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Introduction: This study aimed to investigate the effectiveness of data 
augmentation to improve dementia risk prediction using machine learning models. 
Recent studies have shown that basic blood tests are cost-effective in predicting 
cognitive function. However, developing models that address various conditions 
poses challenges due to constraints associated with blood test results and cognitive 
assessments, including high costs, limited sample sizes, and missing data from tests 
not performed in certain facilities. Despite being often limited by small sample sizes, 
periodontal examination data have also emerged as a cost-effective screening tool.

Methods: To address these challenges, this study explored the effectiveness of 
data augmentation using the Synthetic Minority Over-sampling Technique for 
Regression with Gaussian noise (SMOGN), a Generative Adversarial Network 
(GAN), and a Conditional Tabular GAN (CTGAN) on periodontal examination and 
blood test data. The datasets included parameters such as cognitive assessment 
results from the Mini-Mental State Examination (MMSE), demographic 
characteristics, periodontal examination data, and blood test results. Linear 
regression models, random forests, and deep neural networks were used to 
evaluate the effectiveness of the synthesized data.

Results: This study used measured data from 108 participants and the synthesized 
data generated from the measured data. External validity was evaluated using a 
different dataset of 41 participants with missing items. The results suggested that 
normal GANs have the advantage of investigating models in data diversity, whereas 
CTGANs preserve the data structure and linear relationships in tabular data from 
the measured data, which drastically improves linear regression models.

Discussion: Importantly, by interpolating sparse areas in the distribution, such 
as age, the synthesized models maintained prediction accuracy for test data 
with extreme inputs. These findings suggest that GAN-synthesized data can 
effectively address regression problems and improve dementia risk prediction.
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1 Introduction

The rapidly increasing older population has led to a rise in the 
prevalence of dementia, including Alzheimer’s disease (AD). The 
number of people living with dementia across the world is expected 
to increase from 55 million in 2019 to 139 million in 2050 (1). 
Accurate diagnosis remains complex because of the subtleties of 
mental status assessment and the similarity of AD to other types of 
dementia. Mild cognitive impairment (MCI), often a precursor to AD, 
is widely recognized as crucial for early detection and intervention.

Blood tests, which have recently been correlated with Mini-
Mental State Examination (MMSE) scores (2, 3), have emerged as a 
promising tool for cognitive screening. However, because of a variety 
of factors, machine learning models trained on blood test data often 
face limitations in accurately predicting dementia risks. One 
significant challenge is heterogeneity in patient data, including a wide 
range of biomarkers and cognitive scores. This variability can lead to 
inconsistencies in model performance, especially when dealing with 
multifaceted diseases such as dementia. Additionally, standard 
analytical models often struggle with the sparse and imbalanced 
nature of medical datasets, which can result in overfitting or the 
underrepresentation of certain patient groups. To address these issues, 
there is a growing need for innovative approaches capable of effectively 
handling diverse and incomplete data while maintaining predictive 
accuracy and reliability.

In addition to blood tests, recent research has highlighted the 
potential role of periodontal examination data in dementia risk 
assessment. Some studies have suggested a close relationship between 
cognitive function, oral health, and systemic metabolic function in 
older adults, with the number of healthy teeth being a significant 
predictor (4). However, to the best of our knowledge, the combination 
of periodontal examination and blood test results have never been 
investigated for cost-effective and rapid screening of dementia risk. It 
is because the integration of periodontal examination data with blood 
tests still faces the obstacles, including the associated high costs, 
limited sample sizes, and missing data from unperformed tests, while 
periodontal health is increasingly recognized for its potential links 
with cognitive function, offering a promising avenue for early 
dementia detection.

Recent studies applying generative adversarial networks (GANs) 
for clinical applications, including diagnosis, prediction, and anomaly 
detection, can mostly be found in the field of medical imaging (5, 6). 
This is the first study to integrate periodontal examination and blood 
test data and to apply synthesized models from tabular data for 
dementia risk prediction, which aim to address the challenges of data 
scarcity and heterogeneity in medical datasets that often impede 
accurate dementia risk prediction. This approach represents a step 
forward for cost-effective and rapid screening methods in early-stage 
dementia risk assessment.

2 Methods

Data augmentation techniques such as SMOGN, GAN, and 
CTGAN were applied to generate synthesized datasets after 
preprocessing the measured data to handle missing values, as shown 
in Figure 1. The synthesized datasets were then used for training three 
basic machine learning models: linear regression (LR), random forest 

(RF), and deep neural network (DNN). Prediction errors and the 
robustness of the synthesized models were evaluated through 10 
repeated hold-out validation process with different random seeds to 
ensure the reliability and generalizability of the synthesized data 
and models.

2.1 Participants and measurements

We evaluated 108 individuals who were appointed for oral health 
assessments at Nihon University Itabashi Hospital (mean age ± standard 
deviation [SD], 69.4 ± 9.7 years; age range, 33–85 years). Written 
informed consent was obtained from all participants who agreed to 
additionally take MMSE and blood tests after receiving ethical approval 
from the Institutional Review Board (approval No.: RK-191210-3). 
Periodontal examinations, performed by a dentist in the research project, 
included assessments such as the number of remaining healthy teeth.

Regarding the external validity of the synthesized models, we used 
a dataset of 41 participants (28 males, 13 females, mean age ± SD, 
69.7 ± 5.6 years) from a public health center in Koriyama, Fukushima, 
Japan, published in a preliminary study (4). The mean MMSE score 
was 26.7 ± 2.1. Compared with the measured data shown in Table 1, 

FIGURE 1

Flowchart of the overall methodology, including data collection, 
preprocessing, augmentation, hold-out validation, and result 
analysis.

https://doi.org/10.3389/fneur.2024.1379916
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Oyama et al. 10.3389/fneur.2024.1379916

Frontiers in Neurology 03 frontiersin.org

the external validation test dataset lacked thirteen of 27 items; 
however, the remaining 14 items were commonly available as 
predictor variables between the measured data and the external 
validation test dataset: age, sex, white blood cell count (WBC), 
hemoglobin (Hb), platelet count (Plt), aspartate aminotransferase 
(AST), alanine aminotransferase (ALT), total cholesterol (T-Cho), 
triglyceride (TG), blood urea nitrogen (BUN), creatinine (Cr), uric 
acid (UA), total protein (TP), and number of remaining teeth.

2.2 Data augmentation

GANs were used to generate synthesized data from our dataset 
with combinations of sample sizes (100 and 500) and learning 

epochs (300, 1,000, 3,000, 5,000), while SMOGN served as the base 
model, effectively balancing the data distribution for oversampling 
in regression problems. For more details, the learning parameters 
of SMOGN, GAN, and CTGAN are listed in Supplementary  
Table S1.

2.2.1 Synthesizer 1—synthetic minority 
over-sampling technique for regression with 
Gaussian noise

To address data imbalances, we applied SMOGN, which enhances 
minority data representation by generating synthetic samples with a 
Gaussian noise model (7). This technique ensures that the dataset 
remains representative of the original distribution for training 
unbiased models.

TABLE 1 Measured data (N  =  108) with the parameters of Pearson’s correlation with MMSE scores and statistical difference between two MMSE groups 
(<28, ≥28).

Item All (N =  108) Pearson’s 
correlation

MMSE <28 
(n =  45)

MMSE ≥28 
(n =  63)

p-value

Response MMSE 27.5 ± 2.4 25.2 ± 1.9 29.2 ± 0.8 **

Demographic data

Age (years) 69.4 ± 9.7 −0.32* 72.3 ± 8.4 67.3 ± 10 **

Sex M:88/F:20 M:51/F:12 M:37/F:8

Height (cm) 164.3 ± 0.1 0.19 1.63 ± 0.08 1.65 ± 0.08 *

Weight (kg) 65.2 ± 11.2 0.11 63.6 ± 10.4 66.3 ± 11.6

sBP 128.7 ± 17.5 −0.08 129.1 ± 18.8 128.4 ± 16.6

dBP 75.2 ± 10.6 0 74.2 ± 10.5 75.9 ± 10.7

HR 73.8 ± 12.8 −0.07 74.8 ± 12.4 73.0 ± 13.0

General blood test

WBC 5623.8 ± 1458.9 −0.04 5,650 ± 1464.4 5606.3 ± 1466.7

Hb 13.8 ± 1.4 0.08 13.6 ± 1.6 14.0 ± 1.2

Plt 21.1 ± 6.4 −0.04 20.8 ± 6.3 21.4 ± 6.5

AST 24.8 ± 8.9 −0.10 24.7 ± 9.2 24.8 ± 8.7

ALT 23.1 ± 14.1 −0.01 21.9 ± 13.6 24.0 ± 14.4

LDH 179.3 ± 30.7 −0.17 184.2 ± 37 175.9 ± 25.1

T-Cho 171.0 ± 33.8 0.07 171.3 ± 31.3 170.9 ± 35.5

HDL cholesterol 56.3 ± 15.2 −0.01 57.9 ± 16.8 55.3 ± 14.2

LDL cholesterol 85.5 ± 27.1 0.14 82.8 ± 24.1 87.2 ± 28.9

TG 144.6 ± 114.7 −0.04 149.5 ± 115.8 141.4 ± 114.9

BUN 17.5 ± 5.3 −0.22* 19.0 ± 6.3 16.4 ± 4.1 **

Cr 0.9 ± 0.3 −0.04 1.0 ± 0.4 0.9 ± 0.3

UA 5.5 ± 1.3 0.11 5.3 ± 1.3 5.6 ± 1.3

TP 7.1 ± 0.5 0.04 7.0 ± 0.6 7.1 ± 0.4

HbA1c 6.1 ± 0.7 −0.05 6.1 ± 0.9 6.1 ± 0.6

Periodontal 

examination

No. of remaining 

teeth
22.3 ± 6.8 0.18 21.1 ± 7.6 23.0 ± 6.2

Ave. PD 2.7 ± 0.5 −0.08 2.7 ± 0.4 2.7 ± 0.6

Ave. CAL 3.9 ± 1.1 −0.12 3.9 ± 1.1 3.8 ± 1.1

PISA 221.2 ± 215.8 0.05 197.8 ± 203.1 236.7 ± 224.1

PESA 1108.1 ± 372.6 0.17 1036.4 ± 377.5 1155.4 ± 364.6 *

MMSE, Mini-Mental State Examination; WBC, white blood cell count; Hb, hemoglobin; Plt, platelet count; AST, aspartate aminotransferase; T-Cho, total cholesterol; HDL, high-density 
lipoprotein; LDL, low-density lipoprotein; TG, triglycerides; BUN, blood urea nitrogen; UA, uric acid; Ave. PD, average probing depth; Ave. CAL, average clinical attachment level; PISA, 
periodontal inflammatory surface area; PESA, periodontal epithelial surface area.
*p < 0.05, **p < 0.01.
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2.2.2 Synthesizer 2—GAN
Our standard GAN were implemented using the TensorFlow 2 

library. GANs operate using a pair of neural networks—the Generator 
and the Discriminator—which are trained concurrently through a 
competitive process. The Generator creates data from random noise, 
learning to make it indistinguishable from measured data. Conversely, 
the Discriminator learns to distinguish accurately whether the data 
presented is generated or real (8). The standard GAN in this study 
features a Generator and Discriminator, each with three hidden layers. 
These layers were configured with 256, 128, and 64 units for the 
Generator, and 128, 64, and 32 units for the Discriminator. We opted 
for the leaky rectified linear unit activation function to maintain 
gradient flow during training as a standard model of GAN, with each 
layer followed by batch normalization. The model was trained using a 
batch size of 16 and a learning rate of 0.0001 with the ADAM 
optimizer, which was selected based on preliminary experiments to 
optimize convergence.

2.2.3 Synthesizer 3—conditional tabular GAN
In addition to the standard GAN, a CTGAN (9) was utilized 

because of its proficiency in synthesizing tabular data while preserving 
conditional distributions, which is particularly effective if a medical 
dataset needs to preserve specific statistical characteristics. The 
CTGAN open source library in the Synthetic Data Vault project is 
adept at capturing complex relationships between variables in a table 
format, making it particularly suitable for medical datasets, which 
often contain a mix of categorical and continuous features and require 
the statistical properties of the original data to be retained. In our 
application, CTGAN was applied to generate synthetic yet realistic 
and representative patient data, thereby enhancing the training 
process by providing a richer and more diverse set of samples for 
improving the generalization capabilities of our dementia risk 
prediction models. The model was trained with 5,000 epochs, a batch 
size of 500, and a learning rate of 0.0002 to achieve 
optimized convergence.

2.3 Machine learning models for data 
analysis

We employed LR, RF, and DNN models to estimate MMSE scores 
using the measured and synthesized data. The LR served as a baseline 
for comparison because of its interpretability and previous applications 
in AD research. RF, which is known for its ability to handle nonlinear 
data and robustness to noise, was included to assess its performance 
in our context. The DNNs, which were constructed using Tensor Flow 
2, consisted of four hidden layers designed to capture intricate 
relationships. For more details, the learning parameters of RF and 
DNN are listed as Supplementary Table S2.

2.3.1 LR
We implemented ordinary least-squares regression as our 

baseline model because of its interpretability and established use 
in AD research. This method provides a clear and straightforward 
way to analyze the linear relationship between predictor variables 
(e.g., blood test results, periodontal examination data) and 
MMSE scores.

2.3.2 RF
Recognized for its ability to handle nonlinear relationships and 

robustness to noise, the RF model was constructed with 300 trees and 
a maximum depth of 10 using the scikit-learn library. This approach 
enhances predictive performance and helps control overfitting. The 
suitability of RF for AD research is supported by its success in similar 
applications (10).

2.3.3 DNN
The neural network architecture included 19 input neurons, 

representing demographic, blood test, and periodontal examination 
data. Four hidden layers with descending neuron counts (256, 128, 
and 64) were used to process effectively the inputs as reported. 
We employed the scaled exponential linear unit activation function, 
which normalizes input signals to improve the training efficiency and 
stability. Batch normalization was applied after each layer. The 
network was trained using a batch size of 8 and a learning rate of 0.001 
with the ADAM optimizer. These hyperparameters were optimized 
using a grid search to ensure stable model convergence.

3 Results

3.1 Statistical analysis of measured data

We systematically assessed cognitive function using the MMSE, 
complemented by demographic and blood test data, to explore 
correlations with periodontal health indicators, as shown in Table 1. 
Given the exploratory nature of our study, we reported unadjusted 
p-values to highlight potential associations. With an average MMSE 
score of 27.5 ± 2.4, the participants were categorized for further 
analysis into two groups based on MMSE scores: those with scores 
<28, which are indicative of possible MCI, and those with scores ≥28, 
which are considered within the normal cognitive range. The MMSE 
cut-off score of 27/28 is frequently employed in studies focusing on 
early detection of cognitive decline among older adults (11). 
Independent t-tests showed differences in the mean values for age, 
height, BUN, and PESA between these groups, suggesting their 
potential influence on cognitive status as determined by the MMSE 
(p < 0.01 for age and BUN; p < 0.05 for height and PESA).

The blood test items selected in Table 1 are commonly measured 
parameters in practice, and the periodontal examination items include 
PISA, PESA, and related computational metrics. For the subsequent 
machine learning analyses, a total of 27 variables were selected. These 
were chosen by having <20% missing values and ensuring a correlation 
coefficient < 0.9 between items to check for multicollinearity.

3.2 Results of data augmentation

For conducting the repeated hold-out validations, we employed 
SMOGN, GAN, and CTGAN to generate 10 sets of synthesized data 
from the measured dataset (Table 2). Both GAN and CTGAN were 
utilized for addition to the measured data for a comparison between 
them. The Kolmogorov–Smirnov (KS) complement scores indicated 
that SMOGN and CTGAN replicated the original data distribution 
more closely than GAN, especially for the MMSE score distribution in 
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which CTGAN reached the highest score of 0.88 ± 0.04. It is noteworthy 
that GAN extensively extrapolates both in MMSE score and Age 
distributions around the minimum score (Min.) of the measured data, 
whereas SMOGN and CTGAN maintain the measured data distribution.

To understand how CTGAN interpolates the measured data, 
distributions of MMSE score and Age are compared as shown in 
Figure 2. In terms of the age distribution, CTGAN-synthesized data 
are closer to the measured data with a correlation of −0.27 ± 0.01, and 
the addition of CTGAN-synthesized data to the measured data only 
changes the correlation to MMSE scores within 0.05. Age distribution 
of the synthesized data also is closer to that of the measured data.

3.3 Results of hold-out validation

The LR, RF, and DNN models trained on measured data without 
periodontal examination items exhibited mean absolute errors 

(MAEs) of 2.10 ± 0.21, 1.95 ± 0.22, and 2.30 ± 0.27, respectively, in 
repeated hold-out validation (Table 3). After including periodontal 
examination items in the models, LR showed an increase in prediction 
error due to a larger number of variables, while RF and DNN exhibited 
improvements with mean MAEs of 2.28 ± 0.33, 1.94 ± 0.21, and 
2.18 ± 0.23, respectively.

Interestingly, LR achieved the most significant improvement in 
prediction errors compared to RF and DNN when CTGAN-
synthesized data (N = 500) were added to the measured data, as 
highlighted in Table 3. This result suggests that LR effectively utilizes 
CTGAN-synthesized data for dementia risk predictions, which 
outperforms RF and DNN models under these conditions. Figure 3 
illustrate that, compared with the results of the worst models, CTGAN 
with the certain seed number drastically improved all LR, RF, and 
DNN models by showing proportional measured and predicted 
MMSE scores, while the models with a poor augmentation result can 
diffuse predicted MMSE scores.

TABLE 2 Augmentation results: 10 sets of synthesized data for repeated hold-out validation.

Measured data (no 
augmentation)

SMOGN GAN CTGAN

Sample size of training data 86.4 ± 0.5

Size of output synthesized data – 108.3 ± 8.7 100 or 500 100 or 500

MMSE score

Min. 21 ± 0 20.9 ± 0.0 14.4 ± 2.4 21.0 ± 0.0

Mean 27.4 ± 0.1 27.1 ± 0.2 27.2 ± 0.3 26.7 ± 0.4

KS complement score 1 0.83 ± 0.01 0.75 ± 0.07 0.88 ± 0.04

Age

Min. 33.0 ± 8.0 33.0 ± 8.0 0.0 ± 16.7 33.0 ± 8.0

Mean 68.5 ± 0.6 69.1 ± 0.6 66.5 ± 1.5 65.8 ± 2.2

Max. 85.0 ± 0.0 85.0 ± 0.1 85.0 ± 8.7 85.0 ± 0.0

KS complement score 1 0.89 ± 0.02 0.83 ± 0.06 0.86 ± 0.03

Similarity of Pearson’s 

correlation coefficients
1 0.91 ± 0.02 0.79 ± 0.06 0.80 ± 0.07

SMOGN, synthetic minority over-sampling technique for regression with Gaussian noise; GAN, generative adversarial network; CTGAN, conditional tabular GAN.

FIGURE 2

Distributions of MMSE scores and age. (A) Distribution of MMSE scores: measured data (blue) and synthesized data (red). (B) Distribution of age: 
measured data (blue) and synthesized data (red).
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TABLE 3 Prediction errors in repeated hold-out validation using measured and synthesized data with and without periodontal examination items: most improved MAEs are highlighted.

Training 
(measured  +  synthesized 
data)

Learning epochs 
for GAN

Without periodontal examination items With all available inputs

LR RF DNN LR RF DNN

Measured data (N = 86) only 2.10 ± 0.21 1.95 ± 0.22 2.30 ± 0.27 2.28 ± 0.33 1.94 ± 0.21 2.18 ± 0.23

+ SMOGN (N = 75.4 ± 4.7) 2.19 ± 0.24 1.95 ± 0.17 2.27 ± 0.30 2.37 ± 0.31 1.94 ± 0.16 2.24 ± 0.27

+ GAN (N = 100)

300 2.08 ± 0.36 1.97 ± 0.28 2.27 ± 0.28 2.15 ± 0.37 1.96 ± 0.30 2.25 ± 0.34

1,000 2.09 ± 0.23 1.98 ± 0.23 2.18 ± 0.26 2.18 ± 0.31 1.97 ± 0.22 2.02 ± 0.23

3,000 2.12 ± 0.22 2.02 ± 0.28 2.26 ± 0.19 2.16 ± 0.24 1.98 ± 0.25 2.11 ± 0.25

5,000 2.13 ± 0.13 2.04 ± 0.22 2.19 ± 0.27 2.23 ± 0.24 2.02 ± 0.24 2.19 ± 0.21

+ GAN (N = 500)

300 2.19 ± 0.43 1.96 ± 0.35 2.15 ± 0.43 2.25 ± 0.43 1.96 ± 0.35 2.09 ± 0.32

1,000 2.18 ± 0.31 2.01 ± 0.26 2.25 ± 0.26 2.21 ± 0.38 1.98 ± 0.23 2.04 ± 0.27

3,000 2.09 ± 0.24 2.06 ± 0.32 2.32 ± 0.28 2.08 ± 0.22 2.04 ± 0.28 2.20 ± 0.25

5,000 2.19 ± 0.14 2.10 ± 0.24 2.17 ± 0.33 2.22 ± 0.23 2.07 ± 0.24 2.18 ± 0.28

+ CTGAN (N = 100)

300 2.05 ± 0.24 2.10 ± 0.30 2.20 ± 0.23 2.08 ± 0.27 2.09 ± 0.33 2.19 ± 0.20

1,000 2.09 ± 0.16 2.09 ± 0.20 2.35 ± 0.16 2.10 ± 0.22 2.03 ± 0.21 2.28 ± 0.32

3,000 1.99 ± 0.23 1.96 ± 0.21 2.33 ± 0.15 1.97 ± 0.25 1.95 ± 0.24 2.12 ± 0.26

5,000 2.02 ± 0.24 2.02 ± 0.30 2.35 ± 0.38 2.06 ± 0.29 1.99 ± 0.29 2.40 ± 0.29

+ CTGAN (N = 500)

300 2.13 ± 0.30 2.25 ± 0.37 2.30 ± 0.24 2.13 ± 0.29 2.28 ± 0.38 2.20 ± 0.23

1,000 2.14 ± 0.17 2.16 ± 0.27 2.31 ± 0.24 2.12 ± 0.17 2.14 ± 0.27 2.22 ± 0.25

3,000 1.95 ± 0.27 2.05 ± 0.27 2.21 ± 0.26 1.96 ± 0.34 2.03 ± 0.28 2.12 ± 0.30

5,000 1.97 ± 0.24 2.02 ± 0.26 2.19 ± 0.32 1.96 ± 0.27 2.00 ± 0.26 2.15 ± 0.30

LR, Linear Regression model; RF, Random Forest model; DNN, Deep Neural Network model.
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Next, the mean ± SD of standard coefficients in the LR models 
were assessed to understand the variable importance of periodontal 
examination items (Table 4). While PESA originally showed higher 
importance with the measured data, its importance diminished when 
CTGAN-synthesized data were included. Instead, the average PD level 
became relatively important while the number of remaining teeth is 
known to be a good biomarker. To assess the dependency on age, 
we further analyzed the models by excluding this variable as listed in 
Table 4. BUN, Height, Weight, and PESA especially emerged as more 
influential variables in the LR models without Age.

3.4 Robustness experiments

To evaluate model robustness against the insertion of anomalous 
data, validation tests were conducted with the input Age set to “0,” 

where Age is the important variable both for both original and 
synthesized models. In these cases, the models trained with measured 
data exhibited a significant increase in prediction errors. Specifically, 
LR, as a linear model, showed heightened sensitivity to anomalous 
values in both the measured and synthesized datasets. By contrast, the 
GAN-and CTGAN-synthesized models demonstrated stable MAEs as 
detailed in Table 5. These results suggest that handling diverseness in 
the data distribution during the augmentation process may be key to 
addressing challenges prevalent in medical datasets, such as 
imbalanced data and missing values.

3.5 External validity

We also evaluated the prediction errors using the external 
validation test dataset (Table 6). CTGAN-synthesized LR exhibited a 

FIGURE 3

Measured and predicted scores in the worst and best models using CTGAN-synthesized data: (A) LR, (B) RF, and (C) DNN.
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significant decrease in MAEs, to 1.55 ± 0.27 (18.8% improvements). 
Despite of the limited 14 common items, we confirmed that reasonable 
prediction error results are obtained using CTGAN-synthesized data.

4 Discussion

4.1 Validity of periodontal examination and 
blood test data for dementia risk screening

The integration of periodontal examination and blood test data 
showed slight improvements. However, the average probing depth 

(PD) and the number of remaining teeth were identified as valuable 
biomarkers. This confirms the importance of tooth counts as a 
modifiable dementia risk factor (12) and the potential role of PD levels 
in dementia risk screening.

PESA can be useful for dementia risk screening; however, it is 
highly dependent on Age. PESA is calculated by summing the product 
of the remaining teeth and the probing depth (PD) level for each 
tooth, meaning the number of remaining teeth significantly affects the 
results. This suggests that further stratified analysis based on Age and 
the number of teeth may contribute to a better understanding 
of the importance of periodontal examination items if PESA 
is considered.

TABLE 5 Prediction errors in repeated hold-out validation with the anomalous inputs by replacing test data: age  =  0.

Training (measured + synthesized data 
with the anomalous inputs: age  =  0)

LR RF DNN

Measured data (N = 86) only 4.66 ± 1.10 1.98 ± 0.24 2.58 ± 0.55

+ SMOGN (N = 75.4 ± 4.7) 5.05 ± 1.28 2.02 ± 0.19 2.33 ± 0.39

+ GAN (N = 500) 3.30 ± 1.77 2.00 ± 0.25 2.24 ± 0.44

+ CTGAN (N = 500) 3.40 ± 0.89 2.02 ± 0.28 2.10 ± 0.46

TABLE 6 Prediction errors for the external validation test data (N  =  41) using the 10 sets of measured and synthesized data: most improved MAEs are 
highlighted.

Training (measured + synthesized data) LR RF DNN

Measured data (N = 86) only 1.91 ± 0.41 1.89 ± 0.10 1.87 ± 0.34

+ SMOGN (N = 75.4 ± 4.7) 2.13 ± 0.39 1.92 ± 0.22 2.03 ± 0.53

+ GAN (N = 500) 1.99 ± 0.83 1.74 ± 0.16 2.01 ± 0.50

+ CTGAN (N = 500) 1.55 ± 0.27 1.95 ± 0.28 1.90 ± 0.45

TABLE 4 Standard coefficients in the LR models for comparison between measured data only (N  =  108) and measured data + CTGAN-synthesized data 
(N  =  108  +  500) in repeated hold-out validation: periodontal examination items are highlighted.

Variable (top 15) LR using measured 
data (no 

augmentation)

Variable (top 15) LR using 
measured data
+  CTGAN data

Variable (top 15) LR using 
measured 

data  +  CTGAN 
data without age

PESA 1.33 ± 0.97 Age −0.42 ± 0.15 Sex 0.35 ± 0.20

RemainingTooth −0.91 ± 0.78 Sex 0.33 ± 0.19 BUN −0.31 ± 0.10

BUN −0.73 ± 0.19 BUN −0.24 ± 0.09 Weight 0.22 ± 0.10

AvePD −0.72 ± 0.47 AvePD −0.18 ± 0.13 Height 0.22 ± 0.16

Sex 0.68 ± 0.19 Weight 0.16 ± 0.10 Plt −0.15 ± 0.16

Age −0.60 ± 0.12 Height 0.16 ± 0.15 AvePD −0.15 ± 0.14

dBP −0.38 ± 0.07 Plt −0.16 ± 0.16 LDH −0.14 ± 0.11

PISA −0.37 ± 0.38 LDH −0.10 ± 0.10 LDL 0.12 ± 0.15

Cr 0.37 ± 0.25 HR −0.10 ± 0.11 HR −0.11 ± 0.10

UA 0.36 ± 0.16 LDL 0.10 ± 0.14 PESA 0.10 ± 0.06

Height 0.34 ± 0.10 RemainingTooth 0.09 ± 0.09 RemainingTooth 0.10 ± 0.09

AST −0.33 ± 0.22 ALT −0.08 ± 0.10 Hb 0.10 ± 0.13

HDL −0.29 ± 0.29 UA 0.08 ± 0.09 UA 0.08 ± 0.08

WBC −0.23 ± 0.08 T-Cho 0.08 ± 0.11 AveCAL −0.07 ± 0.16

TG −0.22 ± 0.31 AST −0.08 ± 0.11 T-Cho 0.07 ± 0.13
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While the relationship between periodontitis and dementia is well 
established, other blood test items related to oxygen transport and 
nutrition did not show the expected variations with MMSE scores in 
our dataset. This could be attributed to the demographic characteristics 
of our participants, who were primarily patients undergoing oral 
health assessments and were less likely to exhibit symptoms typically 
associated with dementia, such as anemia, metabolic syndrome, and 
chronic inflammation.

Further research is needed to explore the interrelations between 
blood test results and periodontal disease. Although salivary levels of 
BUN and AST are known to be  useful biomarkers for screening 
periodontal disease (13), whether blood test results are significantly 
influenced by periodontal disease remains unclear.

4.2 Effectiveness of synthesized medical 
tabular data for model performance

The synthesized data generated using GAN and CTGAN showed 
promising results, especially for improving the performance of the LR 
models. Interestingly, the inclusion of CTGAN-synthesized data 
(N = 500) significantly enhanced the predictive accuracy of the LR 
models more than RF and DNN models. This suggests that LR models 
are better suited for application of synthesized data in predicting 
dementia risk.

The findings also indicate that synthesized data can help handle 
the issue of limited sample sizes in medical research. Not only addition 
of CTGAN-synthesized data preserves the statistical properties of the 
original dataset, synthesized data are effective to improve the 
robustness and generalizability of machine learning models. This will 
be particularly important in the context of dementia risk prediction, 
where obtaining large and diverse datasets can be challenging.

We conclude that the potential of combining blood test results, 
periodontal examination data with synthesized data to improve 
dementia risk screening, and boot-strapping of synthesized data will 
be the key for successful models of dementia risk screening where data 
collection may be limited or expensive, on the other hand, it may 
always take some time to find the best result and some degree of 
automation is necessary for practical use.

4.3 Implications for dementia risk 
screening and limitations

The application of artificial intelligence (AI) and machine learning 
in health care, particularly in dementia research, represents a 
significant technological advancement. However, this comes with 
ethical responsibilities, including the protection of data privacy, 
informed patient consent, and the reliability of predictions. 
Collaborative efforts among data scientists, clinicians, and health-care 
professionals are more vital to ensure the responsible use of AI in 
medical practice than ever.

This study did have some limitations, including the initial dataset 
size and its representativeness. Previous studies have identified other 
crucial blood test components, such as Plt, glycated hemoglobin, 
albumin, and electrolytes (3, 14); however, we could not examine these 
components in the present study. Further research considering these 
elements could provide a more comprehensive understanding of 
dementia risk factors. Moreover, while the correlation between 

periodontitis and dementia is more evident, the causal relationships 
remain to be fully explained. In this sense, longitudinal data analysis 
to track changes over time and identify potential causal pathways can 
give good solutions.

This study also acknowledges that the training process for both 
GAN and CTGAN can be  time-intensive and highly sensitive to 
learning parameters. Recent advancements in the field of GAN 
training may result in methodologies that can mitigate these 
challenges. The success of GANs in this study warrants their 
exploration in other health-care domains where data limitations are a 
significant barrier to innovation.

5 Conclusion

The results of this study confirm the potential of GANs in 
enhancing dementia risk prediction, particularly in settings with data 
limitations. The GAN- and CTGAN-synthesized models were able to 
maintain robustness against anomalies and outperform models 
trained with limited data. Future advancements in GAN 
methodologies could further revolutionize health-care technology and 
patient care in dementia and beyond.
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