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The rate-pressure product 
combined model within 24  h on 
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Background and objectives: Recently, some literature has proposed new 
indicators such as rate-pressure product, platelet-to-lymphocyte ratio, 
neutrophil-to-lymphocyte ratio, etc. However, there has been no literature that 
has utilized these new indicators to establish a predictive model for assessing the 
risk of mortality in patients within 24  h on admission. Therefore, this study aims 
to build a predictive model that can rapidly assess the likelihood of mortality in 
patients within 24  h of admission.

Methods: The datasets used in this study are available from the corresponding 
author upon reasonable request. Patients were randomly assigned to the 
training or validation cohort based on a ratio of 7:3, which was implemented 
as internal validations for the final predictive models. In the training set, least 
absolute shrinkage and selection operator (LASSO) regression was employed 
to select predictive factors, followed by both univariate and subsequent 
multivariate analysis. The predictive ability was assessed by the area under the 
receiver operating characteristic (ROC) curve.

Results: A total of 428 patients were included in our research. The final model 
included 4 independent predictors (Glasgow Coma Scale, hematoma volume, 
rate-pressure product, c-reactive protein) and was developed as a simple-to-
use nomogram. The training set and internal validation set model’s C-index 
are 0.933 and 0.954, demonstrating moderate predictive ability with regard 
to risks of mortality. Compared to ICH score (AUC: 0.910 and 0.925), the net 
reclassification index (NRI) is 0.298 (CI  =  −0.105 to 0.701, p: 0.147) and integrated 
discrimination improvement (IDI) is 0.089 (CI  =  −0.049 to 0.228, p: 0.209). Our 
model is equally excellent as the classic ICH score model.

Conclusion: We developed a model with four independent risk factors to predict 
the mortality of ICH patients. Our predictive model is effective in assessing the 
risk of mortality in patients within 24  h on admission, which might be  worth 
considering in clinical settings after further external validation.
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Introduction

Intracerebral hemorrhage (ICH) is a type of stroke caused by 
bleeding within the brain tissue (1). It is a severe and potentially life-
threatening condition that can lead to significant neurological 
impairment or even death. The case fatality rate of intracerebral 
hemorrhage (ICH) is high (40% at 1 month and 54% at 1 year), and 
only 12 to 39% of survivors achieve long-term functional 
independence (2). Therefore, it is necessary to improve the ability to 
ICH patients during early period and provide timely interventions to 
improve patient outcomes. Currently, numerous predictive models 
have been applied to predict the outcome of death in intracerebral 
hemorrhage. However, there are few models capable of rapid 
prediction within 24 h of admission.

Rate-pressure product (RPP) as a classical markers is used to 
measure the load of the heart through the product of heart rate and 
systolic blood pressure (3). RPP has demonstrated significant 
predictive capability for disease progression and prognosis in both 
cardiovascular disease and aSAH. Previous studies have suggested that 
higher heart rate and blood pressure levels indicate autonomic 
dysfunction, independently associated with poorer one-year prognosis 
and reduced survival in patients with intracerebral hemorrhage (ICH) 
(4–9). However, its role in intracerebral hemorrhage remains unclear.

Therefore, we have incorporated new indicators and constructed 
a relevant predictive model to predict the 30-day mortality. Our 
predictive model shows good predictive performance in ICH during 
early stage.

Materials and methods

Patients

This retrospective study was approved by the local institutional 
review board (The National Drug Clinical Trial Institution). The data 
for this study was from inpatients admitted to the neurosurgery and 
critical care departments at Chongqing Medical University Affiliated 
Hospital from 1 January 2015 to 31 December 2022.

The inclusion criteria for our cohort were as follows:

 1. Individuals with acute intracerebral hemorrhage (ICH) 
diagnosed by the presence of a sudden focal neurological 
deficit, with visible brain hematoma in a head computed 
tomography (CT) scan conducted within 24 h of admission.

 2. Availability of initial blood pressure and heart rate 
measurements recorded within the first 24 h from the onset 
of symptoms.

 3. Age >18 years old.

In consideration of the significant impact of surgery on the 
mortality rate of critically ill patients, we excluded surgical patients 
and focused solely on those receiving conservative treatment for our 
study. Additional exclusion criteria included:

 1. Absence of spontaneous breathing.
 2. More than 24 h elapsed from symptom onset to hospital  

admission.
 3. Patients without complete inpatient information records.

 4. Hematomas caused by head trauma, arteriovenous 
malformations, aneurysms, cerebral vein and sinus thrombosis, 
neoplasms, hemorrhagic diathesis, anticoagulant therapy, or 
illicit drug abuse.

 5. The patient underwent surgical treatment after admission.

Clinical management

All patients with suspected intracerebral hemorrhage first 
underwent radiographic imaging to identify the source of bleeding. 
Relevant vital signs and hematological indicators are recorded within 
24 h. All patients with ICH received antifibrinolytic drugs for one time 
and the systolic blood pressure (SBP) of patients with intracerebral 
hemorrhage (ICH) is lowered to 160 mmHg early and steadily lowered 
to a target range of 130–140 mmHg to avoid excessive fluctuations. 
Critical patients were placed in the ICU for further treatment.

Data collection

Demographic data, including age and gender, Glasgow Coma 
Scale (GCS) scores, vital signs (temperature, systolic and diastolic 
blood pressure, respiration rate, and heart rate), medical history (such 
as diabetes mellitus, history of ischemic or hemorrhagic stroke, atrial 
fibrillation, and prior use of antiplatelet medications), risk factors for 
intracerebral hemorrhage (including hypertension and smoking 
status), and the time from symptom onset to admission were collected. 
Additionally, CT findings, such as hematoma location (infratentorial 
or supratentorial), presence of intraventricular hemorrhage, and 
volume of intracerebral hemorrhage (calculated using the ABC/2 
method from head CT scans) were recorded. Laboratory results for 
myoglobin, troponin, white blood cell count (WBC), serum sodium, 
and serum potassium were obtained, with only initial laboratory 
findings and neuroimaging results after admission being used in the 
analysis. The initial recordings of all vital signs and laboratory 
indicators were included in our study. Information regarding whether 
surgical treatment was performed after intracerebral hemorrhage was 
also documented. The ICH score is calculated based on the volume of 
the hemorrhage, GCS score, hematoma location, and age. In our study, 
admission rate-pressure product (RPP) was calculated by multiplying 
the admission systolic blood pressure by the admission heart rate. If 
there is missing data in the patient records, such as loss to follow-up 
for outcomes or missing laboratory indicators, we exclude the patient 
from the analysis.

Candidate predictors

Based on the current published literature, we  included as 
comprehensive a set of variables as possible. All part of candidate 
predictors were collected on the day of admission, which included the 
demographic data (age, gender), hemorrhage features (locations, 
sizes), medical history (hypertension, diabetes, chronic bronchitis, 
history of stroke), lifestyle (smoke and drink), blood pressure (SBP 
and DBP) on admission. The Physical examinations (GCS score), 
neuroimage evaluated by CT or CTA (volume of hemorrhage, location 
of hematoma), Measurement of hemorrhage volume assessed 
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according to CT were all written up. The blood pressure (SBP and 
DBP) was collected from care records in ICU or general wards. All 
candidate predictors were assessed before the outcome assessment.

Outcome assessment

Our primary clinical outcome was mortality at 30 days. Relevant 
death information was obtained from electronic medical records. 
Follow-up telephone calls to obtain relevant information if the patient 
is discharged early.

Sample size

Because this study was descriptive in nature, power calculations 
were not performed, and selection criteria were used to establish the 
final cohort size. Sample size adequacy was assessed based on 
confidence intervals for the primary endpoint estimates.

Statistical analysis

The dataset obtained from the first center was randomly divided 
into training and validation cohorts at a 7:3 ratio as training set and 
validation set and the variables were compared. Non-normally 
distributed data was presented as median (interquartile range). 
Categorical variables were analyzed using the chi-square test or 
Fisher’s exact test, while continuous variables were examined using 
student’s t-test or rank-sum test in univariate analysis. Diagnostic 
analyses of the final model included an examination of nonlinear 
relationships (evaluated by RCS regression), influential points 
(assessed by Cook’s distance), and multicollinearity (detected by the 
variance inflation factor of each covariate). In the training cohort, 
multivariate analysis was carried out using the least absolute shrinkage 
and selection operator (LASSO) logistic regression to screen 
independent risk factors and construct a predictive nomogram for 
ICH. The performance of the nomogram was assessed using the 
receiver operating characteristic (ROC) curve and calibration curve, 
with the area under the ROC curve (AUC) ranging from 0.5 (no 
discriminant ability) to 1 (complete discriminant ability). Results with 
a p-value of <0.05 were considered statistically significant. IDI, NRI 
and likelihood ratio test was used to compare new model with 
ICH score.

All statistical analyses were conducted using R software (version 
4.2.2). This study adhered to the TRIPOD (transparent reporting of a 
multivariable prediction model for the individual prognosis or 
diagnosis) statement for reporting.

Results

Study population

The baseline demographic and clinical characteristics of the study 
population are presented in Table 1. In this study, we analyzed the 
baseline demographic and clinical characteristics of the cohorts, a 
training cohort consisting of 300 individuals and an internal test 

cohort comprising 128 individuals. Of these, 82 (19%) patients died 
within 30 days after intracerebral hemorrhage. In Table 1, we compared 
training cohort with test cohort. These findings suggested that the 
baseline demographic and clinical characteristics were generally well-
balanced between the training and internal test cohorts, thus 
supporting the comparability and generalizability of the predictive 
model developed in this study. An overview of the development and 
validation cohort assembly process is shown in Figure 1.

Predictive model

The initial model incorporated all candidate predictors. Through 
LASSO regression analysis in the training cohort, this set was reduced 
to 4 potential predictors. The coefficients are detailed in 
Supplementary Table S1, and a coefficient profile is presented in 
Figure  2. Additionally, a cross-validated error plot of the LASSO 
regression model is depicted in Figure 3. The coefficients for each 
predictor and intercept in the multivariate logistic model are presented 
in Table 2. The most regularized and parsimonious model, with a 
cross-validated error within one standard error of the minimum, 
included 4 variables. As demonstrated in Figure 4, ROC analysis of the 
aforementioned variables resulted in AUC values exceeding 0.5. 
Univariate analyses were utilized to compare the indices between 
different outcome groups. Subsequent multivariate logistic analyses 
were performed in different cohorts. The final logistic model 
comprised 4 independent predictors (RPP, CRP, GCS, hemorrhage 
volume). The risk of death is 1.02 times higher in individuals with 
higher RPP (OR: 1.02, 95% CI: 1.01–1.04). A higher GCS score is a 
protective factor (OR: 0.68, 95% CI: 0.54–0.82). The risk of death is 
lower by 1.03 times in individuals with higher hematoma volume (OR: 
1.03, 95% CI: 1.01–1.05). Higher CRP levels are associated with a 
higher death risk by 1.05 times (OR: 1.05, 95% CI: 1.01–1.10). Model 
was developed as a user-friendly nomogram, presented in Figure 5.

Development and validation of the 
prediction nomogram

The AUCs of the developed model and ICH score in the different 
cohorts are illustrated in Figure 6. Calibration plots of the nomogram 
in the different models are presented in Figure 7, showing a strong 
correlation between the observed and predicted mortality. The 
findings indicate that the original nomogram remained suitable for 
use, with the calibration curve of the model closely approximating the 
ideal curve, suggesting consistency between the predicted results and 
actual observations.

Compared to ICH score

Comparisons between the newly developed scoring model and 
ICH score were performed. The newly developed model presented a 
insignificantly improved AUC (AUC = 0.954, 95% CI = 0.90–1) 
compared to the ICH score (AUC = 0.925, 95%CI = 0.861–0.989, 
p-value of DeLong test = 0.234), in the development cohort. 
Compared to ICH score, the NRI is 0.298 (CI = −0.105 to 0.701, p: 
0.147) and IDI is 0.089 (CI = −0.049 to 0.228, p: 0.209). The 
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TABLE 1 Patient demographics and baseline characteristics.

Characteristic Cohort p-value

Training cohort,  
N  =  300

Internal test cohort, 
N  =  128

Age (years) 0.662

 Median (IQR) 67 (56, 77) 66 (56, 75)

Gender 0.734

 Male 192 (64.0%) 52 (40.6%)

 Female 108 (36.0%) 76 (59.3%)

Hematoma location 0.492

 Supratentorial origin 262 (87.3%) 116 (90.6%)

 Infratentorial origin 38 (12.7%) 12 (9.4%)

IVH 0.318

 No 114 (38.0%) 58 (45.3%)

 Yes 186 (62.0%) 70 (54.7%)

Smoking 0.577

 No 180 (60.0%) 82 (64.1%)

 Yes 120 (40.0%) 46 (35.9%)

Drinking 0.876

 No 228 (76.0%) 98 (75.0%)

 Yes 72 (24.0%) 32 (25.0%)

Diabetes 0.485

 No 272 (90.7%) 112 (87.5%)

 Yes 28 (9.3%) 6 (12.5%)

SBP (mmHg) 0.143

 Mean ± SD 164 ± 32 171 ± 28

DBP (mmHg) 0.201

 Mean ± SD 95 ± 18 99 ± 18

RPP 0.895

 Median (IQR) 12,872 (10,868, 16,004) 12,935 (11,169, 14,855)

GCS 0.065

 Median (IQR) 13.0 (8.0, 15.0) 14.0 (11.0, 15.0)

Hematoma volume (mL) 0.055

 Median (IQR) 18 (6, 45) 11 (5, 24)

K (mmol/L) 0.382

 Mean ± SD 3.67 ± 0.46 3.74 ± 0.51

Na (mmol/L) 0.447

 Median (IQR) 138.1 (135.7, 140.7) 137.6 (135.6, 140.2)

Albumin (g/L) 0.578

 Median (IQR) 41.8 (39.5, 45.7) 42.1 (39.2, 43.9)

Hb (g/L) 0.517

 Median (IQR) 136 (124, 146) 136 (125, 143)

WBC (K/μL) 0.070

 Median (IQR) 9.5 (7.3, 12.9) 8.4 (6.6, 11.1)

NEU (K/μL) 0.061

 Median (IQR) 8.4 (5.5, 11.4) 6.5 (5.4, 9.3)

(Continued)
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likelihood ratio test for two models was used to assessed. The test 
statistic is 11.467 with 3 degrees of freedom and a p-value of 
0.009449516. Our model is equally excellent as the classic ICH score 
model. The classification accuracy for prediction at different risk 
cutoff points for the developed model and other metrics such as 
sensitivity, specificity, positive predictive value (PPV), negative 
predictive value (NPV), accuracy, precision, recall, and F1 score have 
been used for model evaluation which are presented in 

Supplementary Tables S2, S3. Our developed model and ICH score 
demonstrated good predictive performance.

Discussion

Intracerebral hemorrhage (ICH) is a critical medical condition 
associated with high morbidity and mortality rates. Early recognition 

FIGURE 1

The procession of the cohort assemble.

TABLE 1 (Continued)

Characteristic Cohort p-value

Training cohort,  
N  =  300

Internal test cohort, 
N  =  128

LYM (K/μL) 0.667

 Median (IQR) 0.99 (0.66, 1.32) 0.92 (0.59, 1.27)

MON (K/μL) 0.391

 Median (IQR) 0.42 (0.31, 0.60) 0.38 (0.29, 0.57)

PLT (K/μL) 0.631

 Median (IQR) 184 (153, 231) 172 (153, 240)

CRP (mg/L) 0.165

 Median (IQR) 5 (5, 12) 5 (5, 7)

SIRI 0.216

 Median (IQR) 3.6 (1.8, 7.3) 2.7 (1.5, 5.6)

PLR 0.967

 Median (IQR) 197 (144, 292) 200 (130, 308)

NLR 0.371

 Median (IQR) 9 (5, 14) 9 (4, 14)

INR 0.325

 Median (IQR) 0.98 (0.93, 1.06) 0.99 (0.95, 1.06)

1n (%).
2Wilcoxon rank sum test; Pearson’s chi-squared test; Welch two sample t-test.
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of patients at high risk of clinical deterioration is of paramount 
importance in improving outcomes and optimizing treatment 
strategies. In the past, the ICH score has been widely used as an 
effective predictive tool; however, it primarily focuses on reflecting 
brain damage and does not consider the overall systemic status. In 
recent years, there have been more new biomarkers proposed in 
stroke, such as CRP, NLR, and RPP, which represent inflammatory 
and cardiac load markers. We  aim to utilize these biomarkers to 
construct a predictive model that reflects the systemic status of 
patients with intracerebral hemorrhage upon admission, allowing for 
the rapid prediction of mortality risk. So we systematically analyzed 
various indicators upon patient admission and subsequently 
developed a model with strong predictive performance.

The rate-pressure product (RPP) is a physiological index utilized 
to assess cardiac workload, calculated as the product of heart rate 
and systolic blood pressure. Widely employed in clinical and exercise 
physiology contexts, RPP serves as a valuable tool for evaluating 
cardiac load and predicting the risk of cardiovascular events (10, 11). 
Elevated RPP values are often indicative of increased cardiac load 
and heightened susceptibility to cardiovascular disease. One 
literature supposed that RPP on admission to be  independently 
associated with in-hospital mortality after aSAH (12). Individuals 
with severe traumatic brain injury demonstrate diverse myocardial 
workload patterns that are closely associated with mortality (13). 
The interaction between the brain and the heart is currently a 
research hotspot in the field of stroke. After intracerebral 
hemorrhage, the disruption of the blood-brain barrier leads to the 
activation of the hypothalamic-pituitary-adrenal axis and the 
sympathetic nervous system, triggering a systemic inflammatory 
response (14). The release of inflammatory mediators leads to 
vasoconstriction in peripheral blood vessels and an increase in heart 
rate, resulting in elevated rate-pressure product (RPP) index, 
undoubtedly significantly increasing the burden on the heart. A 
study supposed that stroke (ischemic stroke, intracerebral 
hemorrhage, and subarachnoid hemorrhage) can induce 
neurovascular uncoupling and disrupt cerebral autoregulation, 
resulting in direct dependence of cerebral blood flow on cardiac 
function (15). In general, high RPP means high systolic blood 
pressure and high heart rate. This may imply elevated intracranial 
pressure and cerebral hypoperfusion following intracerebral 
hemorrhage, leading to dysregulation of cerebral autoregulation. At 
this point, cerebral perfusion relies solely on compensatory 

FIGURE 3

LASSO regression coefficient path plot.

TABLE 2 Results of multivariate logistic regression for training cohort.

Characteristic N Event N OR1 95% CI1 p-value

RPP 300 64 1.02 1.01, 1.04 0.002

GCS 300 64 0.68 0.54, 0.82 <0.001

volume 300 64 1.03 1.01, 1.05 0.009

CRP 300 64 1.05 1.01, 1.10 0.015

FIGURE 4

The receiver operating characteristic curves of 4 candidate 
diagnostic indicators.

FIGURE 2

LASSO regression cross-validation plot.
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mechanisms from cardiac function. Therefore, early rate-pressure 
product (RPP) also serve as a significant indicator reflecting cerebral 
perfusion. In our study, an elevated rate-pressure product (RPP) 
upon admission is an independent risk factor for 30-day mortality. 
The rate-pressure product (RPP), as one of the predictive factors in 
the predict model, has demonstrated strong predictive capability.

The Glasgow Coma Scale (GCS) and hematoma volume are 
classical predictive factors for forecasting the prognosis of intracerebral 
hemorrhage patients (16–19). At present, ICH score is a simple and 
useful tool to predict the mortality of cerebral hemorrhage (20). By 
combining the Glasgow Coma Scale score, age, infratentorial origin of 
ICH, and ICH volume to score patients, the aim is to predict patient 
prognosis. In recent years, there has been significant development in 
ICH scoring systems. The max-ICH score, compared to the ICH score, 

demonstrates more robust predictive capability, with its effectiveness 
validated in international cohorts (21). Similar to hematoma volume, 
imaging biomarkers have been widely studied in diseases such as 
stroke. For example, quantitative susceptibility mapping has an 
excellent predictive role in stroke (22, 23). Our model is comparable 
to the ICH score, and even exhibits a better fit. More importantly, our 
predictive model incorporates vital signs upon admission, enabling 
early assessment of mortality probability in patients and providing 
timely guidance for subsequent treatment. As our study aimed to 
identify early critical patients and avoid surgical interference with 
outcomes, we  included only patients undergoing conservative 
treatment. Some researchers supposed that Surgical timing between 
12 and 26 h after ICH was associated with favorable outcomes (24). 
Therefore, our scoring system can aid in the early identification of 

FIGURE 5

Nomogram of prediction model.

FIGURE 6

The receiver operating characteristic curve for the developed model and ICH score.
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critical patients and serve as a reference for the appropriate timing of 
surgical intervention for patients.

C-reactive protein (CRP) has been widely studied as an 
inflammatory marker in intracerebral hemorrhage (25–27). 
Individual elevation of CRP was associated with poor outcomes. 
Studies have shown that inflammatory markers upon admission 
can predict early mortality in patients (28). Preclinical and clinical 
trials have provided insights into the etiology of intracerebral 
hemorrhage (ICH) and the mechanisms of injury, highlighting the 
intricate interplay between edema, inflammation, iron-induced 
injury, and oxidative stress (29). In our study, we  observed a 
correlation between elevated CRP levels, poorer Glasgow Coma 
Scale (GCS) scores, and higher mortality rates in patients, which 
aligns with previous research findings. As one of the indicators in 
our proposed predictive model, CRP has demonstrated strong 
predictive capability.

Based on our research, we built a prediction model for early 
mortality in ICH. In patients after ICH with a higher mortality, 
our predictive model showed better predictive performance. A 
nomogram is used to visualize our findings. Our developed 
predictive model comprehensively evaluates the general condition 
of patients based on vital signs, systemic inflammatory status, 
imaging characteristics, and consciousness status. By combining 
vital signs upon admission with imaging features, we can identify 
critical patients early and consider intervention. Clinicians can 
identify high-risk patients early based on our research and provide 
therapeutic intervention to these patients to improve the 
patient’s prognosis.

The retrospective nature of this study presents a significant 
limitation as it may have resulted in the misclassification of mortality 
and failure to identify key comorbidities. Moreover, our study sample 
size was not large enough. RCTs, multicenter study and more 
advanced statistical methods may need to prove clinically useful to 
individualize mortality in ICH patients.

Conclusion

We developed a model with four independent risk factors to 
predict the mortality in ICH. These factors include RPP, CRP, GCS, 
hemorrhage volume. We explored the significance of RPP in ICH 
patients. Elevated RPP on admission may indicate that high risk of 
mortality in ICH. Our constructed predictive model is equally 
excellent as the classic ICH score.
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Glossary

aSAH Aneurysmal subarachnoid hemorrhage

DM Diabetes mellitus

NEU Neutrophil

LYM Lymphocyte

MON Monocyte

PLT Platelet

SIRI Systemic immune-inflammation index

PLR Platelet-to-lymphocyte ratio

NLR Neutrophil-to-lymphocyte ratio

INR International normalized ratio

ICH Intracerebral hemorrhage

AUC Area under the curve

ROC The receiver operating characteristic

CRP c-reactive protein

CT Computed tomography

DBP Diastolic blood pressure

GCS Glasgow Coma Scale

HR Heart rate

IQRs Interquartile ranges

ORs Odds ratios

RPP Rate-pressure product

SBP Systolic blood pressure

SD Standard deviation

WBC White blood cell

IVH Intraventricular hemorrhage
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