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Background: This study aimed to investigate the clinical application of 18F-FDG

PET radiomics features for temporal lobe epilepsy and to create PET radiomics-

based machine learning models for di�erentiating temporal lobe epilepsy (TLE)

patients from healthy controls.

Methods: A total of 347 subjects who underwent 18F-FDG PET scans from

March 2014 to January 2020 (234 TLE patients: 25.50 ± 8.89 years, 141 male

patients and 93 female patients; and 113 controls: 27.59 ± 6.94 years, 48 male

individuals and 65 female individuals) were allocated to the training (n= 248) and

test (n= 99) sets. All 3D PET images were registered to theMontreal Neurological

Institute template. PyRadiomics was used to extract radiomics features from the

temporal regions segmented according to the Automated Anatomical Labeling

(AAL) atlas. The least absolute shrinkage and selection operator (LASSO) and

Boruta algorithms were applied to select the radiomics features significantly

associated with TLE. Eleven machine-learning algorithms were used to establish

models and to select the best model in the training set.

Results: The final radiomics features (n = 7) used for model training were

selected through the combinations of the LASSO and the Boruta algorithms with

cross-validation. All data were randomly divided into a training set (n = 248)

and a testing set (n = 99). Among 11 machine-learning algorithms, the logistic

regression (AUC 0.984, F1-Score 0.959) model performed the best in the training

set. Then, we deployed the corresponding online website version (https://

wane199.shinyapps.io/TLE_Classification/), showing the details of the LR model

for convenience. The AUCs of the tuned logistic regression model in the training

and test sets were 0.981 and 0.957, respectively. Furthermore, the calibration

curves demonstrated satisfactory alignment (visually assessed) for identifying the

TLE patients.
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Conclusion: The radiomics model from temporal regions can be a potential

method for distinguishing TLE. Machine learning-based diagnosis of TLE

from preoperative FDG PET images could serve as a useful preoperative

diagnostic tool.

KEYWORDS

temporal lobe epilepsy, positron emission tomography (PET), radiomics, machine

learning, 18F-FDG

Introduction

Epilepsy, caused by abnormal discharge of brain neurons,

is one of the most common chronic neurological disorders (1).

Although multiple antiseizure drugs have been used to control

seizures, drug resistance can still occur in approximately one-

third of individuals with epilepsy. Surgical resection of the

epilepsy focus is the best choice for individuals with drug-resistant

epilepsy (2). Temporal lobe epilepsy (TLE) is the most common

form of drug-resistant epilepsy, incurring considerable healthcare

burdens (3, 4). Neuroimaging is a crucial clinical examination

for epilepsy, and multiple imaging techniques, including brain

MRI (structural, diffusion, and functional MRI) and PET, have

been used to delineate abnormal brain structures and functions,

which provides massive imaging data that can be analyzed by

machine learning techniques for the identification of patients,

localization of epilepsy focus, and prediction of medical and

surgical outcomes (5, 6). Machine learning applications used for

the differentiation of individuals with TLE and healthy subjects are

mainly from MRI data. Various machine learning classifiers based

on different MRI modalities, including T1, T2, DTI, DKI, and fMRI

sequences, have achieved over 70–80% accuracy in successfully

discriminating between patients with TLE and healthy controls

(7–14). A study using the support vector machine method on

independent components from rsfMRI data of 42 individuals with

TLE achieved over 90% accuracy (15). In addition to MRI data,

[18F]fluorodeoxyglucose (18F-FDG) PET imaging often indicates

glucose hypometabolism in the epilepsy focus. Previous clinical

PET applications were typically conducted in single conventional

parameters for the differentiation of individuals with epilepsy and

healthy subjects (16).

As an essential part of artificial intelligence, machine learning

(ML) bridges statistics and computer science to learn relationships

from data by developing efficient computing algorithms (17).

In particular, a number of studies about ML techniques for

imaging data analysis have achieved gratifying results. Quantitative,

high-throughput data can be extracted, processed, and analyzed

using machine learning techniques to discover associations

with meaningful and hidden information that is inaccessible

when using traditional approaches (18). Radiomics represents a

burgeoning technique for image analysis that leverages algorithms

or statistical tools to discern unique phenotypic variations

in diseases from diagnostic imaging data. Subsequently, we

investigated the possible differences in FDGPET radiomics features

among TLE patients utilizing machine learning approaches. These

characteristics were then compared with those of a control group

comprising healthy subjects with the objective of evaluating their

effectiveness in distinguishing patients with TLE from those in the

control group.

Materials and methods

Participants

According to the criteria of the international league against

epilepsy, 628 patients of diagnosed temporal lobe epilepsy who

received brain 18F-FDG PET/CT examinations between March

2014 and January 2020 were retrospectively reviewed. Of the

628 TLE patients, we excluded 394 patients due to incomplete

PET/CT data, unclear diagnosis, and postsurgical PET/CT data.

Therefore, we only used data from the remaining 234 TLE patients

(age = 25.50 ± 8.89 years, 141 male patients and 93 female

patients) for our current study. For the control group, 113 age-

matched controls (age = 27.59 ± 6.94 years, 48 male individuals

and 65 female individuals) with extracranial lymphoma were

reviewed. All controls had no history of neurological disorders,

psychiatric conditions, chemotherapy, or radiotherapy. In short,

an institutional cohort of 347 subjects (234 TLE patients and

113 HCs) was assessed in this study, which was divided into a

training set for classification and a test set for validation. The

study was approved by the local ethics committee of the First

Affiliated Hospital of Jinan University and complied with the

national legislation and the Declaration of Helsinki guidelines.

All experimental protocols involving humans were performed in

accordance with the guidelines set by national and international

institutions. All participants provided consent to use their 18F-FDG

PET results and clinical data for this study.

PET/CT examinations

Each participant fasted for at least 6 h, and no clinical or EEG

evidence of seizure onset was recorded for at least 2 h before 18F-

FDG administration. PET/CT images were acquired in the 10-

min static acquisition mode 50–70min after injecting 18F-FDG

intravenously at a dose of 0.08–0.10 mCi/kg body weight. Each

participant was required to rest in a dimly lit and quiet room and

was instructed to avoid reading with their eyes for approximately

30min. The scanning range covered the whole brain. PET data

were acquired in the 3D time-of-flight (TOF) mode in a one-bed

position, with the overlap of 23.4%, a slice thickness of 3.27mm, a

slice interval of 3.75mm, a pixel size of 3.64mm, a matrix size of

192 × 192, and a scan field-of-view of 70 cm. The PET data were
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reconstructed in terms of the point spread function (PSF) together

with TOF technology.

Image preprocessing, radiomics feature
extraction, and selection

For the 347 participants (234 individuals with temporal lobe

epilepsy and 113 controls) included in our investigation, PET

images underwent a series of preprocessing steps. Initially, Digital

Imaging and Communications in Medicine (DICOM) data were

converted to the Neuroimaging Informatics Technology Initiative

(NIfTI) format following the Brain Imaging Data Structure (BIDS)

guidelines, ensuring efficient management of neuroimaging

datasets. Subsequently, to enhance the reproducibility of

our analyses, PET images were coregistered to the Montreal

Neurological Institute (MNI) standard space using the Advanced

Normalization Tools (ANT) (version 0.3.2; https://github.com/

ANTsX/ANTsPy) module—a Python (3.7.13) library optimized

and validated for medical imaging applications. The ANTsPy

module implements the ANTs registration method, offering

both full and simplified interfaces for registering image pairs.

The registration process employed a symmetric normalization

transform, utilizing an affine, deformable transformation with

mutual information as the optimization metric, and refined it for

registrations with an additional affine step. After co-registration,

each participant’s PET image was reoriented to a standardized

182 × 218 × 182 voxel grid with 1.0mm cubic voxels. This grid

orientation ensured alignment of the subject’s anterior-posterior

axis parallel to the AC-PC line. By directly co-registering the

original raw image data to a standardized space in a single step, a

single interpolation of the image data was performed, minimizing

resolution degradation and maintaining consistency across all

scans. The PET images presented have undergone a smoothing

procedure after the initial processing. Each set of images has been

subjected to filtration utilizing a scanner-specific filter function,

which may include non-isotropic filters, to generate images with a

consistent isotropic resolution of 10mm FWHM. Consequently,

the lateral surgical temporal lobe regions were manually delineated

slice by slice, aligning with the anatomical structure specified in the

AAL atlas within the consistent MNI standard space, establishing

them as 3D regions of interest (ROI). After this process, the lateral

surgical temporal lobe regions were manually delineated slice by

slice, aligning with the anatomical structure specified in the AAL

atlas within the consistent MNI standard space, establishing them

as 3D regions of interest (ROIs). We finally reviewed all PET

images and the derived ROIs and found a perfect match. Each

ROI on PET images was used for extracting radiomics features

by an open-source package (PyRadiomics, version 3.0.1) (19).

Prior to feature extraction, the PET images underwent z-score

normalization, gray-level discretization with bin widths of 5 and

voxel size resampling to 2 × 2 × 2mm, utilizing PyRadiomics.

The ideal number of bins for image discretization is defined

in the order of 16–128 bins with a fixed bin width of 5. After

processing all radiomics features by wavelet and Laplacian of

Gaussian (LoG) filter methods, 1,132 features were extracted

from each image sequence (original: 100 features, wavelet: 688

features, LoG: 344 features) (20, 21). In short, the intensity of

glucose metabolic, shape, and textural features, or second-order

features were calculated from the first-order statistics, geometrical

statistics, the gray level co-occurrence matrix (GLCM), and gray

level run-length matrix (GLRLM). The definitions of the features

as well as the image pre-processing steps are explained in detail in

the IBSI documentation.

Since high-dimensional data suffer from noise and redundant

attributes that may weaken the performance of model training,

multivariate logistic regression with the least absolute shrinkage

and selection operator (LASSO) and Boruta algorithms with cross-

validation were applied to reduce the high dimensionality of

features and to select the radiomics features significantly associated

with TLE (22). To discern crucial features from less significant

ones, we initially utilized the Boruta feature selection algorithm

to identify pertinent attributes within the training dataset. It

is pertinent to highlight that the algorithm not only isolates

relevant features but also establishes a hierarchical order of their

significance. The Boruta algorithm leverages random forests to

estimate feature relevance. As one of the classic algorithms of

machine learning, random forest does classification or regression

by combining the voting results of multiple decision trees.

Furthermore, recognizing the remarkable feature selection prowess

of the LASSO, we conducted LASSO regression alongside a

comparative assessment, with LASSO operating on a regression

analysis technique integrating feature selection and regularization

concurrently, incorporating an L1 norm penalty within the

minimization of the residual sum of squares. As the lambda

parameter reaches a sufficient magnitude, certain coefficients can

be effectively shrunk to zero. In this study, the tuning parameter

λ (0.039) representing one standard error from the minimum

was identified through cross-validation. The common features in

the training set derived from the two methods were finally used

for model establishment (23). The detailed results in the training

set of the LASSO and Boruta algorithms are provided in the

Supplementary material.

Machine learning and model performance
evaluation

In classification tasks of detecting TLE, 11 different machine

learning algorithms were used in the training set: logistic regression

(LR), Naive Bayes (NB), linear discriminant analysis (LDA),

random forest (RF), Extra Trees Classifier (ET), Gradient Boosting

Classifier (GBC), Light Gradient Boosting Machine (LBM), K-

Nearest Neighbors (KNN), AdaBoost, Quadratic Discriminant

Analysis (QDA), and Decision tree (DT). During the model

training, the cross-entropy cost function was used to adapt weights

during the learning process by minimizing the loss; and the optimal

model hyperparameters were tuned by grid search algorithm

and evaluated using 10-fold cross-validation. In addition, to fix

the group imbalance in our dataset, the best way could be to

generate additional samples for minority classes, which means

that the model performance to correctly predict the minority

class label is getting better by using SMOTE-ENN to balance

our data (24). The SMOTE-ENN combination resampling method
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FIGURE 1

Schematic representation of the study’s design and procedural steps. (A) Data collection and preprocessing on 18F-FDG PET images were performed.

(B) PET radiomics features were extracted. (C) Machine learning models were established and compared.
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strategically integrates the advantages of the SMOTE technique

and the Edited Nearest Neighbor (ENN) algorithm. By utilizing

SMOTE to synthetically create new samples for mitigating data

imbalance, followed by ENN to eliminate instances with discrepant

class labels from their nearest neighbors, this method adeptly

addresses imbalanced data sets while filtering out noise. Empirical

evidence across diverse studies attests to its efficacy in augmenting

classification prediction accuracy, positioning it as a promising

solution for managing imbalanced class data in conjunction with

classification algorithms (25).

After model training, each model was independently evaluated

in the validation set to identify the TLE patients using area under

the curve (AUC), accuracy, recall, precision, F1-score, Kappa,

Matthews correlation coefficient (MCC), and Average precision

score (APC). Based on the performance of radiomics classification

model in the training set, the best model was tested in a validation

set. The feature selection and classificationmethods were computed

using Python 3. The threshold for statistical significance was set at

a p < 0.05. The overall process is shown in Figure 1.

Statistical analysis

For univariate analysis of data, the two-sided group t-test

or the Mann–Whitney U test was used for continuous variables

depending on the normality of the data, and the distributed

measures were expressed as mean ± SD or median (25th

percentile−75th percentile). A chi-squared test was performed for

categorical variables, expressed as frequencies (rates). In this study,

the statistical analysis was performed using software packages R

(version 3.5.1; R Foundation for Statistical Computing, Vienna,

Austria) and Python (version 3.7.13), and p-values of < 0.05 were

considered statistically significant.

Results

Participants characteristics

Research participants included 234 TLE patients and 113

controls. Of all enrolled participants,248 of them were included

in training the ML model, while the remaining 99 were included

for testing the ML models. The mean age of the patient cohort

was 25.50 years, with a mean onset time of 13.65 years and a

mean duration time of 11.85 years. The clinical characteristics of

the participants in the study cohort are summarized in Table 1.

There were no differences in the clinical characteristics between the

training and the test sets.

Feature extraction and selection

A total of 1,132 radiomics features were extracted from each

ROI of PET imaging, including 100 features from original data,

344 features filtered by the Laplacian of Gaussian method, and 688

features by the wavelet method. The LASSO regression and Boruta

algorithms were used for feature selection, and the algorithms

reduced the number of features to 14 (Figures 2A, B) and 52

TABLE 1 Baseline characteristics of the datasets.

Clinical
characteristics

TLE patients
(n = 234)

Healthy controls
(n = 113)

Age (years) 25.50± 8.89 27.59± 6.94

Age of onset (years,

mean± SD)

13.65± 9.73 -

Duration of epilepsy

(years, mean± SD)

11.85± 7.71 -

Sex (N, %)

Female 93 (39.7) 65 (57.5)

Male 141 (60.3) 48 (42.5)

Laterality (N, %)

Right 99 (42.3) -

Left 135 (57.7) -

SD, standard deviation.

(Figure 2C), respectively, resulting in seven common features to

generate the machine learning model (Figure 2D).

TLE prediction model training and
validation

A cross-validation strategy was used to evaluate the

performance of the ML models in the training set, mainly by

the average area under the ROC curve (AUC). In total, 11

ML models, including LR, NB, LDA, RF, ET, GBC, LBM, KN,

AdaBoost, QDA, and DT, were evaluated with cross-validated AUC

of 0.984, 0.977, 0.977, 0.977, 0.977, 0.973, 0.973, 0.969, 0.947, 0.905,

0.878, respectively. The LR model obtaining the highest AUC for

distinguishing the TLE patients and healthy controls was further

validated. The accuracy, recall, precision, F1-score, Kappa, MCC,

and APC of the LR model in the training set were 0.948, 0.941,

0.985, 0.959, 0.889, 0.899, and 0.994, respectively. The results of

some other subject-level evaluation indexes of these models are

shown in Table 2.

PET-radiomics model tuning and decision
tree model validation

To further improve the predictability of the LR model, a

tuned LR model was chosen by Akaike Information Criterion

(AIC) in a stepwise algorithm. The results of seven radiomics

features of the training set in a stepwise algorithm are shown in

Table 3, then original_gldm_DependenceEntrop (OR = 7.14),

log.sigma.5.0.mm.3D_firstorder_Energy (OR = 85.98), and

wavelet.LHL_glrlm_GrayLevelNonUniformity (OR = 8.15) were

ultimately used to generate the tuned PET-radiomics model.

Figure 4 shows the performance of the tuned LR models in

the training and the test sets, with the AUCs of 0.981 and

0.957, respectively.

The results of seven radiomics features of the test set in the

decision tree model are shown in Supplementary Figure S2.
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FIGURE 2

Selection of PET radiomics features using LASSO regression and Boruta algorithm. (A) LASSO regression analysis (each curve represents each PET

radiomics features in the construction of the classification model). (B) The coe�cients of 14 features selected by LASSO regression. (C) A plot

method for Boruta objects, showing the attribute importance over run. Green lines correspond to confirmed attributes, red indicates rejected

attributes, and blue indicates the importance of minimum, average, and maximum shaded attributes. (D) Seven shared target radiomics features

among the two LASSO (52) and Boruta (14) algorithms.

TABLE 2 Performance of 11 machine learning algorithms in the training set.

Model Accuracy AUC Recall Prec. F1 Kappa MCC APC

Logistic regression 0.948 0.984 0.941 0.985 0.959 0.889 0.899 0.994

Naive Bayes 0.913 0.977 0.898 0.977 0.931 0.81 0.826 0.991

Linear discriminant analysis 0.936 0.977 0.924 0.984 0.949 0.862 0.873 0.992

Random forest classifier 0.918 0.977 0.924 0.962 0.938 0.816 0.829 0.992

Extra trees classifier 0.936 0.977 0.924 0.984 0.949 0.862 0.873 0.993

Gradient boosting classifier 0.878 0.973 0.907 0.922 0.909 0.716 0.732 0.99

Light gradient boosting machine 0.889 0.973 0.924 0.922 0.919 0.737 0.749 0.99

K neighbors classifier 0.936 0.969 0.924 0.985 0.949 0.864 0.877 0.985

Ada boost classifier 0.866 0.947 0.899 0.915 0.901 0.684 0.704 0.981

Quadratic discriminant analysis 0.803 0.905 0.832 0.898 0.846 0.539 0.566 0.947

Decision tree classifier 0.889 0.878 0.907 0.938 0.918 0.746 0.761 0.913

AUC, Area under ROC curve; Prec., Precision; MCC, Matthews correlation coefficient; APC, Average precision score.
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TABLE 3 The OR value of seven radiomics features of the LR model.

Features Univariate analysis Multivariate analysis

OR (95 % CI) p-value OR (95 % CI) p-value

original_firstorder_Mean 0.01 (0.00–0.04) <0.001 -

original_gldm_DependenceEntropy 27.47 (11.35–66.47) <0.001 7.14 (2.22–22.95) 0.001

log.sigma.5.0.mm.3D_firstorder_Energy 1894.65 (214.64–16723.87) <0.001 85.98 (5.54–1334.09) 0.002

log.sigma.5.0.mm.3D_firstorder_Mean 39.96 (15.40–103.70) <0.001 -

log.sigma.5.0.mm.3D_firstorder_TotalEnergy 1894.65 (214.64–16723.87) <0.001 -

wavelet.LHL_glrlm_GrayLevelNonUniformity 37.65 (14.88–95.27) <0.001 8.15 (2.78–23.91) <0.001

wavelet.LHH_gldm_GrayLevelNonUniformity 5.84 (3.58–9.50) <0.001 -

OR, Odds ratio; CI, Confidence interval.

Log.sigma.5.0.mm.3D_firstorder_Mean was the root,

while wavelet.LHL_glrlm_GrayLevelNonUniformity and

original_gldm_DependenceEntropy were the nodes. The accuracy

of the decision tree model was 0.889 with the AUC of 0.878.

This PET radiomics calculation was transformed into the

“TLE Prediction App from JNU” online calculator (https://

wane199.shinyapps.io/TLE_Classification/), as shown in Figure 3.

The classification performance of the LR model in the training and

the test sets is shown in Figure 4. The calibration curves indicated

that this diagnostic nomogram exhibited good calibration.

Discussion

In our study, we successfully extracted 1,132 radiomics features

based on PET images and selected seven features using both Boruta

and LASSO regression to generate ML models for identifying the

candidate patients of TLE. The performance of 11 algorithms of

model construction was compared, and the LR model was chosen

to be the optimal method with the highest AUC. To optimize the LR

model, Akaike Information Criterion (AIC) in a stepwise algorithm

was used to further select the best three radiomics features,

namely original_gldm_DependenceEntropy, log.sigma.5.0.mm.3D

_firstorder_Energy, and wavelet.LHL_glrlm_GrayLevelNonUnifor

mity. Extracted from the original image, original_gldm_Dependen

ceEntropy is a feature based on a Gray Level Dependence Matrix

(GLDM), which quantifies gray level dependencies in an image.

DependenceEntropy is a measure of the randomness/variability in

the gray level dependency defined as the number of connected

voxels within the distance that is dependent on the center voxel.

log.sigma.5.0.mm.3D_firstorder_Energy extracted from the image

processed by Laplacian of Gaussian (log) filter with 5.0mm sigma

is a measure of the magnitude of voxel values in this image.

After the PET image had been managed with a wavelet filter

combined with three dimensions, such as low, high, and low,

wavelet.LHL_glrlm_GrayLevelNonUniformity could be extracted

and represent the similarity of gray-level intensity values in the

image, where a lower GrayLevelNonUniformity value correlates

with a greater similarity in intensity values. Eventually, a tuned

LR model based on three optimal PET radiomics features showed

promising results in independent training and test cohorts, with

an AUC of 0.981 and 0.957, respectively, for distinguishing TLE

patients. Our study shows that PET-based radiomics can be useful

biomarkers for identifying TLE patients.

Previous studies have shown that 18F-FDG PET is an available

non-invasive method to complementally assist the diagnosis

and prognosis prediction of epilepsy; it can also help with

the intracranial electrode placement and potentially decrease

the amounts of invasive EEG tests that need to be conducted

(24–26). However, these studies were also focused on single

conventional parameters. In such conditions, surgery is the most

vital treatment for medication-refractory temporal lobe epilepsy,

and 18F-FDG PET has important added value for the surgery

decision-making in TLE because of the increased predictive values

of MRI and video-EEG monitoring in combination with 18F-

FDG PET.18F-FDG PET seemed especially valuable when MRI

findings were negative or not concordant with EEG findings

(20, 27–29). A meta-analysis compared the performance of 18F-

FDG PET imaging with the traditional visual method for the

localization of the epileptogenic zone in patients with epilepsy.

Considering EEG or surgical outcomes as the gold standard, 18F-

FDG PET demonstrated an overall sensitivity of 0.66 (95% CI:

0.58–0.73) and a specificity of 0.71 (95% CI: 0.63–0.78), with

an AUC of 0.71 (30). Quantification of 18F-FDG PET might be

helpful to improve the performance for epilepsy diagnosis and the

localization of the epileptogenic zone. Wang et al. (31) compared

the concordance rates with the gold standard evaluated by the

visual assessment (40%), statistical parametric mapping (SPM,

83%), and three-dimensional stereotactic surface projection (3D-

SSP,71%). The results showed that both SPM and 3D-SSP can

improve the detection rate of the epileptic focus compared to

the visual assessment, which demonstrated the great advantage

of quantification.

Radiomics is a newly developing medical image analysis

method with high-throughput extraction of quantitative features

and automated quantification of radiographic phenotypes

(32). Although the pathophysiology of epilepsy remains poorly

understood, dysfunction of cerebral energy metabolism, neuronal

loss, and reduction of synaptic activity may be involved, and

PET is a direct reflection of cerebral energy metabolism and has

been reported to partially reflect the reduction of synaptic activity

(33). Radiomics features, especially high-order features, capture

the spatial variation in PET signal intensity that may reflect the

underlying pathophysiology, which may explain our observation.
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FIGURE 3

The corresponding online website version (https://wane199.shinyapps.io/TLE_DynNom/), showing the details of the LR model and the quick

response code pasted on the bottom right corner of the screenshot.

FIGURE 4

Performance of the LR model in the training and test sets. (A) Calibration curve of the training set, showing the AUC and the Brier score of the LR

model in the training set. (B) Bar plots by risk groups to show calibration in the training set. (C) Calibration curve of the test set, showing the AUC and

the Brier score of the LR model in the test set. (D) Bar plots by risk groups to show calibration in the test set.
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For repeatability in the present study, we combined the Boruta

algorithm and LASSO regression to select radiomics features,

resulting in the creation of a more generalized and stable classifier

that is robust against the idiosyncrasies of the training data. In

addition, a possible extension of this study can be the application

of AAL atlas-derived segmentation procedure that allows for

automated and accurate determination of ROIs, which would be

especially useful for the segmentation of brain regions. Our study

shows that using PET radiomics-based ML models can identify

TLE patients because of high AUCs ranging from 0.878 to 0.984

in 11 various traditional machine learning algorithms (34). The

logistic regression model, which is an efficient and powerful way to

assess independent variable contributions to a binary outcome, was

the final choice to distinguish TLE patients. Logistic regression can

iteratively calculate the strongest linear combination of variables

with the greatest probability of detecting the observed outcome

(35). Identifying whether the participants are TLE patients or not

is the objective of our study, which is a typical binary classification.

This difference may explain why the LR model is the prime

choice for the identification of TLE patients. The decision tree

modeling is a non-parametric supervised learning algorithm,

which is utilized for the classification task and is easy to explain

visually. When analyzing our data using decision tree modeling,

log.sigma.5.0.mm.3D_firstorder_Mean was the root node for

classification, while wavelet.LHL_glrlm_GrayLevelNonUniformity

and original_gldm_DependenceEntropy were selected by the

LR model as internal nodes. These important PET radiomics

features were subjected to bi-validation using various classical

ML algorithms (Supplementary Figures S2, S3). Compared with

decision tree modeling, logistic regression had a higher AUC

value, which was more suitable for distinguishing TLE patients. In

addition, an online web application to aid the diagnosis based on

FDG PET data was developed according to our LRmodeling results

(https://wane199.shinyapps.io/TLE_Classification/). It could be

used at different epilepsy centers, which can further validate the

performance of our algorithm.

Our study has several limitations. First, the present

investigation constitutes a retrospective analysis conducted solely

within a singular healthcare facility, featuring a comparatively

modest cohort size. Further investigations encompassing a broader

dataset and external verification are essential to facilitate an

enhanced evaluation. Second, we only extracted the radiomics

feature in the temporal lobe region, so other important regions

such as the hippocampus and the para-hippocampus should be

investigated in future studies. Third, PET image feature selection

still needs further optimization using deep learning techniques to

ensure robustness and reproducibility. Future work should analyze

the effect of PET radiomics-based ML models to characterize TLE

from other centers, by extension, other epilepsy types. Fourth, our

study focused on the classification performance of PET imaging

independently. Therefore, we identified the TLE patients based

only on single PET imaging, while clinical characteristics and

other modal information of each patient was not involved. Further

studies including more observations should be performed within

multimodal data fusion approach.

Conclusion

The findings from the current study provide proof of the

potential performance of PET imaging in TLE diagnosis. In this

study, we provided a convenient LR machine learning model based

on PET radiomics features for TLE classification, which might be a

promising technology for diagnosing TLE patients.
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