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Background: The relationship between hemorrhagic transformation (HT) 
and uric acid (UA) remains controversial. This study aimed to investigate the 
relationship between UA concentrations and the risk of HT following acute 
ischemic stroke (AIS).

Methods: Electronic databases were searched for studies on HT and UA from 
inception to October 31, 2023. Two researchers independently reviewed the 
studies for inclusion. STATA Software 16.0 was used to compute the standardized 
mean difference (SMD) and 95% confidence interval (CI) for the pooled and 
post-outlier outcomes. Heterogeneity was evaluated using the I2 statistic and 
the Galbraith plot. Additionally, sensitivity analysis was performed. Lastly, Begg’s 
funnel plot and Egger’s test were used to assess publication bias.

Results: A total of 11 studies involving 4,608 patients were included in the meta-
analysis. The pooled SMD forest plot (SMD = −0.313, 95% CI = −0.586–−0.039, 
p = 0.025) displayed that low UA concentrations were linked to a higher risk of HT in 
post-AIS patients. However, heterogeneity (I2 = 89.8%, p < 0.001) was high among the 
studies. Six papers fell outside the Galbraith plot regression line, and there exclusive 
resulted in the absence of heterogeneity (I2 =  52.1%, p = 0.080). Meanwhile, repeated 
SMD analysis (SMD = −0.517, 95% CI = −0.748–−0.285, p = 0.000) demonstrated that 
the HT group had lower UA concentrations. Finally, Begg’s funnel plot and Egger’s 
test indicated the absence of publication bias in our meta-analysis.

Conclusion: This meta-analysis illustrated a substantial connection between UA 
concentrations and HT, with lower UA concentrations independently linked with a 
higher risk of HT post-AIS. These results lay a theoretical reference for future studies.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/
CRD42023485539.
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Introduction

Acute ischemic stroke (AIS) is a primary contributor to mortality 
and long-term disabilities globally (1–3). This condition can 
be  effectively managed with thrombolytic therapy (IVT) or 
endovascular thrombectomy (EVT) (4–7). Hemorrhagic 
transformation (HT) (8–10) can occur either as a natural progression 
of AIS or as a complication resulting from AIS treatment. Notably, it 
can elicit severe neurological deterioration, and even minor instances 
can adversely affect long-term functional outcomes. As a result, there 
is a pressing need to expand our understanding of HT to enhance the 
prognosis of AIS patients.

As reported by the Heidelberg criteria and the European 
Cooperative Acute Stroke Study classification (11–13), HT can 
be classified as either parenchymal hematoma (PH) or hemorrhagic 
infarction (HI); it can likewise be  classified as asymptomatic 
intracranial hemorrhage (ICH) or symptomatic ICH (sICH), 
depending upon the presence of neurological deficits. Numerous risk 
factors (14–16) associated with the event of HT have been identified, 
including age, stroke severity, hyperglycemia, hypertension, levels of 
blood calcium and uric acid, and cholesterol levels. The increase in 
blood–brain barrier (BBB) permeability caused by inflammatory 
processes and free radical release is one of the chief causes of HT (3, 
10, 17, 18).

Uric acid (UA) is derived from the metabolism of purines (19–21). 
Previous studies (22, 23) have illustrated that excessive UA 
concentrations are linked to an elevated risk of several disorders, 
including hypertension, chronic renal disease, cardiovascular and 
cerebrovascular diseases, etc. According to earlier studies (24, 25), UA 
concentrations are an independent risk factor for early mortality in 
AIS patients. It is the most substantial endogenous antioxidant (26–
28), as reported by an increasing number of studies. It exerts 
neuroprotective effects by scavenging free radicals, suppressing the 
inflammatory cascade, and reducing BBB permeability. For instance, 
Lei et al. (29) and Wang et al. (19) discovered that UA may exert a 
protective effect on neurological outcomes post-AIS. Nonetheless, the 
relationship between UA and AIS prognosis remains unclear. While 
several studies have investigated the relationship between UA 
concentrations and HT following AIS, a definitive conclusion has not 
been reached. Thus, a meta-analysis was conducted to evaluate the 
correlation between UA concentrations and the risk of HT post-AIS.

Methods

This meta-analysis was performed and reported following a 
predefined protocol (PROSPERO registration number: CRD4202 
3485539) and the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) guidelines.

Search strategy

Databases such as PubMed, Cochrane Library, Embase, Web of 
Science, CBM (Chinese Biomedical Literature Database), CNKI 
(China National Knowledge Infrastructure), and Wanfang database 
were thoroughly and meticulously searched for relevant articles from 
inception to October 31,2023. The search terms included (“uric acid” 

OR “UA” OR “urate” OR “hyperuricemia”) AND (“Acute Ischemic 
Stroke” OR “AIS” OR “Ischemic Stroke” OR “Stroke”) AND 
(“hemorrhagic transformation” OR “HT”). Any additional articles 
identified were screened to expand the scope of the search. Given that 
all collected data were secondary summary data, the requirement for 
ethical approval was waived.

Inclusion and exclusion criteria

Studies were individually screened by two reviewers (Ying Qian 
and Na Li). Conflicts were resolved by reaching a consensus or 
arbitrated by a superior investigator (Yonghong Gao). The inclusion 
criteria were as follows: (1) full-text in Chinese or English; (2) AIS 
patients; (3) clearly defined inclusion criteria for AIS and HT; (4) 
comparison of UA concentrations between HT and non-HT 
patients; (5) studies that reporting UA concentrations as a 
continuous variable or categorical variable (≥3 equal categories); (6) 
human studies. The exclusion criteria were as follows: (1) incomplete 
or unavailable data; (2) conference abstracts, animal experiments, 
letters, comments, reviews, and case reports; and (3) in cases where 
data from the same population were presented in multiple studies, 
only the higher-quality study or the study with the largest sample 
size was included.

Data extraction and quality assessment

Relevant parameters were independently extracted by two 
investigators (Ying Qian and Na Li) using a standardized data 
collection form. Disagreements were resolved through arbitration by 
a senior investigator (Yonghong Gao). The following data were 
abstracted: first author’s name, year, country, language, study design, 
number of patients, source of patients, mean age, gender, treatment, 
HT types, time to assessment; number of HT and non-HT patients, 
UA time point and detecting technique, UA concentrations (mean and 
standard deviation (mean ± SD), or median and interquartile range 
(IQR)), adjusted confounding factors, and conclusions. The 
Newcastle-Ottawa Scale (NOS) (30) was employed to assess the 
quality of each study. According to NOS, articles with a grade of 9 stars 
were considered to be of the highest quality, while those with a grade 
higher than 6 stars were considered to be of excellent quality.

Statistical analysis

The STATA software (version 16.0, Stata Corp., College Station, 
TX) was utilized for statistical analysis. UA concentrations were 
reported as median, and IQR was converted to mean ± SD (31, 32). For 
data expressed as mean ± SD, the standardized mean difference (SMD) 
and 95% confidence interval (CI) were calculated for each study. Next, 
the computed result was combined and evaluated using either the 
random-effects model or the fixed-effects model. Besides, the 
Galbraith plot (33, 34) was used to assess heterogeneity across the 
studies. Sensitivity analyses were conducted to assess the robustness 
of the results. The Begg and Egger tests were used to evaluate 
publication bias, with p < 0.05 indicating the presence of 
publication bias.
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Results

Study selection

As illustrated in Figure 1, the study selection process was based on 
the Preferred Reporting Item for Systematic Reviews and Meta-
Analyses (PRISMA) principles (35). A total of 258 articles were 
retrieved from the databases, following which 66 duplicates were 
excluded. By reading the title and abstract of the remaining articles, 
159 articles that did not meet the inclusion criteria were further 
excluded. Then, the retained 33 articles underwent full-text review. 
And 22 articles were excluded due to incomplete information (n = 9), 
duplication (n = 2), inconsistency with the research (n = 10), and low 
data reliability (n = 1). Finally, 11 articles of high quality were included 
in the meta-analysis (36–46).

Study characteristics

The characteristics of the included studies are detailed in Table 1. 
All 11 studies included observational studies, among which 10 (36, 
38–46) and 1 (37) were retrospective and prospective studies, 
respectively. Participants originated from China, with five and six 
articles published in Chinese (42–46) and English (36–41), respectively. 
The studies comprised 4,608 patients with AIS, including 701 patients 
with HT and 3,907 patients without HT. Interventions encompassed 
IVT (n = 6, 36, 39, 43–46) and EVT (n = 4, 37, 38, 41, 42), with one study 
not limiting IVT or EVT (40). Among the articles, 7 reported 
significantly higher UA concentrations in patients without HT 
compared to those with HT (36, 39–41, 43–45), with one article (36) 
demonstrating that irrespective of HT type, UA concentration was lower 
in HT patients than in non-HT patients. Interestingly, another article 
(39) identified lower UA concentration as an independent risk factor for 
HT in patients with large artery atherosclerosis stroke (LAA) patients or 
cardioembolism (CE). Meanwhile, an article (36) indicated that 

increasing UA concentrations are associated with favorable outcomes in 
AIS patients (345.67 ± 103.55 vs. 336.95 ± 95.5 μmol/L, p = 0.509). In 
addition, the optimal cutoff UA concentrations for differed across the 3 
articles (36, 43, 45): 218.5 μmol/L, 284.00 μmol/L, 364.5 μmol/L. A study 
concluded that UA concentrations lower than 218.5 μmol/L or higher 
than 404.76 μmol/L were associated with an elevated risk of 
HT. Conversely, another paper (38) revealed that elevated UA 
concentrations were not only risk factors but also predictors of SICH 
after EVT. Moreover, 3 articles (37, 42, 46) reported that while UA 
concentrations were numerically higher in the HT group compared to 
the non-HT group, the difference was not statistically significant 
(p > 0.05). A study (42) identified hyperuricemia as a risk factor in AIS 
patients, while another study (37) documented that baseline high UA 
concentrations may predict superior 90-day functional outcomes. There 
are six articles (37, 38, 40, 41, 43, 45) mentioned UA concentration was 
measured by standard laboratory procedures with urate oxidase 
methods. All studies clearly reported their diagnostic methods for 
AIS and HT.

Study quality

Study quality was evaluated using NOS criteria, as presented in 
Table  1. The results indicated good quality among the included 
publications, including 7 studies rated as good quality and 4 papers 
rated as suboptimal quality.

Meta-analysis results

The pooled SMDs suggested that compared with higher UA 
concentrations, lower UA concentrations were associated with HT 
after AIS (SMD = −0.313, 95% CI = −0.586–-0.039, p  = 0.025) 
(Figure 2). However, heterogeneity (I2 = 89.8%, p < 0.001) was high 
across the studies. Consequently, the random-effects model was 
applied to pooled SMDs.

Post- outlier analysis

Heterogeneity was high among the trials (I2 = 89.8%, p < 0.001), 
prompting further investigation via sensitivity analysis (Figure 3) and 
the Galbraith plot (Figure 4). Sensitivity analyses were performed 
using the leave-one-out approach to examine the robustness of the 
results of the meta-analysis revealing consistent results in the pooled 
SMD analysis. The Galbraith plot identified several studies as outliers 
contributing to heterogeneity. As displayed in the Galbraith plot, half 
of the studies fell outside the regression line. However, excluding the 
outlier studies and reconducting forest plot analysis demonstrated the 
absence of heterogeneity in the remaining five studies (I2 = 52.1%, 
p = 0.080) (Figure 5), demonstrating that these outliers influenced 
heterogeneity. After adjusting for outliers, analysis using the random-
effects model analysis outcomes (SMD = −0.517, 95% CI = −0.748–-
0.285, p = 0.000) exposed that lower UA concentrations in the HT 
group compared with the non-HT group.

FIGURE 1

Flow diagram of study retrieval and screening.
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TABLE 1 Characteristics of the included studies.

First 

name, 

year

Country

Language

Design N

M/F

Age 

(Mean  ±  SD)

Therapy HT 

types

HT 

timepoint

UA 

timepoint

UA detecting 

technique

UA cutoff 

(μmol/L)

Segmentation 

of UA levels 

(μmol/L)

Case UA (μmol/L) Association 

between UA 

and HT

NOS

HT non-

HT

HT non-HT

Zhang,

2021

China

Chinese

Re 40

28/12

70.5 ± 6.5 IVT HT 24 h after IVT On admission NR NR NR 11 29 294.7 ± 37.4 348.5 ± 63.5 Positive 5

Chen, 2021 China

Chinese

Re 258

147/111

61.37 ± 12.36 EVT HT 12 h、24 h、48 h 

after EVT

On admission NR NR NR 62 196 311.25 ± 64.03 309.89 ± 57.16 No significant 

association

6

Sun, 2021 China

Chinese

Re 228

167/61

69.32 ± 7.17 IVT HT 24 h after IVT On admission oxidase assay 284.00 NR 30 198 281.20 ± 77.79 340.63 ± 78.95 Positive 6

Chen, 2020 China

Chinese

Re 173

102/71

66.38 ± 8.72 IVT HI

PH

24 h after IVT On admission Automatic Biochemical 

Analyzer

>364.5 NR 46 127 324.89 ± 70.43 383.08 ± 89.21 Positive 8

Wei, 2017 China

Chinese

Re 67

45/22

HT:73.25 ± 8.87

nHT:66.88 ± 10.28

68.40 ± 10.27

IVT HT 72 h after IVT On admission NR NR NR 16 51 328.29 ± 49.48 306.86 ± 63.70 No significant 

association

4

Tian, Y., 

2022

China

English

Re 727

509/218

64 IVT HI1; HI2;

PH1; PH2

7 days after 

admission

48 h after IVT NR 218.50 Q1 (<240.6)

Q2 (240.6–302)

Q3 (302–360)

Q4 (>360)

112 615 253.65 ± 97.75 315.97 ± 96.42 Positive 8

Bai, H., 2022 China

English

Pro 780

517/263

64.40 ± 12.14 EVT sICH 24 h after EVT 24 h after EVT standard laboratory 

procedures

NR Q1 (<245.85)

Q2 (245.85–297.45)

Q3 (297.45–364.95)

Q4 (≥364.95)

47 733 319.72 ± 120.67 309.39 ± 94.51 No significant 

association

8

Yang, C., 

2020

China

English

Re 247

177/70

63.2 ± 12.4 IVT HI1; HI2;

PH1; PH2; 

rPH

72 h after IVT At 6 AM the day 

after admission.

NR NR NR 62 185 317.61 ± 87.45 346.62 ± 97.25 Positive;

No significance in 

multivariate logistic 

regression analysis

7

Chen, Z., 

2020

China

English

Re 247

180/67

63.07 ± 12.60 EVT HT

sICH

72 h after 

admission

at 6 AM on the 

following day

OLYMPUS AU5400 

automatic biochemical 

analyzer

NR Q1 (<271)

Q2 (271–338)

Q3 (339–403)

Q4 ((≥404)

92 155 322.60 ± 94.49 350.25 ± 99.28 Positive 7

Yuan, K., 

2020

China

English

Re 611

366/245

64.7 ± 12.3 EVT sICH NR 24 h after 

admission

Urate oxidase reagent 

on a Dax analyzer

NR Q1 (<247.2)

Q2 (247.2–310.0)

Q3 (310.0–380.8)

Q4 (≥380.8)

90 521 341.0(291.1–

391.0)

341.04 ± 75.27

302.0(238.5–

376.7)

305.92 ± 102.74

Higher UA level is 

risk factor of sICH

8

Song, Q., 

2019

China

English

Re 1,230

781/449

64.1 ± 14.5 IVT or EVT HI, PH;

sHT

7 days after 

admission

24 h after 

admission

Enzymatic methods;

Roche Cobas C701

NR Q1 (≤ 292.0)

Q2 (292.1–377.0)

Q3 (≥ 377.1)

133 1,097 272.1 ± 70.9 350.9 ± 105.6 Positive 8

Re, retrospective; Pro, prospective; N, number of patients; M/F, male/female; HT, hemorrhage transformation; non-HT, non-hemorrhage transformation; SD, standard deviation; IVT, intravenous thrombolysis; EVT, endovascular thrombectomy; HI, hemorrhagic infarction; PH, 
parenchymal hematoma; rPH, remote parenchymal hematoma; sICH, symptomatic intracranial hemorrhage; sHT, symptomatic hemorrhagic transformation; NR, not reported; UA, uric acid; Q, quartile of uric acid.
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Publication bias

Begg’s funnel plot and Egger’s test were utilized to assess 
publication bias among the 11 articles. Although Begg’s funnel plot 
(Figure 6A) was not completely symmetrical, the results of Egger’s test 
(Figure 6B) signaled the absence of publication bias in this meta-
analysis, implying that the conclusions were reliable.

Discussion

This meta-analysis included 11 articles involving 4,608 cases and 
examined the association between UA concentrations and the risk of 
HT in AIS patients. After adjusting for relevant covariates, our results 
demonstrated that lower UA concentrations were independently 
associated with an increased risk of HT in patients with AIS. The 
included articles all originated from China and included patients with 
AIS who underwent either IVT or EVT, with the primary outcome 
being the incidence of HT. According to the neuroimaging results, 
patients were divided into the HT and non-HT groups, and the 
mean ± SD or IQR values of UA concentrations were calculated for 
each group. The forest plot of pooled SMDs delineated that, compared 
with high UA concentrations, low UA concentrations were associated 
with a higher risk of HT following AIS (SMD = −0.313, 95% 
CI = −0.586–−0.039, p = 0.025). Meanwhile, heterogeneity was high 
among the studies (I2 = 89.8%, p < 0.001). Initially, subgroup analyses 
were performed based on language (Chinese or English), sample size 
(≤250 or more), age (≤65 or older), treatment (IVT or EVT), timing 
of HT assessment, timing of UA concentration measurements, and 
adjusted OR (YES or NO) to explore potential sources of heterogeneity, 
but heterogeneity remained high across groups (Figures not shown). 
Therefore, sensitivity analysis was performed, and the Galbraith plot 
was constructed to assess heterogeneity. The reliability of the results 
of the meta-analysis was demonstrated by sensitivity analysis using the 
leave-one-out approach. At the same time, Galbraith plot analysis 
identified six studies as potential sources of heterogeneity. Upon 
excluding these outliers, a subsequent forest plot of the remaining 
studies delineated a significant decrease in I2 value (I2 = 52.1%, 
p = 0.080). Notably, the re-evaluated pooled SMDs (SMD = −0.517, 
95% CI = −0.748–−0.285, p = 0.000) still suggested that UA 
concentrations were lower in the HT group compared to the non-HT 
group. Moreover, Begg’s funnel plot and Egger’s test also showed the 
absence of publication bias in the meta-analysis. The above analysis 
collectively enhanced the credibility of our results.

Numerous studies have established the dual nature of UA. As is 
well-documented, UA accumulation drives the deposition of 
monosodium urate (MSU) crystals in the kidneys and joints, 
eventually leading to nephrolithiasis and gout. Epidemiological 
research has identified a correlation between elevated UA 
concentrations and hypertension, cardiovascular and cerebrovascular 
events, insulin resistance, and diabetes mellitus. Nicotinamide adenine 
dinucleotide phosphate-oxidase (NADPH) is activated by UA, which 
acts as a pro-oxidant in the cellular microenvironment and promotes 
oxidative stress. Additionally, UA can trigger inflammatory responses 
by releasing chemokines, and inflammatory markers and activating 
vasoconstrictive mediators, such as thromboxane, endothelin-1, and 
angiotensin II. Hyperuricemia limits NO bioavailability, thereby 
causing endothelial dysfunction, which can be  attenuated via the 

administration of urinary acid-lowering drugs. In addition, UA also 
activates the renin-angiotensin system (RAS), thereby stimulating 
vascular smooth muscle cell proliferation and arterial stiffness (47–
49). Numerous studies (22, 25) have evinced that UA can serve as an 
independent predictor of early death in AIS patients. Therefore, high 
UA concentrations may exacerbate diseases rather than contribute to 
clinical prognosis. Of note, four of the included studies showed that 
UA concentrations were higher in the HT group than in the non-HT 
group, with only one reaching statistical significance (p < 0.05). The 
study suggested that increasing UA concentrations not only increased 
the risk of SICH after EVT but also served as a predictor of SICH (38).

Recently, UA has garnered extensive attention as a potential 
neuroprotective agent against stroke (50), with a large number of 
studies investigating its anti-oxidant properties. As an endogenous 
extracellular antioxidant synthesized via purine metabolism, UA 
accounts for approximately 70% of total antioxidant capacity (51). It 
can inhibit the accumulation of reactive oxygen species and lipid 
peroxidation after exposure to glutamic acid or cyanide and scavenge 
free radicals generated during ischemia–reperfusion injury, thus 
exerting neuroprotective effects. A comprehensive review and meta-
analysis (52) of the effects of UA in animal models of IS pointed out 
that elevated UA concentrations after IS can assist in reducing infarct 
size, improving BBB integrity, and enhancing neurological function. 
Meanwhile, a recent clinical meta-analysis (19) involving 10 eligible 
trials and including 8,131 AIS patients inferred that UA possessed 
protective effects on neurological outcomes in AIS patients. 
Furthermore, ascribed to its neuroprotective effect and significant 
decrease after stroke onset (47, 53), it has been explored as a clinical 
treatment for stroke during the past decades (54). A double-blind, 
randomized, vehicle-controlled study (55) found that UA can improve 
the prognosis of stroke by reducing the level of MMP-9 and alleviating 
oxidative stress. The URICO-ICTUS study (56) pointed out that the 
addition of UA to thrombolytic treatment yielded similar outcomes to 
placebo in stroke patients but did not elevate safety concerns.

At present, the relationship between UA concentrations and the 
risk of HT in AIS patients remains elusive. This meta-analysis showed 
that high UA concentrations lowered the risk of HT in AIS patients 
and concurrently improved their prognosis. Despite the pathogenesis 
of HT after AIS being unclear, studies (28, 36, 40, 57) hypothesized 
that ischemia–reperfusion injury (IRI) activates free radicals, thereby 
increasing the levels of reactive oxygen species (ROS) and reactive 
nitrogen species (RNS). The former promotes glutamate release, 
calcium overload, and neurotoxicity. Besides, it induces cell necrosis 
and apoptosis by activating adhesion molecules, promoting leukocyte 
infiltration, and releasing various cytokines. High concentrations of 
RNS can induce matrix metalloproteinase (MMP) activation, mediate 
BBB damage, expand infarct volume, and promote inflammation and 
apoptosis. The release of a large number of free radicals elicits 
oxidative stress, which in turn activates xanthine oxidase and increases 
the levels of endogenous urea, thereby inhibiting the activity of 
peroxynitrite and mitigating neuronal damage. As a neuroprotectant, 
UA can also suppress ischemia-induced inflammatory reactions, 
attenuate vascular impairment, preserve the integrity of the BBB, and 
decrease the infarct area by limiting the generation of reactive oxygen 
species on the blood vessel walls and decreasing MMP-9 activity.

This meta-analysis identified UA as a protective factor in patients 
with AIS. Specifically, patients with high UA concentrations were less 
likely to develop HT. In the enrolled studies, the optimal cutoff values 
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for UA in HT patients were 218.5 μmol/L (36), 284 μmol/L (43), and 
364.5 μmol/L (45), respectively. An article reported a normal UA range 
between 218.5 μmol/L and 404.76 μmol/L (36). Meanwhile, several 

extraneous factors, including the timing of blood collection, the use 
of diverse biochemical analyzers, individual variations, and regional 
differences, may have influenced the UA cutoff value for 

FIGURE 2

Lower UA concentrations were linked with higher HT after AIS.
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The provided study was taken away from the forest plot in the current meta-analysis’s sensitivity analysis.
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HT. Considering that existing studies have not established an optimal 
range value for UA, further large-scale standardized clinical studies 
are warranted in the future.

UA concentrations differed according to gender, and studies have 
confirmed that the average UA concentration is significantly lower in 
females than in males due to the effects of estrogen (40, 58). A 
sex-stratified analysis demonstrated that (40), UA concentrations were 
significantly higher in males than in females; correspondingly, the 

incidence of HT was lower in males than in females, consistent with 
the findings of earlier studies. This supported our conclusion that UA 
is a protective factor against HT post-AIS.

The substantial heterogeneity in this meta-analysis was not 
decreased by excluding individual studies. Differences in study design, 
endpoints, and duration of follow-up are potential sources of 
heterogeneity. Due to the high heterogeneity, the results were not 
sufficiently robust and should be interpreted with caution.
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FIGURE 4

Galbraith plot analysis for outlier studies.

FIGURE 5

Forest plot analysis for the post-outlier outcomes indicated the UA concentrations in the HT group were lower compared with the non-HT group.
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Nevertheless, several limitations of our study should not 
be overlooked. To begin, heterogeneity was high in this meta-analysis. 
Indeed, the Galbraith plot identifies six studies as potential sources of 
heterogeneity. Due to the lack of or incomplete information in these 
studies, the causes of the high heterogeneity could not be determined. 
Secondly, given that UA concentrations were extracted as a continuous 
variable without corresponding baseline levels, heterogeneity was 
high, and the possibility of confounding factors compromising the 
results cannot be neglected. Other risk factors, such as a history of 
hypertension and atrial fibrillation mentioned in the included articles, 

should not be  ignored. Thirdly, each included study exclusively 
measured UA concentrations once without accounting for dynamic 
fluctuations in UA concentrations during the course of AIS. Therefore, 
additional studies are necessary to measure UA values multiple times 
to dynamically monitor the relationship between UA concentrations 
and the risk of HT. Fourthly, subgroup analyses were not performed 
on AIS type, HT type, or gender owing to limited data. Further clinical 
studies targeting relevant subgroups should be  conducted in the 
future. Eventually, all the studies were conducted in China, limiting 
the applicability of our results to a broader population.
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The funnel plot and Egger’s bias plot of publication bias in pooled SMDs analysis of all studies (A,B).
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Conclusion

This meta-analysis highlighted that UA exerts neuroprotective 
effects in AIS patients and that lower UA concentrations may increase 
the risk of HT following AIS, thereby laying a theoretical reference for 
future related studies. At the same time, several challenges also need 
to be  addressed in the future, such as monitoring dynamic UA 
concentrations and identifying the optimal range for UA.
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