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Background: Acute Ischemic Stroke (AIS) remains a leading cause of mortality 
and disability worldwide. Rapid and precise prognostication of AIS is crucial for 
optimizing treatment strategies and improving patient outcomes. This study 
explores the integration of machine learning-derived radiomics signatures from 
multi-parametric MRI with clinical factors to forecast AIS prognosis.

Objective: To develop and validate a nomogram that combines a multi-MRI 
radiomics signature with clinical factors for predicting the prognosis of AIS.

Methods: This retrospective study involved 506 AIS patients from two centers, 
divided into training (n  =  277) and validation (n  =  229) cohorts. 4,682 radiomic 
features were extracted from T1-weighted, T2-weighted, and diffusion-
weighted imaging. Logistic regression analysis identified significant clinical risk 
factors, which, alongside radiomics features, were used to construct a predictive 
clinical-radiomics nomogram. The model’s predictive accuracy was evaluated 
using calibration and ROC curves, focusing on distinguishing between favorable 
(mRS  ≤  2) and unfavorable (mRS  >  2) outcomes.

Results: Key findings highlight coronary heart disease, platelet-to-lymphocyte 
ratio, uric acid, glucose levels, homocysteine, and radiomics features as 
independent predictors of AIS outcomes. The clinical-radiomics model achieved 
a ROC-AUC of 0.940 (95% CI: 0.912–0.969) in the training set and 0.854 (95% 
CI: 0.781–0.926) in the validation set, underscoring its predictive reliability and 
clinical utility.

Conclusion: The study underscores the efficacy of the clinical-radiomics model 
in forecasting AIS prognosis, showcasing the pivotal role of artificial intelligence 
in fostering personalized treatment plans and enhancing patient care. This 
innovative approach promises to revolutionize AIS management, offering a 
significant leap toward more individualized and effective healthcare solutions.
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Highlights

 - High predictive accuracy for AIS prognosis.
 - Integrates MRI radiomics with clinical factors.
 - Utilizes advanced machine learning techniques.
 - Provides a validated clinical-radiomics nomogram.
 - Facilitates personalized AIS management.

1 Introduction

Ischemic stroke remains a formidable public health concern 
due to its high incidence, mortality, and morbidity rates, exerting 
a profound impact on society, families, and the affected 
individuals (1). Despite concerted efforts in recent years toward 
the management, treatment, and prevention of ischemic stroke, a 
significant proportion of patients fail to receive timely and 
effective intervention. This failure is often attributed to delayed 
recognition of symptoms, a lack of awareness regarding the 
urgency of medical care, and the unavailability of adequate 
facilities in primary healthcare settings, leading to varying extents 
of neurological deficits. The cornerstone of acute ischemic stroke 
treatment in the acute phase includes intravenous alteplase 
thrombolysis (2, 3) and mechanical thrombectomy (4). However, 
the application of intravenous thrombolysis is constrained by a 
narrow therapeutic time window, and stringent inclusion and 
exclusion criteria limit mechanical thrombectomy. Recent 
observations suggest a shift toward an increasing incidence of 
stroke among younger populations, a trend linked to improved 
living standards and heightened work-related stress (5, 6). Factors 
such as the timing of intervention, location and volume of the 
infarct, and post-stroke treatment and rehabilitation efforts are 
pivotal in determining patient outcomes and survival rates (7). 
Consequently, the accurate prediction of acute ischemic stroke 
prognosis becomes essential for evaluating the severity, 
identifying potential adverse outcomes, gauging rehabilitation 
prospects, and enhancing doctor-patient communication and 
clinical decision-making processes.

When cerebrovascular diseases are suspected or need exclusion, 
Computed Tomography Angiograms (CTA) and Magnetic Resonance 
Angiograms (MRA) have demonstrated high specificity and 
sensitivity. However, Digital Subtraction Angiograms (DSA) remains 
the definitive gold standard, providing unparalleled diagnostic insight. 
Despite its utility in detailing intravascular conditions, DSA’s 
invasiveness and radiation exposure constrain its widespread 
clinical application.

Developing non-invasive methodologies with minimal 
radiation exposure is imperative in clinical practice to mitigate 
these limitations. Such advancements aim to improve the 
evaluation of treatment outcomes and prognostic accuracy in 
acute cerebral infarction.

Predictive models that amalgamate clinical observations, 
imaging findings, laboratory data, and other variables are 
instrumental in predictive assessment. These models enable 
comprehensive evaluations of rehabilitation prospects, survival 
rates, and disease incidence through mathematical and statistical 
approaches. A pioneering effort in this domain was conducted by 

Karen C. Johnston’s team in 2000 (8), utilizing the NIH Stroke 
Scale (NIHSS), Barthel Index (BI), and Glasgow Coma Scale 
(GCS) to gauge acute ischemic stroke prognosis with promising 
results. Furthering this initiative, they integrated NIHSS scores 
and CT infarct volumes to adeptly predict patient outcomes at 3 
months. Zhao et  al. (9) further explored 30-day survival 
prediction in acute ischemic stroke patients by analyzing post-
stroke blood routine and biochemical markers, including 
Neutrophil-to-Lymphocyte Ratio (NLR), Prognostic Nutritional 
Index (PNI), Systemic Immune-Inflammation Index (SII), and 
Risk Assessment (RA).

Radiomics, employing sophisticated image processing to 
extract detailed features from imaging studies of acute ischemic 
stroke patients, unveils in-depth insights into pathophysiological 
alterations. This technique enhances early diagnosis, disease type 
determination, precise lesion localization and quantification, and 
fosters accurate prognosis evaluation and treatment outcome 
assessment (10–13).

Clinical radiomics models, leveraging features derived from 
diffusion-weighted imaging (DWI), fluid-attenuated inversion 
recovery (FLAIR), and apparent diffusion coefficient (ADC) 
scans, have shown commendable efficacy in prognosticating 
outcomes for patients with acute ischemic stroke (14, 15). Despite 
these advancements, the utilization of imaging attributes and 
clinical data in appraising treatment effectiveness and forecasting 
the prognosis of acute ischemic stroke remains underexploited. 
Notably, a blend of T1-weighted images (T1w), T2-weighted 
images (T2w), and DWI is prevalently employed for assessing 
patients post-onset. This fact highlights the critical need for an 
exhaustive amalgamation of various imaging techniques to refine 
the precision and utility of predictive models in determining 
acute ischemic stroke outcomes. The potential to enhance 
predictive accuracy and clinical decision-making through such 
integrated models is vast yet underleveraged.

The objective of this research is to develop a model that 
effectively combines T1-weighted (T1w), T2-weighted (T2w), and 
diffusion-weighted imaging (DWI) features with pertinent 
clinical parameters. This model explores the associations between 
imaging characteristics and crucial clinical information, 
enhancing our understanding of acute ischemic stroke. The 
primary goal is to create an accurate and individualized decision 
support system that enriches the treatment process for patients 
experiencing acute ischemic stroke. We  anticipate facilitating 
significantly improved patient outcomes by achieving this 
integration, ultimately benefiting those impacted by 
this condition.

2 Materials and methods

2.1 Subjects

This retrospective study recruited participants from two 
healthcare institutions, Xi’an Central Hospital (Center 1) and 
Tongchuan Mining Bureau Central Hospital (Center 2), with ethical 
approval from the respective hospitals’ Ethics Committees by the 
Declaration of Helsinki. A collective cohort of 506 patients diagnosed 
with Acute Ischemic Stroke (AIS) was retrospectively analyzed across 
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both centers during the period from January to December 2021. 
Eligibility criteria for inclusion comprised admission within 24 h 
following symptom onset, an initial assessment using the National 
Institutes of Health Stroke Scale (NIHSS) upon admission, and 
undergoing diffusion-weighted imaging (DWI) within the first 72 h 
post-symptom onset.

Exclusion criteria were defined to omit patients who underwent 
reperfusion therapies for AIS, including intravenous thrombolysis 
with recombinant tissue plasminogen activator (rt-PA), urokinase 
(UK), and tenecteplase (TNK-tPA), as well as those who received 
bridging therapy (mechanical thrombectomy) or endovascular 
treatments (Center 1: n = 17, Center 2: n = 31). Given the unavailability 
of UK and TNK-tPA at the study sites, these treatments were not 
considered. Further exclusions applied to patients with hemorrhagic 
stroke, traumatic brain injury, subarachnoid hemorrhage, and 
hemorrhagic infarction (Center 1: n  = 1, Center 2: n  = 2), those 
presenting severe MRI artifacts (Center 1: n = 1, Center 2: n = 5), 
diagnosed with malignancies (Center 1: n = 0, Center 2: n = 1), or lost 
to follow-up (Center 1: n = 10, Center 2: n = 41; Figure 1).

Baseline clinical data, encompassing demographics, medical 
history (e.g., hypertension, hyperlipidemia, hyperuricemia, 
hypoproteinemia, hyperhomocysteinemia, diabetes, smoking, 
drinking, prior stroke, atrial fibrillation, coronary artery disease, 
chronic heart failure, arthrosis, hemadostenosis), TOAST 
classification, along with an extensive set of laboratory parameters and 

imaging features, were meticulously extracted from medical records. 
Two experienced neurologists, each with a decade of practice and 
blind to clinical and imaging data, conducted structured telephone 
interviews to determine patients’ modified Rankin Scale (mRS) scores 
6 months after hospital discharge, categorizing prognosis into 
favorable (mRS ≤ 2) and adverse (mRS > 2) outcomes. Although 
pre-stroke mRS scores are insightful for assessing baseline 
functionality, their exclusion aims to assure data integrity and 
minimize bias. The study’s emphasis on uniformly assessed, 
quantifiable factors across all participants enhances the predictive 
model’s validity, striving to eliminate confounding influences and 
bolster the reliability of the findings.

2.2 Image data acquisition

MRI scans were performed on all participants within 72 h post-
symptom onset using the EXCITE HD 1.5 T MRI system by GE 
Healthcare, Milwaukee, WI, United States. Transverse T1-weighted 
fast spin echo (FSE) imaging was executed with specific parameters: 
TR/TE = 2,259/25.4 ms, slice thickness/gap = 5/1.5 mm, 
bandwidth = 244 Hz/Px, FOV = 240 × 240 mm2, and acceleration factor 
(R) = 2. For T2-weighted FSE imaging, the settings were TR/
TE = 5,582/111 ms, slice thickness/gap = 5/1.5 mm, 
bandwidth = 244 Hz/Px, FOV = 240 × 240 mm2, and R = 3. 

FIGURE 1

The workflow of the patient selection.
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Diffusion-weighted imaging (DWI) utilized single-shot echo planar 
imaging (SS-EPI) with TR/TE = 3,203/83.9 ms, slice thickness/
gap = 5/1.5 mm, bandwidth = 3,906 Hz/Px, FOV = 240 × 240 mm2, 
R = 2, and b-values of 0 and 1,000 s/mm2 (Table 1).

2.3 VOI delineated and radiomics feature 
extraction

Volumes of Interest (VOIs) were meticulously delineated using 
3D-Slicer Software, while Pyradiomics software (version 3.0.1) 
facilitated the computation of radiomics features, adhering to the 
Image Biomarker Standardization Initiative’s guidelines. A radiologist, 
blind to the patient’s clinical information, performed the initial 
segmentation of MRI images. These segmentations were then 
reviewed and refined by a senior neuroradiologist with extensive 
experience. The segmentation process targeted the entire infarct 
region. Utilizing PyRadiomics, various radiomics features were 
extracted from these VOIs, including shape-based, first-order 
statistical, and several gray-level matrix features, from T1-weighted, 
T2-weighted, and diffusion-weighted images, totaling 4,682 features. 
This methodical extraction process ensures a comprehensive analysis 
of imaging data, which is crucial for evaluating acute ischemic stroke 
prognosis (Figure 2).

2.4 Features selection

Given the high-dimensional nature of radiomics features in acute 
ischemic stroke (AIS) analysis, the study aimed to pinpoint features 
significantly correlated with outcome predictions in the training 
cohort. Initial feature selection was performed using a U-test, setting 
a p-value threshold 0.05 to filter out non-significant and redundant 
features. Further refinement involved a correlation analysis to 
eliminate features with a correlation coefficient above 0.9. The Least 
Absolute Shrinkage and Selection Operator (LASSO) algorithm was 
then utilized to finalize feature selection, identifying the most 
predictive features through fivefold cross-validation.

2.5 Prediction development and diagnostic 
validation

Univariable logistic regression identified potential clinical 
predictors of AIS outcomes within the training cohort. Subsequently, 
significant predictors were analyzed through multivariable logistic 
regression, employing backward stepdown selection to isolate 

independent clinical predictors. These findings were presented as odds 
ratios with corresponding 95% confidence intervals, forming the basis 
of a multivariable clinical prediction model. The model combined 
these independent clinical predictors with the radiomics signature to 
create a comprehensive clinical-radiomics model, which underwent 
rigorous evaluation through ROC curve analysis and other statistical 
measures to assess its discriminative performance.

2.6 Clinical usefulness and calibration 
curves of the clinical-radiomics model

The clinical-radiomics model’s calibration was examined using 
calibration curves alongside the Hosmer-Lemeshow test to determine 
the model’s fit accuracy.

2.7 Statistics analysis

The study used statistical methods to analyze demographic and 
clinical data, including independent t-tests for normally distributed 
data, Mann–Whitney U tests for non-normally distributed data, and 
chi-square tests for categorical variables. The predictive performance 
of clinical, radiomics, and clinical-radiomics models was evaluated 
through Receiver Operating Characteristic (ROC) curves. Model 
comparisons were conducted using the Delong test. Calibration of the 
clinical-radionics model was assessed with calibration curves and the 
Hosmer-Lemeshow test. Statistical analyses were conducted in R 
software, with significance determined by a two-tailed p-value 
of <0.05.

3 Results

3.1 Baseline characteristics of patients

The baseline characteristics of patients within both the training 
and validation groups are detailed in Table 2. Analysis revealed no 
statistically significant disparities between the cohorts (p > 0.05), 
indicating comparable baseline conditions. Within the training 
cohort, patients experiencing unfavorable outcomes (modified Rankin 
Scale, mRS, > 2) accounted for 66.78% (182 out of 277), while in the 
validation group, this proportion stood at 60.83% (73 out of 120).

3.2 Radiomics feature selection and LASSO 
logistic regression findings

In refining our dataset, redundant features were eliminated 
through a U-test and Spearman correlation analysis, narrowing down 
the selection from an initial pool of 4,682 image features extracted 
from the Volumes of Interest (VOIs) to 791 radiomic features. This 
step was essential for enhancing the dataset’s manageability and 
relevance. Following this initial reduction, the Least Absolute 
Shrinkage and Selection Operator (LASSO) logistic regression method 
was applied to further distill these features, focusing on identifying 
those of optimal predictive value. Determining the most appropriate 
lambda value was crucial in this context; to this end, five-fold 

TABLE 1 Comparison of MRI sequence parameters.

MRI sequence T1w T2w DWI

TR/TE(ms) 2,259/25.4 5,582/111 3,203/83.9

Slice Thickness/Gap(mm) 5/1.5 5/1.5 5/1.5

Bandwidth(Hz/Px) 244 244 3,906

FOV(mm) 240*240 240*240 240*240

Acceleration Factor(R) 2 3 2

b-values(s/mm) / / 0, 1,000
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cross-validation was utilized, selecting a lambda value within one 
standard error of the minimum. Through meticulous selection, a final 
set of 21 radiomic features was identified (as detailed in Table 3). This 
rigorous methodology underscores the accuracy and efficacy of the 
resulting predictive model (illustrated in Figure 3).

3.3 Establishment and performance of the 
clinical features

Table 4 presents the results of the multivariate logistic regression 
analysis, identifying significant variables (p < 0.05) such as Coronary 
Artery Disease (CAD), White Blood Cell count (WBC), Platelet-to-
Lymphocyte Ratio (PLR), Uric Acid (UA), Glucose (Glu), 
Homocysteine (HCY), and the Radiomics Score (RS). These variables 
have been pinpointed as independent predictors for clinical functional 
outcomes. Utilizing these determinants, we constructed a radiomics 
nomogram within the training set, creating a clinical-radiomics 
comprehensive prediction model (illustrated in Figure 4).

The nomogram is meticulously designed, highlighting the 
relative importance of variables identified through multivariate 
regression analysis. A scale is displayed at the top of the column 
chart, with predictive model variables listed on the left. Each 
independent variable is assigned a score, correlating to specific 
values, with the length of each segment indicating its contributory 
weight to the outcome event. Hence, longer segments underscore a 

FIGURE 2

The workflow of the study is as follows: ROI (Region of Interest) segmentation was performed using 3D Slicer. The images were preprocessed for 
feature extraction. After feature evaluation and model construction, clinical radiomic signatures and imaging radiomic signatures were generated 
and used to construct a clinical-radiomic model. The performance of this model in predicting the prognosis of acute ischemic stroke (AIS) was 
validated in the validation set.

TABLE 2 The characteristic of 21 final feature for radiomics assessment.

Radiomic features

T1_original_shape_SurfaceArea

T1_original_firstorder_Energy

T1_wavelet.LLH_ngtdm_Coarseness

T1_wavelet.LHL_glcm_Idmn

T1_wavelet.LHH_glcm_Idmn

T1_wavelet.HLH_glcm_ClusterShade

T1_wavelet.HHL_glrlm_LongRunEmphasis

T1_exponential_glszm_ZoneEntropy

T1_exponential_gldm_DependenceEntropy

T1_squareroot_glcm_ClusterShade

T1_gradient_glrlm_LongRunEmphasis

T2_original_ngtdm_Strength

T2_wavelet.LLL_firstorder_90Percentile

T2_wavelet.LLL_firstorder_InterquartileRange

T2_square_ngtdm_Strength

DWI_log.sigma.1.0.mm.3D_glcm_DifferenceVariance

DWI_wavelet.LHL_firstorder_Mean

DWI_wavelet.LHL_firstorder_Median

DWI_wavelet.LHL_glcm_InverseVariance

DWI_wavelet.HLH_firstorder_Skewness

DWI_wavelet.HHH_firstorder_Kurtosis
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TABLE 3 Baseline characteristics of patients in the training and validation cohorts.

Training cohort Validation cohort

(n  =  277) (n  =  120)

Poor Good

p.overall

Poor Good

p.overall(mRS  >  2) (mRS  ≤  2) (mRS  >  2) (mRS  ≤  2)

n =  95 n =  182 n =  47 n =  73

Age 68.0 [58.5;77.5] 68.0 [60.0;75.0] 0.477 71.0 [62.5;81.0] 69.0 [64.0;78.0] 0.647

Gender: 0.824 0.146

  Female 18 (18.9%) 38 (20.9%) 19 (40.4%) 19 (26.0%)

  Male 77 (81.1%) 144 (79.1%) 28 (59.6%) 54 (74.0%)

Hypertension: 0.003 0.013

  No 10 (10.5%) 49 (26.9%) 3 (6.38%) 19 (26.0%)

  Yes 85 (89.5%) 133 (73.1%) 44 (93.6%) 54 (74.0%)

Hyperlipemia: <0.001 0.001

  No 14 (14.7%) 121 (66.5%) 15 (31.9%) 48 (65.8%)

  Yes 81 (85.3%) 61 (33.5%) 32 (68.1%) 25 (34.2%)

Hyperuricemia: <0.001 <0.001

  No 22 (23.2%) 150 (82.4%) 22 (46.8%) 62 (84.9%)

  Yes 73 (76.8%) 32 (17.6%) 25 (53.2%) 11 (15.1%)

Hypoproteinemia: 0.052 0.066

  No 77 (81.1%) 164 (90.1%) 35 (74.5%) 65 (89.0%)

  Yes 18 (18.9%) 18 (9.89%) 12 (25.5%) 8 (11.0%)

Hyperhomocysteinemia: <0.001 0.04

  No 7 (7.37%) 65 (35.7%) 10 (21.3%) 30 (41.1%)

  Yes 88 (92.6%) 117 (64.3%) 37 (78.7%) 43 (58.9%)

Diabetes: <0.001 <0.001

  No 21 (22.1%) 127 (69.8%) 14 (29.8%) 57 (78.1%)

  Yes 74 (77.9%) 55 (30.2%) 33 (70.2%) 16 (21.9%)

Smoking history: <0.001 <0.001

  No 29 (30.5%) 140 (76.9%) 26 (55.3%) 65 (89.0%)

  Yes 66 (69.5%) 42 (23.1%) 21 (44.7%) 8 (11.0%)

Drinking history: <0.001 <0.001

  No 42 (44.2%) 166 (91.2%) 27 (57.4%) 71 (97.3%)

  Yes 53 (55.8%) 16 (8.79%) 20 (42.6%) 2 (2.74%)

Stroke history: 0.12 0.135

  No 49 (51.6%) 113 (62.1%) 19 (40.4%) 41 (56.2%)

  Yes 46 (48.4%) 69 (37.9%) 28 (59.6%) 32 (43.8%)

AF* 1 1

  No 87 (91.6%) 168 (92.3%) 44 (93.6%) 69 (94.5%)

  Yes 8 (8.42%) 14 (7.69%) 3 (6.38%) 4 (5.48%)

CAD* <0.001 <0.001

  No 30 (31.6%) 146 (80.2%) 16 (34.0%) 62 (84.9%)

  Yes 65 (68.4%) 36 (19.8%) 31 (66.0%) 11 (15.1%)

AS* <0.001 0.013

  No 18 (18.9%) 95 (52.2%) 10 (21.3%) 33 (45.2%)

  Yes 77 (81.1%) 87 (47.8%) 37 (78.7%) 40 (54.8%)

(Continued)
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TABLE 3 (Continued)

Training cohort Validation cohort

(n  =  277) (n  =  120)

Poor Good

p.overall

Poor Good

p.overall(mRS  >  2) (mRS  ≤  2) (mRS  >  2) (mRS  ≤  2)

n =  95 n =  182 n =  47 n =  73

Hemadostenosis: <0.001 0.006

  No 20 (21.1%) 105 (57.7%) 10 (21.3%) 35 (47.9%)

  Yes 75 (78.9%) 77 (42.3%) 37 (78.7%) 38 (52.1%)

ADL* 55.0 [40.0;60.0] 80.0 [65.0;100] <0.001 55.0 [42.5;62.5] 80.0 [65.0;100] <0.001

NHISS* 7.00 [5.00;9.50] 2.00 [1.00;3.00] <0.001 7.00 [5.00;11.5] 2.00 [1.00;3.00] <0.001

TOAST* 0.007 0.636

Large artery atherosclerosis 8 (8.42%) 7 (3.85%) 0 (0.00%) 2 (2.74%)

Cardioembolism 72 (75.8%) 138 (75.8%) 39 (83.0%) 60 (82.2%)

Small vessel occlusion 9 (9.47%) 35 (19.2%) 4 (8.51%) 8 (11.0%)

Other determined etiology 6 (6.32%) 2 (1.10%) 3 (6.38%) 3 (4.11%)

Undetermined etiology 1 (2.13%) 0 (0.00%)

KWST* <0.001 0.001

  0 1 (1.05%) 4 (2.20%) 0 (0.00%) 2 (2.74%)

  1 59 (62.1%) 162 (89.0%) 33 (70.2%) 67 (91.8%)

  2 24 (25.3%) 11 (6.04%) 6 (12.8%) 3 (4.11%)

  3 7 (7.37%) 3 (1.65%) 5 (10.6%) 0 (0.00%)

  4 2 (2.11%) 1 (0.55%) 3 (6.38%) 1 (1.37%)

  5 2 (2.11%) 1 (0.55%)

  WBC 10.9 [8.39;12.7] 6.78 [5.56;8.34] <0.001 11.2 [8.09;13.4] 6.63 [5.55;8.49] <0.001

  NEU 5.53 [4.18;7.18] 4.94 [3.62;6.43] 0.116 6.71 [4.72;8.57] 4.99 [3.61;6.62] 0.005

  LYM 0.99 [0.89;1.69] 1.71 [1.30;2.19] <0.001 1.03 [0.87;1.50] 1.57 [1.24;2.18] <0.001

  NLR* 4.73 [2.85;6.42] 2.83 [1.90;4.05] <0.001 6.03 [3.40;9.48] 3.22 [1.97;4.73] <0.001

  MON 0.43 [0.33;0.64] 0.47 [0.35;0.62] 0.104 0.45 [0.35;0.58] 0.44 [0.35;0.56] 0.796

  MLR* 0.37 [0.24;0.50] 0.28 [0.20;0.36] <0.001 0.45 [0.30;0.65] 0.28 [0.20;0.39] 0.001

  Hb 145 [135;153] 143 [132;154] 0.468 140 [132;149] 145 [133;156] 0.285

  HCT 0.44 [0.41;0.50] 0.44 [0.41;3.69] 0.629 0.42 [0.40;0.45] 0.43 [0.40;0.49] 0.541

  PLT 179 [148;219] 178 [147;220] 0.772 180 [130;204] 189 [133;219] 0.292

  SII* 842 [441;1,287] 459 [298;686] <0.001 858 [534;1,750] 548 [280;895] 0.002

  PLR* 150 [98.8;212] 103 [71.9;143] <0.001 138 [102;228] 115 [74.2;168] 0.011

  TBIL 17.8 [13.4;24.0] 16.4 [12.9;21.5] 0.257 19.1 [15.9;26.4] 15.7 [12.3;21.4] 0.011

  Alb 38.7 [36.5;42.2] 39.3 [37.3;42.5] 0.309 38.9 [36.7;40.9] 38.9 [36.2;41.8] 0.828

  Glb 22.0 [20.0;26.8] 22.4 [19.4;27.3] 0.9 22.5 [19.9;26.0] 22.8 [20.2;26.2] 0.94

  ALT 17.0 [12.0;23.0] 16.5 [12.0;22.8] 0.515 16.0 [12.0;23.5] 17.0 [10.0;21.0] 0.735

  AST 20.0 [17.0;24.5] 18.5 [16.0;23.0] 0.245 19.0 [15.0;26.5] 18.0 [16.0;23.0] 0.577

  AST/ALT 1.38 [1.00;2.25] 1.73 [1.10;2.31] 0.072 1.88 [1.09;2.48] 2.00 [1.20;2.62] 0.55

  Urea 5.21 [4.46;6.23] 5.26 [4.48;6.22] 0.873 5.68 [4.73;6.61] 5.78 [4.76;6.75] 0.919

  Cr 67.0 [56.5;77.0] 66.6 [55.0;77.8] 0.783 64.0 [57.0;74.6] 63.0 [57.0;74.0] 0.906

  UA 409 (104) 324 (88.2) <0.001 362 (115) 327 (85.9) 0.074

  TC 4.35 [3.51;5.38] 4.06 [3.50;4.94] 0.15 4.35 (1.11) 4.40 (1.11) 0.823

  PNI* 44.9 [42.2;49.3] 47.9 [43.4;52.3] 0.016 45.0 [41.9;49.0] 49.0 [41.8;54.2] 0.09

(Continued)
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variable’s heightened significance. By aggregating scores for 
individual variables, a total score is achievable. This cumulative score 
facilitates the determination of the linear predictor and predicted 

probability for Acute Ischemic Stroke (AIS) prognosis through the 
scale provided below. A prediction value of 1 suggests a favorable 
prognosis, whereas 0 implies a less favorable prognosis.

TABLE 3 (Continued)

Training cohort Validation cohort

(n  =  277) (n  =  120)

Poor Good

p.overall

Poor Good

p.overall(mRS  >  2) (mRS  ≤  2) (mRS  >  2) (mRS  ≤  2)

n =  95 n =  182 n =  47 n =  73

  TG 1.97 [1.05;3.12] 1.35 [0.99;1.95] 0.001 1.34 [0.92;2.42] 1.25 [0.93;1.74] 0.154

  HDL 0.98 [0.82;1.15] 1.05 [0.91;1.28] 0.005 1.12 [0.92;1.27] 1.09 [0.96;1.31] 0.807

  LDL 2.89 [2.18;3.48] 2.31 [1.70;2.92] <0.001 2.36 [1.79;3.42] 2.44 [1.92;3.18] 0.517

  Glu 11.2 [7.25;13.9] 5.68 [5.04;7.74] <0.001 11.9 [6.66;13.6] 5.86 [5.14;6.98] <0.001

  HCY 45.2 [24.7;56.2] 19.6 [14.2;29.4] <0.001 43.7 [19.2;54.5] 16.7 [13.1;22.9] <0.001

  K 3.96 (0.38) 4.08 (0.44) 0.018 4.05 (0.40) 4.09 (0.42) 0.564

  Na 141 [139;143] 141 [139;143] 0.532 142 [140;143] 141 [139;143] 0.833

  Cl 106 [103;108] 106 [104;108] 0.402 106 [104;108] 105 [103;108] 0.739

  Ca 2.25 (0.14) 2.25 (0.14) 0.903 2.25 [2.13;2.33] 2.23 [2.15;2.32] 0.899

  P 0.98 (0.19) 0.99 (0.21) 0.595 0.98 (0.22) 0.99 (0.22) 0.859

  PT 10.8 [10.2;11.4] 10.9 [10.2;11.6] 0.683 11.0 [10.3;11.9] 10.7 [10.2;11.4] 0.359

  INR 0.95 [0.89;1.00] 0.95 [0.89;1.03] 0.663 0.97 [0.90;1.08] 0.95 [0.88;0.99] 0.121

  APTT 26.0 [24.4;28.9] 26.8 [24.0;30.4] 0.438 25.9 [23.1;30.2] 26.2 [23.9;28.9] 0.821

  TT 16.9 [15.2;17.9] 16.6 [15.2;17.9] 0.489 16.6 [15.4;17.9] 16.8 [15.9;17.6] 0.604

  FIB 2.85 [2.33;3.38] 2.82 [2.35;3.36] 0.832 2.61 [2.27;3.36] 2.66 [2.22;3.20] 0.526

 D-Dimer 0.46 [0.23;1.17] 0.34 [0.21;0.64] 0.04 0.56 [0.29;1.17] 0.40 [0.26;0.69] 0.089

  FDP 1.60 [1.00;3.60] 1.36 [0.90;2.30] 0.06 1.50 [1.13;3.20] 1.30 [0.70;2.20] 0.08

  EF 57.0 [55.0;65.0] 58.0 [55.0;64.0] 0.996 61.0 [55.5;65.0] 60.0 [55.0;65.0] 0.363

  LEVF 110 [101;124] 115 [105;131] 0.078 114 [104;125] 113 [105;127] 0.815

  LVDD* 30.0 [28.0;32.0] 30.0 [28.0;32.0] 0.66 30.0 [28.0;32.0] 30.0 [28.0;33.0] 0.462

  LVSD* 44.0 [41.0;46.0] 45.0 [43.0;48.0] 0.012 45.0 [42.0;47.0] 45.0 [43.0;48.0] 0.599

  HR 76.0 [69.5;81.5] 76.0 [67.0;82.0] 0.704 77.0 [71.0;80.0] 75.0 [66.0;82.0] 0.344

  SBP 150 [138;162] 145 [133;155] 0.03 151 (21.1) 150 (19.8) 0.879

  DBP 88.0 [78.0;95.5] 86.0 [78.0;94.8] 0.3 85.0 [78.5;96.0] 86.0 [76.0;93.0] 0.743

  Ht 170 [160;175] 170 [165;174] 0.717 170 [160;172] 168 [162;172] 0.901

  IdealWt 64.2 [57.0;68.0] 65.0 [59.8;66.5] 0.97 62.0 [56.0;66.1] 63.5 [57.8;65.8] 0.696

  Wt 65.0 [60.0;74.0] 66.5 [61.2;74.0] 0.894 65.0 [56.5;70.0] 65.0 [55.0;70.0] 0.859

  BMI 23.8 [21.5;25.4] 23.2 [22.0;25.0] 0.251 22.6 [20.7;25.2] 23.0 [20.3;24.8] 0.866

  GNRI* 62.2 [58.6;67.1] 63.1 [59.8;67.6] 0.288 62.4 [58.8;65.6] 62.4 [57.5;67.3] 0.782

GNRI grade:

  1 0 (0.00%) 1 (0.55%)

  3 95 (100%) 181 (99.5%) 47 (100%) 73 (100%)

  RS* 0.66 [0.65;0.67] 0.67 [0.66;0.67] <0.001 0.66 [0.65;0.67] 0.67 [0.66;0.68] <0.001

AF, atrial fibrillation; CAD, coronary artery disease; AS, atherosclerosis; ADL, activities of daily living; NIHSS, National Institutes of Health Stroke Scale; TOAST, Trial of Org 10172 in Acute 
Stroke Treatment; KWST, Kubota Water Swallowing Test; NLR, neutrophil-to-lymphocyte ratio; MLR, monocyte-to-lymphocyte ratio; SII, systemic immune-inflammation index; PLR, 
platelet-to-lymphocyte ratio; PNI, prognostic nutritional index; LVDD, left ventricular end-diastolic diameter; LVSD, left ventricular end-systolic diameter; GNRI, geriatric nutritional risk 
index; RS, radiomic signature. Data for categorical variables are expressed in terms of the number of patients (percentage), and continuous variables are represented by median [interquartile 
range]. The p-value is used for group comparisons.
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3.4 Performance of the combined 
clinical-radiomics model

The performance of the combined clinical-radiomics model 
was meticulously evaluated using Receiver Operating 
Characteristic (ROC) curves. This comprehensive model exhibited 

impressive predictive accuracy for Acute Ischemic Stroke (AIS) 
outcomes, as evidenced by Area Under the Curve (AUC) scores of 
0.940 (95% Confidence Interval [CI]: 0.912–0.969) in the training 
cohort and 0.853 (95% CI: 0.781–0.926) in the validation cohort. 
Notably, in the validation cohort, the clinical-radiomics model 
achieved high sensitivity (91.8%) and moderate specificity 
(68.1%), indicating its robust ability to accurately predict patient 
outcomes. The Positive Predictive Value (PPV) of the clinical-
radiomics approach in the validation set was notably high, at 
approximately 81.7%. The Radiomics Score (RS) and the clinical-
radiomics models yielded AUC values of 0.715 (95% CI: 0.619–
0.810) and 0.854 (95% CI: 0.781–0.926), respectively, as illustrated 
in Figure 5.

Clinical variables such as Coronary Artery Disease (CAD), 
Platelet-to-Lymphocyte Ratio (PLR), Uric Acid (UA), Glucose (Glu), 
and Homocysteine (HCY) demonstrated significant predictive utility, 
as detailed in Table  5. The DeLong test revealed no significant 
differences in the performance of these three individual models (all 
p > 0.05), underscoring the consistency of the predictive capability 
across the models.

FIGURE 3

Illustration of the LASSO model’s application, employing a tuning parameter (lambda) and utilizing five-fold cross-validation based on both the 
minimum criteria and one standard error (1se), facilitating the selection of radiomics features during the feature selection phase.

TABLE 4 Multivariate logistic regression.

Variable OR(95%CI) p-value

CAD 0.108(0.043, 0.255) <0.001 ***

PLR 0.991 (0.985, 0.996) <0.001 ***

UA 0.992 (0.988, 0.995) <0.001 ***

Glu 0.789 (0.709, 0.874) <0.001 ***

HCY 0.971 (0.954, 0.989) <0.001 ***

RS
1.86e + 38 (9.48e + 

24, 3.30e + 55)
<0.001 ***

Significant codes: 0; “***”0.001; “**”0.01; “*”0.05;“.”0.1; “ ”1.
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3.5 Clinical usefulness and calibration 
curves for the clinical-radiomics

When contrasted with single-scale prediction models, the 
clinical-radiomics model showcased a superior capability in 
discriminating performance evaluation. As depicted in Figure 6, 

calibration plots demonstrated a commendable congruence between 
the model’s predictions and the actual clinical outcomes for Acute 
Ischemic Stroke (AIS). This alignment indicates that the clinical-
radiomics model provides a significantly enhanced net benefit over 
traditional single-scale models, underscoring its greater 
clinical utility.

FIGURE 4

A nomogram based on clinical-radiomics models for predicting AIS outcomes.

FIGURE 5

ROC curve analysis of predictive models for modified rankin scale (MRS) outcomes in the training (A) and validation (B) cohorts, with the clinical-
radiomics model highlighted. CAD = coronary artery disease, PLR = platelet-lymphocyte ratio, UA = serum uric acid level, GLU = fasting plasma 
glucose, HCY = homocysteine, RS = Radiomics Signature, x = Clinical-Radiomics model.
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4 Discussion

Clinical predictive models are increasingly utilized in acute 
ischemic stroke management, serving as a critical role in prognosis 
and diagnostic support. Such as the widely recognized modified 
Rankin Scale (mRS), which could provide prognostic insights based 
on thorough patient evaluations, have gained broad acceptance in 

clinical settings. Historically, studies on ischemic stroke prognosis 
have predominantly utilized non-imaging data, employing various 
statistical models and machine learning algorithms such as linear 
regression, support vector machine (SVM), k-nearest neighbors 
(KNN), logistic regression, decision trees, k-means clustering, random 
forests (RF), naive Bayes, dimensionality reduction techniques, and 
gradient boosting. However, these methods have limitations, 

TABLE 5 Predictive performance of three models in the training and validation cohorts.

Model Training cohort (n  =  277)

AUC (95% CI*) Sensitivity Specificity Accuracy PPV* NPV*
CAD 0.743(0.688-0.798) 0.802 0.684 0.762 0.83 0.643

PLR 0.698(0.631–0.765) 0.659 0.663 0.66 0.789 0.504

UA 0.741(0.676–0.806) 0.907 0.526 0.776 0.786 0.746

Glu 0.791(0.734–0.849) 0.857 0.653 0.787 0.825 0.705

HCY 0.734(0.669–0.796) 0.774 0.694 0.747 0.829 0.617

Radiomics model 0.744(0.681–0.808) 0.868 0.536 0.755 0.782 0.68

Clinical-radiomics 

model

0.940(0.912–0.969) 0.951 0.811 0.903 0.906 0.895

Model
Validation cohort (n  = 120)

AUC (95% CI) Sensitivity Specificity Accuracy PPV NPV

CAD 0.754(0.675–0.834) 0.85 0.66 0.775 0.795 0.738

PLR 0.591(0.538–0.738) 0.603 0.638 0.617 0.721 0.508

UA 0.726(0.477–0.705) 0.468 0.849 0.7 0.713 0.667

Glu 0.791(0.630–0.822) 0.74 0.745 0.742 0.818 0.648

HCY 0.751(0.659–0.842) 0.795 0.66 0.742 0.784 0.674

Radiomics model 0.714(0.619–0.810) 0.726 0.66 0.7 0.768 0.608

Clinical-radiomics 

model

0.854(0.781–0.926) 0.918 0.681 0.825 0.817 0.842

*CI, confidence interval; PPV, Positive predictive value; NPV, Negative predictive value.

FIGURE 6

Calibration curves of the clinical-radiomics model in the training set (A) and validation set (B) for predicting AIS outcomes. x = Clinical-Radiomics model.
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particularly their dependence on basic clinical data without 
incorporating detailed biomarkers or complex imaging findings. Such 
limitations may impede a comprehensive understanding of the 
multifaceted nature of the disease. Moreover, despite the importance 
of these thorough assessments, they may not adequately account for 
individual variability and specific lesion characteristics inherent in the 
nonlinear dynamics and subjective assessments of stroke prognosis 
evaluation systems, posing challenges in reflecting the dynamic 
progression of the condition (16, 17). The advancement of precision 
medicine calls for more sophisticated and precise methods capable of 
navigating the intricacies of ischemic stroke prognosis. In this context, 
artificial intelligence (AI) models emerge as potent tools, offering the 
potential for more tailored and accurate prognostic predictions.

The progression of precision medicine necessitates more 
sophisticated and precise methodologies capable of addressing the 
intricate nature of ischemic stroke prognosis. As a result, there is a 
growing focus on integrating diverse data sources, such as clinical 
observations, radiomics features, and biomarkers, to construct 
predictive models that provide improved accuracy, comprehensiveness, 
and personalization. Technological advancements have facilitated an 
increase in studies integrating imaging data (e.g., CT and MRI scans) 
with state-of-the-art artificial intelligence machine learning techniques 
to enhance the accuracy and sensitivity of stroke prognosis prediction 
models. This evolving paradigm highlights the comprehensive 
utilization of diverse data types, especially imaging data, creating new 
opportunities for advancing stroke prognosis research and achieving 
more detailed and precise assessments of patient prognoses in the 
medical domain (18).

Radiomics and artificial intelligence hold great promise in the 
management of acute stroke. Cranial CT is the standard screening tool 
post-stroke, with the Alberta Stroke Program Early CT score 
(ASPECTS) being a rapid, straightforward, and reliable method for 
assessing early ischemic changes in patients with ischemic stroke, 
which is crucial for predicting treatment outcomes and prognosis 
(19). Nicolae et al. (20) retrospectively analyzed 340 patients revealed 
that ASPECTS effectively predicts the prognosis of patients with acute 
ischemic stroke (AIS), with lower scores indicating a larger infarct 
volume, particularly in diabetic and elderly patients. Chen et al. (21) 
retrospectively analyzed the CT images of 276 AIS patients, 
confirming the reliability and accuracy of automated ASPECTS 
scoring software. Hulin Kuang et al. (22) introduced EIS-Net, a novel 
multi-task learning network capable of simultaneously segmenting 
early infarcts and scoring ASPECTS on non-contrast CT images, 
offering performance comparable to expert assessments in a rapid 
manner. Masaki et al. (23) developed a deep learning-based automated 
ASPECTS calculation software utilizing the 3D-BHCA algorithm, 
demonstrating higher accuracy and efficiency than traditional 
methods, which could assist physicians in formulating superior 
treatment plans. Additionally, Qi et  al. (24) explored apparent 
diffusion coefficient (ADC) image signal changes and their 
quantitative assessments across 207 acute ischemic stroke patients. 
Their findings suggested these analyses could act as crucial references 
for estimating acute ischemic stroke volume, thus offering valuable 
diagnostic insights for clinical practice. Ma’s study (25) corroborated 
these observations. Future research may integrate multimodal imaging 
with clinical factors, offering more possibilities for precision diagnosis.

Cerebrovascular malformations, commonly arising from the 
abnormal development of intracranial vessels, can precipitate severe 

events such as stroke. Moyamoya disease (MMD), predominantly 
affecting children and adults, is marked by arterial stenosis and 
occlusion, with the potential to cause conditions like epilepsy and 
cognitive delays in pediatric patients. Despite advancements in 
modern imaging facilitating diagnosis, therapeutic options for MMD 
are limited, underscoring the critical importance of early detection 
and intervention to improve patient outcomes (26). The emergence of 
artificial intelligence (AI), particularly in the realms of deep learning 
and machine learning, has introduced novel approaches to 
MMD diagnosis.

In Kim’s study (27), they utilized deep learning and convolutional 
neural network (CNN) techniques to analyze cranial images from 
345 diagnosed MMD patients and 408 control subjects for the 
detection of MMD. CNN for the analysis of images from MMD 
patients and controls demonstrated impressive levels of accuracy, 
sensitivity, and specificity, underscoring the potential of AI in 
medical imaging.

Qin et al. (28) utilized machine learning models to analyze DSA 
images and predict mean transit time in MMD or Moyamoya 
syndrome (MMS) patients, achieving high accuracy in specific brain 
regions, which could offer significant insights for clinical diagnosis 
and treatment. Collectively, these studies suggest a promising role for 
AI in refining MMD diagnosis and treatment strategies.

Multimodal MRI, incorporating a variety of imaging sequences 
such as DWI, FLAIR, susceptibility-weighted imaging (SWI), and 
T1w and T2w, offers a rich source of biological insights. This 
comprehensive imaging approach enables physicians to thoroughly 
understand the characteristics and extent of lesions, thereby enhancing 
the precision of disease diagnoses. Additionally, employing radiomics 
and machine learning techniques, multimodal MRI facilitates the 
automated extraction and analysis of extensive imaging features. By 
amalgamating data from different MRI sequences, this strategy 
supports the development of predictive models capable of accurately 
determining patient outcomes. The confluence of multiple imaging 
modalities with sophisticated analytical methods promises more 
accurate and personalized medical evaluations.

In another significant effort, Quan et al. (14) derived radiomics 
features from fluid-attenuated inversion recovery (FLAIR) and ADC 
images across 753 cases, demonstrating their utility in forecasting 
clinical outcomes in acute ischemic stroke (AIS) patients. External 
validation showed promising area-under-the-curve (AUC) values 
across various models, with the combined ADC and FLAIR radiomics 
model significantly enhancing predictive accuracy for 
adverse outcomes.

A meta-analysis by Hanna Maria Dragoş et al. (29), reviewing 
150 articles, suggests models that merge clinical and imaging 
features more effectively predict disability outcomes in stroke 
patients at 3 and 6 months post-event. Wang’s study (30) established 
three radiomics models and a comprehensive nomogram that 
integrated clinical features and radiomic signatures, showing robust 
predictive performance for post-thrombolytic ischemic 
stroke prognosis.

To predict ischemic stroke outcomes, Yu et  al. (31) utilized a 
machine learning model integrating multimodal images, including 
DWI, ADC, FLAIR, SWI, and T1w. This model achieved notable 
performance metrics, with an accuracy of 0.831, sensitivity of 0.739, 
specificity of 0.902, an F1 score of 0.788, and an AUC of 0.902. 
Radiomic features extracted using the LightGBM model from 
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multimodal MRI effectively forecast stroke prognosis, demonstrating 
the model’s high predictive value for clinical outcomes in acute stroke 
patients. This underscores the potential of multimodal imaging in 
making precise prognosis predictions for ischemic stroke.

While the feasibility of using machine learning based on radiomics 
alongside clinical factors for predicting acute ischemic stroke 
outcomes is recognized, it is crucial to be mindful of possible biases 
in participant selection across studies. Zhou et al. (32) predicted acute 
ischemic stroke outcomes by blending radiomic features from 
multimodal imaging with clinical factors. Their clinical-radiomic 
nomogram showed superior ROC AUCs in both training and 
validation groups, achieving 0.868 and 0.890, respectively, surpassing 
models based solely on clinical or radiomic data. Despite its utility, 
this study’s single-center nature and restriction to DWI and ADC 
sequences without considering other modalities may introduce biases.

Future research should aim for broader and more diverse datasets, 
implement stringent study methodologies, and address potential 
biases to solidify the reliability and applicability of predictive models. 
Including data from multiple centers and varied patient demographics 
will strengthen the external validity of research outcomes, paving the 
way for advancements in personalized stroke management.

Diverging from prior research, our study utilized extensive 
datasets and integrated radiomic features from multimodal MRI (T1w, 
T2w, DWI) with clinical risk factors to develop a clinical-radiomic 
model to forecast the prognosis of acute ischemic stroke. This model 
exhibited enhanced performance in the validation set, outperforming 
individual imaging features or clinical factors in discriminative 
capacity, calibration, and clinical applicability. The model’s 
performance metrics in the training set were noteworthy: sensitivity 
reached 0.951, specificity 0.811, and accuracy 0.903. Furthermore, in 
the validation set, sensitivity was 0.918, specificity 0.681, and accuracy 
0.825. Despite some variability in these metrics, our model consistently 
offers valuable insights for clinicians in making informed decisions 
regarding the treatment and prognosis of acute ischemic stroke.

This research leveraged a broad spectrum of imaging modalities 
for feature extraction, including T1w, T2w, and both raw and 
processed DWI images. Twenty-one radiomic features were extracted, 
covering dimensions such as shape, energy, texture, and various gray-
level matrices (GLCM, GLRLM, GLSZM, GLDM). These features 
provide a comprehensive portrayal of ischemic stroke heterogeneity, 
offering a sophisticated understanding of stroke pathology. Notably, 
elevated values in these feature analyses correlate with poorer patient 
outcomes, enabling precise and quantifiable assessments of imaging 
characteristics linked to ischemic stroke prognosis.

It’s worth noting that our study revealed multivariate logistic 
regression analysis revealed coronary heart disease, uric acid levels, 
blood glucose levels, homocysteine, and the platelet-to-lymphocyte 
ratio (PLR) as independent risk factors affecting stroke prognosis, 
which align with clinical realities.

Extensive research supports that high blood glucose levels are an 
independent risk factor for stroke, increasing susceptibility to ischemic 
stroke by 2–4 times (33). The strong correlation between type 2 
diabetes and stroke risk is well-documented across various studies (33, 
34). Effective blood glucose management is crucial for reducing the 
risk of diabetes and its complications, notably the increased risk 
of stroke.

Coronary heart disease and ischemic stroke often overlap in their 
underlying mechanisms, with individuals with coronary heart disease 

at higher risk of cardiovascular events after a stroke. This interaction 
can lead to complex multi-organ impairment and hinder optimal 
recovery. A comprehensive treatment approach is essential to manage 
these interconnected conditions and improve patient outcomes (35).

Uric acid, a product of purine breakdown, has dual roles: it 
scavenges free radicals and promotes neuronal glutathione synthesis, 
offering neuroprotection. Elevated uric acid levels are linked to stroke 
risk due to its oxidative properties, though it also has neuroprotective 
effects. Maintaining the balance of uric acid is crucial to managing 
stroke risk (36).

Elevated homocysteine levels, often associated with deficiencies 
in folate, vitamin B6, and B12, significantly increase stroke risk. For 
every 5 umol/L rise in homocysteine levels, the risk of stroke escalates 
by 95%. Higher levels are also linked to early neurological deterioration 
and increased risk of stroke recurrence and mortality. Monitoring 
homocysteine levels is crucial in mitigating stroke risk (37).

The platelet-to-lymphocyte ratio (PLR), derived from platelet and 
lymphocyte counts, serves as an inflammation marker and prognostic 
indicator for disease progression (38). PLR has predictive value in 
various conditions, including cancer. In acute ischemic stroke (AIS), 
heightened PLR levels correlate with larger infarcts and poorer 
prognosis. PLR also predicts clinical outcomes at 90 days, making it a 
valuable prognostic biomarker in AIS scenarios (39).

5 Limitation

While this research offers promising insights, it is imperative to 
recognize its limitations. The study’s retrospective design introduces 
the potential for selection bias and the influence of confounding 
variables. Furthermore, the study is constrained by a relatively small 
participant pool and a limited scope for external validation. Future 
research would benefit from prospective, multicenter studies 
encompassing larger cohorts and broader validation efforts to bolster 
the findings’ robustness. Additionally, this investigation’s treatment of 
ischemic stroke etiology, especially concerning cerebral infarction 
locations, lacks granularity. The reliance on manual delineation for 
regions of interest (ROI) could introduce subjectivity; thus, subsequent 
studies might enhance accuracy by adopting advanced software 
solutions, refining training protocols, and minimizing subjective bias. 
The inconsistency in standard head MRI sequences across various 
institutions and divergent institutional protocols posed challenges in 
evaluating a comprehensive range of MRI sequences. Future endeavors 
should focus on improving patient engagement, augmenting the 
collection of multimodal MRI data (e.g., FLAIR, ADC, SWAN), and 
constructing sophisticated models to overcome these limitations. 
Importantly, the initial study cohort was composed exclusively of 
patients who did not receive ischemic reperfusion therapy. 
Comparative analyses of patients undergoing ischemic reperfusion 
therapy vs. those who do not could provide valuable insights into the 
predictive utility of radiological markers and clinical indicators in 
treated acute ischemic stroke patients.

6 Conclusion

In conclusion, this study demonstrates that the incorporation of 
radiomic features from T1-weighted (T1w), T2-weighted (T2w), and 
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diffusion-weighted imaging (DWI) with clinical parameters into a 
cohesive clinical-radiomics model significantly improves the 
predictive accuracy for the prognosis and treatment responses in 
ischemic stroke. This advancement fosters a deeper comprehension of 
therapeutic impacts, prognostic evaluations, and clinical assessments, 
offering invaluable insights for medical professionals in diagnosis, 
therapeutic intervention, and rehabilitation. The synergy between 
radiomic attributes and clinical information heralds a promising 
avenue for enhancing personalized medicine strategies and elevating 
patient care outcomes in ischemic stroke.
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