed elsewhere; 
however, there are several key points that warrant restatement (46). 
First, TBI interviews typically include an evaluation of the injury 
mechanism, with blast being just one of many. Several interviews have 
specific questions to evaluate concussive events that involve blast, and 
some have added additional questions to evaluate the frequency of 
these events (47, 48). However, blast exposure does not always result 
in symptoms of concussion or mild TBI. TBI evaluations are not 
designed or intended to assess non-concussive events; therefore, they 
will likely underestimate the frequency and severity of these events. 
As noted previously, clinical symptoms of TBI are not necessary for 
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blast-induced neurotrauma to occur. This means that these measures 
may miss important blast events that could have a significant influence 
on future outcomes. In addition, these measures are validated to 
identify and diagnose TBI. There is generally no additional 
psychometric work conducted to evaluate the reliability or validity of 
the blast-specific aspects of these measures. Overall, these measures 
are excellent at identifying blast-related TBI but may overlook 
important non-concussive blast events. Further, these measures do not 
collect detailed information about characteristics of non-concussive 
blast exposures (e.g., pressure experienced, protective factors present) 
that have shown to be  associated with acute and chronic effects 
following blast exposure.

Dedicated evaluations of blast offer a more comprehensive 
characterization of blast exposure than TBI interviews, specifically 
because they capture events that are not considered potentially 
concussive (46). Most available measures evaluate the frequency of 
different types of blast exposures. However, significant variability 
among these measures remains, mostly due to the difficulty capturing 
the severity of the blast exposure, even among similar events. Because 
of this, there are no standard outcomes across these assessment tools. 
Additionally, categories of events can overlap across measures making 
direct comparisons difficult. However, these measures offer the most 
nuanced evaluation of an individual’s blast exposure history.

Ad hoc items evaluating blast exposure are frequently utilized as 
part of survey measures (49, 50). These are typically one or two self-
reported items asking about the frequency of a certain kind of 
exposure (e.g., “In your life, how many times have you been close 
enough to an explosion in which you felt the blast wave?” (49, 51)). 
There is high variability among this category of measurement and the 
reliability and validity of these measures has typically not been 
evaluated. Of note, proxy measures for blast are also frequently used, 
especially for retrospective chart review studies, such as MOS (45, 52).

Finally, body mounted sensors are unique among blast 
assessments as they are an objective measurement of the blast intensity 
(3, 53–55). Efforts are ongoing to determine the ideal method to 
deploy these sensors and analyze the resulting data (56, 57). Although 
objective measurement of a blast is ideal to assess resulting effects, 
individual variability still exists (e.g., sensor location relative to 
direction of the blast, placement of sensors, number of sensors) and 
individuals are not wearing sensors on a consistent basis. Therefore, 
sensors represent a strong method for directly measuring 
characteristics of a blast; however, they are unlikely to provide a 
comprehensive account of an individual’s exposure to blasts when 
used in isolation.

Currently, no broadly accepted standards exist to determine when 
a blast is likely to result in significant sequelae or require treatment or 
intervention. Blasts are defined as either concussive or subconcussive, 
using criteria developed to diagnose and identify TBI. As a result, blast 
exposures are evaluated with standards largely based on non-blast 
mechanisms of brain injury. It is critical to have a clear operational 
definition of a condition in order to successfully identify, study, and 
treat that condition. In the absence of well-defined criteria, the study 
of blast exposure will continue to be restricted by project-specific 
definitions. There is a critical need to understand the blast 
characteristics and their respective thresholds that are associated with 
negative outcomes to support the development of a consistent and 
clear definition of blast exposure, much like those developed and 
implemented for TBI.

Demonstration of pitfalls due to 
measurement inconsistency

To illustrate these points and the broad issue of variability in 
measurement, we present new analyses of previous work (35, 37) that 
provide a side-by-side comparison of results when using different 
definitions of blast exposure identified in published human studies, 
including: blast TBI (34, 58), primary blast TBI (28), pressure severity 
(4, 37), distance from the blast (32, 43), and frequency of exposure 
(49–51). These analyses utilize data from the Chronic Effects of 
Neurotrauma Consortium Study 34 (CENC-34) that has been 
described previously (35, 37). Briefly, inclusion criteria for CENC-34 
were: age 18 years or older, deployed in support of the wars in Iraq and 
Afghanistan, and reported exposure to combat. Exclusion criteria 
were: history of moderate to severe TBI or penetrating head injury, 
non-deployment TBI with loss of consciousness, history of major 
neurologic disorder, history of serious mental illness, current 
neurocognitive disorder, substance use disorder, or psychosis. 
Participants completed questionnaires, structured clinical interviews, 
cognitive testing, and neuroimaging.

Samples for analyses are from two published manuscripts using 
CENC-34 data evaluating effects of blast exposure on symptom report 
(37) and cognitive function (35). Participants included in symptom 
analyses (N = 275) passed symptom validity measures and participants 
in cognitive analyses (N = 254) passed cognitive validity measures. 
Current analyses parallel those presented in the published work, 
including covariates. Time variables (i.e., time since most recent 
injury, first injury, most recent blast exposure, first blast exposure, first 
traumatic event, deployment-related traumatic event, most recent 
traumatic event, and deployment) were considered as covariates but 
not significantly associated with other variables in bivariate models, 
did not improve models, and did not have significant independent 
effects and were therefore not included in final models. We  have 
re-analyzed the data to demonstrate the effect of different definitions 
of blast exposure: Blast TBI, Primary Blast TBI, Pressure Severity, 
Distance (≤3 meters and ≤10 meters), and Frequency of Exposures. 
Operational definitions of these variables are detailed in Table  1. 
Definitions are based on data from the Mid-Atlantic MIRECC 
Assessment of TBI [MMA-TBI (59)] and the Salisbury Blast Interview 
[SBI (4)]. The MMA-TBI is a well-validated, semi-structured TBI 
interview that determines the presence or absence of TBI based on 
VA/DOD guidelines. Information regarding the potential concussive 
mechanisms present, including blast, are also collected. The SBI is a 
semi-structured interview that characterizes blast exposure across the 
lifespan regardless of the presence of TBI. By evaluating effects from 
a blast itself and not symptoms specific to TBI diagnosis, the SBI 
provides a comprehensive evaluation of blast exposure, including 
subconcussive exposures such as heavy weapons training, smaller 
detonations, and blast events at a further distance. Analyses were 
conducted using linear regression. Dependent variables were self-
reported symptom measures scores or demographically-adjusted 
outcomes of cognitive testing. Each model included one of the blast 
variables from Table 1, presence or absence of PTSD diagnosis from 
the Clinician Administered PTSD Scale-5 [CAPS-5 (60)], and other 
covariates identified previously.

The significant effects of specific blast definitions on symptom 
outcomes and quality of life are reported in Table 2. These results 
illustrate highly variable outcomes based on the definition of blast 
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exposure that is used. Depending on the specific definition, outcomes 
ranged from no significant associations across all outcomes for 
frequency and distance characteristics, to a significant association 
with almost all symptom measures for the experienced pressure 
severity. Variables based on the TBI interview had mixed effects, as 
evidenced by significant associations with neurobehavioral symptoms 
and quality of life, but not other variables.

The effect of different blast exposure definitions on cognitive 
outcomes can be seen in Table 3. As seen with symptoms outcomes, a 
wide range of outcomes are present. Very close exposure (≤3 meters) 
was significantly associated with the majority of cognitive outcomes; 
however, exposure within ≤10 meters (inclusive of exposures ≤3 
meters) was only significantly associated with a single outcome. 
Frequency of exposure was associated with several non-processing 
speed measures, whereas experienced pressure severity was not 
significantly associated with any outcome. TBI-based definitions were 
only associated with Trail Making Test (TMT) Part B performance.

There are clear differences in how each definition is associated with 
either symptom or cognitive outcomes. Distance and frequency 

measures were associated with cognitive outcomes, but not symptom 
outcomes. Within distance variables, the sensitivity to outcomes differed 
largely by the selected distance. Experienced pressure severity was 
strongly associated with symptom outcomes, but not cognitive outcomes. 
TBI variables were not strongly associated with cognitive outcomes but 
there were indicated relationships with some symptom outcomes. It 
should be noted that all TBI were mild in severity; therefore, broad 
impairments in outcomes are not anticipated for large numbers of 
participants. In addition, participants were seen a decade post-
deployment on average; therefore, symptoms do not represent acute 
effects of TBI or blast exposure and are considered long-term outcomes.

These analyses demonstrate how the definition of blast exposure 
can dramatically affect the outcome of a study. If the current results 
were acquired across different studies, it would not be possible to 
synthesize the outcomes into a coherent understanding of the 
consequences of blast exposure. At best, it could be  possible to 
conclude that some forms of blast exposure potentially have negative 
consequences. However, we would be left to speculate as to the reason 
that one definition was highly relevant and another was not.

TABLE 1 Operational definitions of blast variables.

Variable Data 
source

Type Operational definition Symptom 
sample

Cognitive 
sample

Blast TBI MMA-TBI Dichotomous TBI with blast present as one potential concussive 

mechanism. This includes TBI with mixed blast and blunt 

mechanisms

n = 95 n = 85

Primary blast TBI MMA-TBI Dichotomous Presence of at least one TBI for which blast was the only 

mechanism present. May include individuals with 

additional history of blunt TBI

n = 76 n = 68

Pressure severity SBI Continuous Maximum reported severity of exposure to a pressure 

wave. The experienced pressure gradient of each blast 

event is rated by a participant on a given a behaviorally 

anchored Likert scale

Mean = 1.8

SD = 1.5

Mean = 1.9

SD = 1.5

Distance SBI Dichotomous Distance ≤3 meters and ≤10 meters. This variable is 

positive if the participant reported any blast exposure 

below the noted threshold

3 meters n = 65

10 meters n = 111

3 meters n = 62

10 meters n = 105

Frequency SBI Continuous Total lifetime number of reported exposures to blast, 

defined as experiencing any pressure gradient, defined as 

a score >0 on the SBI pressure scale

Mean = 169.3

SD = 575.4

Mean = 182.9

SD = 593.7

TBI, traumatic brain injury; MMA-TBI, Mid-Atlantic MIRECC Assessment of TBI; SBI, Salisbury Blast Interview.
All TBI in this sample were mild in severity.

TABLE 2 Parameter estimates of the effect for various definitions of blast exposure on symptom presentation.

Blast TBI Primary blast 
TBI

Pressure 
severity

Distance Frequency

≤3 meters ≤10 meters

PCL-5 total ns ns 2.38* ns ns ns

PHQ-9 total ns ns 0.92* ns ns ns

NSI total 4.83* 4.79* 2.15* ns ns ns

PSQI global ns ns 0.42* ns ns ns

PROMIS PI T ns ns ns ns ns ns

QOLIBRI total −9.75* −8.43* −2.64* ns ns ns

N = 275, ns, non-significant; *p < 0.05, all models adjust for PTSD diagnosis and DRRI-2 combat exposure, significance unadjusted for multiple comparisons; PCL-5, PTSD Checklist-5; 
PHQ-9, Patient Health Questionnaire-9; NSI, Neurobehavioral Symptoms Inventory; PSQI, Pittsburgh Sleep Quality Inventory; PROMIS PI, PROMIS Pain Interference Short Form T-Score; 
QOLIBRI, Quality of Life After Brain Injury.
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Because the outcomes presented here are from the same sample, 
it is possible to further explore the nuances of these relationships. 
Based on these results, it is clear that blast exposure can result in 
negative outcomes even in the absence of symptoms consistent with 
TBI. Specifically, these results suggest that the effects of blast-induced 
TBI and the effects of blast exposure could be viewed as two separate 
fields of study. There was very little consistency in the pattern of 
relationships of blast TBI and blast characteristic variables to 
outcomes. This is consistent with work that has investigated blast-
induced neurotrauma (BINT), the direct effects of blast on brain 
structure and function regardless of other circumstances or context 
(10, 16). BINT differs from blast-induced TBI as it does not rely on 
symptoms to infer that a neurological insult occurred. To be classified 
as TBI, an event must meet the clinical definition that includes 
alteration of consciousness or another neurological symptom 
occurring immediately following the traumatic force exerted on the 
central nervous system (e.g., blunt force impact, acceleration/
deceleration, blast, etc.) (5). In contrast, BINT is evaluated following 
a blast exposure by looking for the outcome of interest (e.g., change in 
brain volume, alterations in brain function), regardless of symptoms 
at the time of the event. Consistent with prior work on BINT, the 
presented results demonstrate that clinical symptoms of TBI are not 
necessary for blast exposure to result in chronic alterations to brain 
structure and function, or long-term negative outcomes to occur (29, 
31, 33, 49, 61, 62).

Using clinical definitions of TBI to determine if a particular blast 
exposure has clinical relevance will almost certainly result in false 
negative diagnosis and missed opportunities to provide treatment or 
intervention. The clinical diagnosis of TBI is largely based on evidence 
and experience from non-blast-induced events (5, 7, 63). This includes 
sports injuries, falls, motor vehicle accidents, assaults, etc. These 
events typically involve the direct transfer of forces to the central 
nervous system through contact with the skull or body (e.g., striking 
the head on an object). Blast exposure typically involves the indirect 
transfer of a force across distance (acknowledging the potential for 
acceleration/deceleration injuries) and is associated with a number of 
potential injury mechanisms (8–11). This creates the potential for 
blast events to result in a different acute symptom presentation from 
events involving non-blast forces, a scenario that could explain 
chronic post-concussive-like symptoms that have been frequently 
reported following non-concussive blast exposures. In summary, 
reliance on clinical definitions of TBI will continue to limit the 

development of an accurate and comprehensive understanding of how 
blast exposure affects long-term outcomes.

This study has limitations that should be considered, with several 
previously identified in the original manuscripts. Recall and 
attribution bias are inherent in all assessments of historical events. 
Participants were all combat exposed veterans, therefore results may 
not generalize to individuals without combat exposure, active duty 
service members, or civilians experiencing blast. In combat scenarios 
blast frequently co-occurs with other forces that may induce TBI (e.g., 
blunt force impact), it is possible outcomes following mixed force 
exposures and injuries are different from those involving a single 
force. Finally, individuals were on average over a decade beyond their 
most recent TBI or blast exposure. Results may be different in the 
acute phase following blast exposure. Notable strengths include the 
use of structured clinical interviews to assess psychiatric conditions 
and obtain TBI and blast exposure histories. Symptom and 
performance validity were evaluated using standalone measures.

Potential actions to address 
limitations in the study of blast 
exposure

There are several potential actions to address the issues 
surrounding the study of blast exposure and blast-induced TBI that 
have been noted here. The most critical action is the development of 
a standard definition of blast exposure, similar to those that exist for 
TBI, the process for which is well-established and could be easily 
emulated. A standard definition would provide a clear point of 
comparison across studies, addressing the most prominent weakness 
in the study of blast exposure. Establishing a workgroup consensus 
opinion based on available empirical and clinical evidence would 
provide strong support and clear direction for the field. As 
demonstrated in this manuscript, the knowledge base to support a 
consensus definition of blast exposure is not fully developed. 
Therefore, this definition would need to be updated periodically as 
we learn new information and our understanding of blast exposure 
characteristics and outcomes expands.

Future research should incorporate any standardized definition of 
blast exposure alongside a full characterization of blast exposure. 
What constitutes a full characterization of blast exposure is a topic for 
workgroup discussion and consensus; however, this should likely 

TABLE 3 Parameter estimates of the effect for various definitions of blast exposure on cognitive testing.

Blast TBI Primary blast 
TBI

Pressure 
severity

Distance Frequency

≤3 meters ≤10 meters

WAIS-IV FSI ns ns ns −3.79* ns −0.002*

WAIS-IV VCI ns ns ns −3.51* ns −0.003*

WAIS-IV PRI ns ns ns −3.04* ns −0.003*

WAIS-IV WMI ns ns ns ns ns ns

WAIS-IV PSI ns ns ns ns ns ns

TMT Part A −4.55* −3.94* ns −4.23* ns ns

TMT Part B ns ns ns −3.91* −2.79* ns

N = 254, ns, non-significant; *p < 0.05, all models adjust for PTSD diagnosis, significance unadjusted for multiple comparisons, t-scores adjusted for age, education, sex, and race; WAIS, 
Wechsler Adult Intelligence Scale; FSI, Full Scale Index; VCI, Verbal Comprehension Index; PRI, Perceptual Reasoning Index; WMI, Working Memory Index; PSI, Processing Speed Index; 
TMT, Trail Making Test.
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include the date/time of the event, information about protective 
factors that were present, the distance from the munitions, and details 
about the severity of the blast (e.g., sensor data, ratings from the 
participant, or the munitions that detonated). This will allow a clear 
comparison of outcomes across studies as well as exploratory analyses 
to continue improving our understanding of how specific 
characteristics of events relate to outcomes. To support this, 
observational studies of human blast exposure measuring a wide 
range of blast characteristics are necessary. This will likely require the 
use of more than one available assessment of blast history. The results 
of these studies can then be  combined with the results of well-
controlled preclinical studies to translate preclinical mechanistic work 
into clinically applicable knowledge for initiating prevention and 
treatment efforts.

Related to the need for a standardized definition, the assessment 
of blast exposure can be significantly improved. Most human studies 
of blast exposure use data obtained from assessments of TBI. These 
measures were typically designed to diagnose TBI with blast being one 
of many potential mechanisms. This approach is limited because blast 
exposure does not always result in symptoms of concussion or TBI 
and clinical symptoms of TBI are not necessary for blast-induced 
neurotrauma to occur. Several interviews have added additional 
questions to evaluate the frequency of a certain type of blast event 
(e.g., within 10 meters, felt the blast wave). However, there has been 
no validation of these added blast event items. Therefore, it is critical 
that blast exposure be  characterized using dedicated assessment 
measures that have been well-validated (46). The development and 
validation of blast measures is an area that will benefit from continued 
refinement to identify the characteristics of blast events most relevant 
to negative outcomes and the most robust method of measuring 
these characteristics.

Currently there are efforts by the Department of Defense to 
include data gathered by body mounted blast sensors to the medical 
record. This is a significant advancement to the characterization of 
blast exposure in service members and will allow this data to 
be analyzed along with medical record outcomes. A limitation of this 
approach is that service members are not always wearing sensors 
when they are exposed to blasts, especially in a combat theatre. 
Sensors may also malfunction and omit recording exposures. 
Therefore, it is important to administer other assessments of blast 
exposure in conjunction. Regularly administering a non-sensor 
assessment of blast exposure that would also be  included in the 
medical record would provide an accessible second data point for 
analysis. Annual administrations could be  completed as part of a 
yearly process. These two data sources would provide complementary 
information to improve the ability to characterize blast exposure and 
its relationship to outcomes.

Finally, there is a clear need for dissemination of knowledge 
about the effects of BINT. The empirical literature base clearly 
demonstrates that symptoms consistent with TBI are not necessary 
for BINT or negative outcomes to occur. However, many clinicians 
and researchers remain skeptical of this relationship. Concerted 
efforts are necessary to increase awareness about the potential for 
primary blast forces to directly induce neurotrauma and result in 
negative outcomes including psychiatric symptoms, cognitive 
problems, and reduced quality of life. These long-term effects 
likely represent not only the acute effects of blast exposure, but 

also chronic secondary “downstream” effects including 
neuroinflammation, neurotoxicity, cellular senescence, and 
neurodegeneration, among others (13, 64–67). Education at all 
levels (e.g., continuing education opportunities, round tables at 
annual conference meetings, grand rounds in hospital or academic 
medical center settings, journal clubs) will be required for both 
clinicians and researchers to improve awareness of primary blast 
forces as mechanisms of neurotrauma.

Conclusion

The long-term negative consequences of blast exposure among 
service members and veterans have become increasingly evident 
since the start of the wars in Iraq and Afghanistan. However, our 
understanding of how and why blast exposure often results in 
negative consequences and the means to intervene or treat 
resulting symptoms and conditions has lagged comparatively. The 
absence of a broadly endorsed definition of blast exposure paired 
with the use of study-specific definitions prevent synthesis of 
existing literature into a cohesive understanding of the field. 
Preclinical work has undeniably demonstrated that primary blast 
forces can directly induce neurotrauma with associated, ongoing 
symptoms; however, these findings have not translated into clinical 
work. Collaborative efforts will be required to advance the study of 
blast exposure, including the development of a standardized 
definition of blast exposure, the curation of an empirical literature 
base allowing clear comparisons of results across studies, education 
to broadly disseminate knowledge of the consequences of blast 
exposure to both clinicians and researchers, and the development 
of empirically supported and well-validated measures to assess and 
characterize blast exposure.
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