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Objective: To investigate whether changes occur in the dynamic functional

connectivity (dFC) of motor cerebellum with cerebral cortex in juvenile

myoclonic epilepsy (JME).

Methods: We adopted resting-state electroencephalography—functional

magnetic resonance imaging (EEG-fMRI) and a sliding-window approach to

explore the dFC of motor cerebellum with cortex in 36 JME patients compared

with 30 and age-matched health controls (HCs). The motor cerebellum was

divided into five lobules (I–V, VI, VIIb, VIIIa, and VIIIb). Additionally, correlation

analyses were conducted between the variability of dFC and clinical variables in

the Juvenile Myoclonic Epilepsy (JME) group, such as disease duration, age at

disease onset, and frequency score of myoclonic seizures.

Results: Compared toHCs, the JMEgroup presented increased dFCbetween the

motor cerebellum with SMN and DMN. Specifically, connectivity between lobule

VIIb and left precentral gyrus and right inferior parietal lobule (IPL); between

lobule VIIIa and right inferior frontal gyrus (IFG) and left IPL; and between lobule

VIIIb and left middle frontal gyrus (MFG), bilateral superior parietal gyrus (SPG),

and left precuneus. In addition, within the JME group, the strength of dFC

between lobule VIIIb and left precuneus was negatively (r = −0.424, p = 0.025,

Bonferroni correction) related with the frequency score of myoclonic seizures.

Conclusion: In patientswith JME, there is a functional dysregulation between the

motor cerebellum with DMN and SMN, and the variability of dynamic functional

connectivity may be closely associated with the occurrence of motor symptoms

in JME.

KEYWORDS

juvenile myoclonic epilepsy (JME), motor cerebellum, dynamic functional connectivity

(dFC), EEG-fMRI, default mode network (DMN), sensorimotor network (SMN)

1 Introduction

Juvenile myoclonic epilepsy (JME) accounts for ∼9.3% of all epilepsies (1, 2) and is

the most common idiopathic generalized epilepsy (IGE) syndrome onset in adolescence

and adulthood. Myoclonic seizures are mandatory for diagnosis (3) and may be unilateral

or bilateral, frequently involving the upper extremities (4), which occur mostly within

the 1st h after awakening and could be facilitated by sleep deprivation (3). The
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electroencephalograph (EEG) shows 3–5.5-Hz generalized spike-

wave and polyspike-wave (5). Generalized tonic–clonic seizures

occur in >90% of individuals, and absence seizures occur in

one third of cases (6, 7). Multiple types of motor symptom are

characteristic of JME, but the pathophysiology of motor symptom

seizures in JME remains unknown.

The cerebellum has been found to be associated with the

production of several types of myoclonus (8), and its pathological

involvement has been demonstrated in benign adult familial

myoclonic epilepsy (BAFME) (9), juvenile absence epilepsy

(10), non-convulsive partial status epilepsy (11), and JME (12–

14). Additionally, it has been hypothesized that the increased

inhibitory effect of cerebellum on the basal ganglia-related

thalamocortical (BTC) pathway might potentially contribute to the

motor symptoms in patients during seizures (15). The functional

anatomical topography of the cerebellum indicates that the

anterior lobe represents motor function, the vermis is involved

in emotion, and the posterior lobe is responsible for complex

cognitive functions (16, 17). These functional differences support

the existence of a “motor cerebellum,” including lobules V, VI,

VIIb, and VIII, projecting to the motor area (precentral gyrus and

postcentral gyrus) (18). In temporal lobe epilepsy patients, bilateral

cortical thinning was observed in the precentral and postcentral

motor regions connected with the anterior and posterior lobe

motor areas (lobules VIII) (19); in patients with genetic generalized

epilepsy, an asymmetric pattern of reduced cerebellar gray matter

volume (GMV) has been found, with greater loss of gray matter in

the left “motor” posterior inferior cerebellar regions (VIIIA, VIIIB,

and IX) (20). Therefore, in this study, based on previous research

(18, 21, 22), we selected lobules I–V, VI, VIIb, VIIIa, and VIIIb as

seeds for the motor cerebellum regions of interest (ROI) to explore

the relationship between changes in motor cerebellar functional

connectivity and the occurrence of motor symptoms in JME.

Furthermore, the functional dysfunction of the frontal lobe,

thalamus, and cerebellum with the sensorimotor network (SMN)

may be related to the motor symptoms of seizures (23). The activity

of high-order association networks such as the default mode

network (DMN) plays a crucial role in the generation and spread of

generalized epileptic activity (24). Changes in connectivity between

DMN regions and the cerebellum may be related to long-term

and repetitive functional suspension of the basic brain state during

seizures (25). Therefore, in this study, we hypothesize that there

is a functional disorder between the motor cerebellum and DMN

(26) and SMN (27) in JME patients, which is closely related to the

occurrence of motor symptoms in JME patients.

Resting-state functional connectivity (rs-FC) is obtained by

visualizing the interactions between blood oxygenation level-

dependent (BOLD) signals in different regions of a person’s

brain during rest (28), while the dFC analysis can be used to

capture the variability of the spatiotemporal structure of brain

activity and estimate changes in inter-regional synchrony (29).

The sliding-window method is widely used in investigating the

dFC of various human neurological and psychiatric diseases (30).

Therefore, we employed resting-state EEG-fMRI and utilized dFC

analysis with a sliding window approach to explore the alterations

in dynamic functional connectivity within the motor cerebellum-

SMN-DMN and its association with the onset of motor symptoms

in JME. Furthermore, we examined the intergroup differences in

dFC variability in JME patients and its relationship with clinical

variables, such as disease duration, age at disease onset, and

frequency score of myoclonic seizures.

2 Materials and methods

2.1 Participants

The patients with JME were consecutively enrolled from the

epilepsy center of the West China Hospital of Sichuan University.

The inclusion criteria were as follows: (1) The diagnosis of JME was

carried out by two experienced neurologists in accordance with the

criteria defined by the International League Against Epilepsy (5)

and (2) JME patients had normal development with normal brain

MRI, had interictal bilaterally synchronous 4–6Hz generalized

polyspike-wave discharges (GSWDs) with normal background

on EEG and had no self-reported cognitive impairment. The

exclusion criteria included: (1) MRI results confirming structural

pathological changes in brain; (2) Evidence of atypical epilepsy

syndrome or secondary epilepsy; and (3) Other neurological,

psychiatric, or metabolic illnesses and drug abuse. Ultimately, 36

patients with JME and 30 well-matched HCs were recruited.

The baseline information of participants was recorded

including gender, age at disease onset, duration of disease, years of

education, frequency score of myoclonic jerks in the last 2 years

and the use of antiseizure medications (ASMs). The seizure diaries

were used to assess the frequency score of myoclonic jerks in the

last 2 years according to the method of previous reports with slight

modification (31). In addition, the patients visited our outpatient

clinic every 3–6months andwere carefully assessed for the presence

of seizures and the use of ASMs. This study was approved by the

Institutional Ethics Review Board of the Sichuan University, and all

participants and families were given the written informed consent.

2.2 EEG and fMRI data acquisition

MRI data were acquired using a 3.0 T magnetic resonance

system (Siemens Skyra, Erlangen, Germany). Foam padding and

earplugs were used to minimize head movement and scanner

noise, respectively. Participants were instructed to keep their eyes

closed while remaining awake, and it was confirmed that none

had fallen asleep. Functional images were acquired using an echo-

planar imaging (EPI) sequence with gradient recalled echo and T2∗

weighted: 205 volumes; 30 slices; 5mm thickness; echo time (TE)

= 30ms; repetition time (TR)= 2,000ms; field of view (FOV)= 24

× 24 cm2; matrix size= 64 × 64; in-plane resolution = 2 × 2mm,

and flip angle= 90◦. The structural T1-weighted brain images were

gained with a three-dimensional-spoiled gradient recalled sequence

during the same session: 176 axial slices (thickness: 1mm, no gap,

TE= 2.26ms; TR= 1,900ms; FOV= 256× 256 mm2; flip angle=

9◦; matrix = 320 × 320; slice thickness = 1mm). All T1-weighted

structural and functional images were visually inspected to ensure

that there were no visible artifacts covering the cerebellum.

During the fMRI scans, simultaneous electroencephalography

was recorded synchronously using an EEG device (EBNeuro

Mizar 40, Italy). The EEG dynamic range was set to ±65.5mV,
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and MR artifacts were filtered online using BE-MRI Toolbox

software (32). Interictal GSWDs were identified by two experienced

epileptologists during the patient scanning process. If interictal

GSWDs or seizures occurred during the EEG-fMRI scanning

session, the whole session was discarded to avoid the effects of

interictal epileptic discharges or ictal events. If either of these two

situations occurred, another session will be further performed for

the same patient. In total, eight scanning sessions with interictal

GSWDs were discarded, and no seizures were reported in all scans.

2.3 Preprocessing of MRI data

DPABI V5.0 (http://rfmri.org/dpabi) and SPM8 software

package (http://www.fil.ion.ucl.ac.uk/spm) were used to preprocess

the functional and structural images. The data volume of patients

was consistent. First, the first 10 volumes of fMRI data were

discarded, followed by the following steps on the remaining 205

volumes: slice timing correction, realignment of all functional

volumes, and then co-registration between the functional volumes

and the corresponding T1 volumes. Spatial normalization to

Montreal Neurological Institute (MNI) space was performed using

Diffeomorphic Anatomical Registration Through Exponentiated

Lie algebra (DARTEL) toolbox, with re-sampling to each voxel: 3

× 3 × 3 mm3 and used a 4mm FWMH kernel over the processed

time series to smooth spatially and filter temporally (0.01–

0.1Hz). Besides, we used the Friston’s 24-parameter mode (33)

to minimize head motion confounds. Multiple linear regressions

were used to remove confounding covariates, including signals

from cerebrospinal fluid and white matter that were regressed

out. Additionally, linear trends were regressed to account for drift

in BOLD signal. Considering the potential influence of whole-

brain signals on functional networks, we did not regress them

out in this processing pipeline (34). Participants with maximum

displacements > 2mm or rotations > 2◦ were excluded. We

recorded the head motion of all participants based on the average

framewise displacement (FD; Jenkinson value), and participants

were excluded from this study if the average FD exceeded 0.2mm

(35). Due to these standards, six patients were excluded. The mean

FD of the included subjects did not differ between the JME group

and HC group.

2.4 Variability analysis of dFC

Based on prior parcellation of the motor cerebellum (lobule

I–V, VI, VIIb, VIIIa, and VIIIb) (18, 21, 22), we used predefined

bilateral six pairs of 6-mm radius spherical regions as regions of

interest (ROIs) for seed-based dFC analysis in all participants.

Visual examination was carried out to ensure there was no overlap

between each pair of ROIs. A visual inspection was conducted

to ensure no overlap between each pair of ROIs. Subsequently,

a Hamming sliding window approach was performed based on

DPABI, and since the minimum window length should not be

<1/f min (defined as the minimum frequency of the time series;

1/0.01 s = 100 s), we chose a window size of 50 TRs (100 s) with

a step of 1 TR (2 s) for dFC analysis, which balanced the risk of

spurious fluctuations and impediments to dynamic descriptions

of temporal variability (36). As a result, 146 sliding-window dFC

states were generated. Temporal correlation matrices were created

by correlating each truncated time series of the motor cerebellar

parcellation with all other voxels within each sliding window.

Subsequently, Fisher’s r-to-z transformation was performed on

each voxel of the 146 sliding window correlation maps to improve

the normality of the correlation distribution. And then, the dFC

variability was calculated by calculating the standard deviation of

the z-value at each voxel of the 146 sliding-window z-value maps.

Afterwards, further statistical analysis was conducted using dFC

maps with z-standardization.

2.5 Statistical analysis

All analyses were performed using SPSS Software version

21.0. A P-value of <0.05 was considered statistically significant.

Normality tests and homogeneity of variance were conducted, and

ultimately independent samples two-tailed t-tests were used to

compare demographic and clinical data between the JME group

and HC group. A one-sample t-test was performed on within-

group dFC variability [p < 0.001, Gaussian random field (GRF)

correction]. To identify significant differences in dFC variability

between JME and HC within the sensorimotor network (SMN)

and default mode network (DMN) with the motor cerebellum,

a linear model was used with age, gender, and mean FD as

nuisance covariates. The standard deviation of z-values for each

voxel served as the dependent variable, with the participant group

as the independent variable. The GRF correction was performed

with two-tailed voxel p< 0.01 and cluster-level p< 0.05 (minimum

z > 2.3; cluster significant: p < 0.05, corrected). Using two-

sample t-test to compare the group differences of head motion

through the mean FD. If any seeds of the motor cerebellum showed

significant between-group differences in dFC variability, further

partial correlation analyses would be conducted to detect potential

relationships between dFC variability values and clinical data such

as disease duration, age at seizure onset, and frequency scores of

myoclonic seizures in JME.

2.6 Verification analyses

We conducted validation experiments using two additional

window length settings: the first window length was set to 70 TRs

(140 s), and the second window length was set to 30 TRs (60 s), and

both with a displacement step of 1 TR (2 s).

3 Results

3.1 Demographic characteristics

A total of 36 JME patients and 30 HCs were recruited. Due

to excessive head motion, six patients were excluded, resulting

in a final inclusion of 30 patients and 30 healthy individuals in

the study (Figure 1). Among the JME patients, four individuals

had not received any medication. Table 1 documented the baseline

characteristics of all participants, with no significant differences in

age, gender, or mean FD (JME group: 0.105 ± 0.034, HC group:

Frontiers inNeurology 03 frontiersin.org

https://doi.org/10.3389/fneur.2024.1373125
http://rfmri.org/dpabi
http://www.fil.ion.ucl.ac.uk/spm
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Yang et al. 10.3389/fneur.2024.1373125

FIGURE 1

Patient flow. This flowchart illustrates the reasons for patient exclusion and the general research methodology process.

0.092 ± 0.023, P-value = 0.084 > 0.05) between the JME and

HC groups.

3.2 Dynamic functional connectivity
variability results of motor cerebellar seeds

Significant differences in dFC variability for each motor

cerebellar seed between the JME group and HCs were obtained

through a general linear model with age, gender, and mean FD as

covariates (Table 2 and Figure 2, zmin > 2.3; cluster significance:

p < 0.05, GRF corrected). As a result, in comparison to HCs, the

JME group exhibited increased dFC between the motor cerebellum

with SMN andDMN. Specifically, connectivity between lobule VIIb

and left precentral gyrus and right inferior parietal lobule (IPL)

increased; dFC between lobule VIIIa and these two structures right

inferior frontal gyrus (IFG) and left IPL increased; and connectivity

between lobule VIIIb and four structures including left middle

frontal gyrus (MFG), bilateral superior parietal gyrus (SPG), and

left precuneus increased.

The numbers at the top of the image represented the MNI z-

coordinates.

3.3 The relationship between dFC of the
motor cerebellum and clinical variables in
JME group

Within the JME group, the strength of dFC between lobule

VIIIb and left precuneus was negatively (Figure 3, r = −0.424,

p = 0.025, Bonferroni correction) related with the frequency

score of myoclonic seizures. No significant relationships were

identified between the other significantly different dFC variability

of motor cerebellar seeds and any clinical characteristics including

the age at disease onset, disease duration, or years of education in

JME patients.

TABLE 1 Demographic and clinical characteristics of the JME and HC

group.

JME (n = 30) HC (n = 30) p-value

Gender
(male/female)

13/17 13/17 -

Handedness
(right/left)

30/0 30/0 -

Age of onset± SD 14.84± 3.23 - -

Age± SD 19.57± 3.98 19.77± 3.76 0.842 a

Duration± SD 4.70± 4.51 - -

EEG GSWDs Normal -

Frequency score of
myoclonic seizures

3.33± 1.67 - -

Medication

Drug naive 4 -

VPA 8 -

LTG 2 -

LEV 14 -

TPM 1 -

VPA+LEV 1 -

aIndependent sample, two tailed t-test.

JME, Juvenile myoclonic epilepsy; GSWDs, Generalized spike-wave discharges; VPA,

Valproate; LTG, Lamotrigine; LEV, Levetiracetam; TPM, Topiramate; SD, standard deviation.

Note: This study used the same subjects as our previous study on the thalamic-cortical circuit

in JME patients, so the clinical data characteristics are the same (37).

3.4 Verification results

We compared the dFC variability of JME patients with 70 TRs

and 30 TRs sliding window lengths, as well as the group differences

in dFC between JME and HCs.

In validation experiments, results from two different window

lengths slightly deviated from our main findings, yet the variability
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TABLE 2 Dynamic FC variability di�erences between JME patients and HC (minimum z > 2.3; voxel level: p < 0.01, cluster significance: p < 0.05, GRF

corrected).

Seeds Significant regions BA Voxels MNI T Comparisons P

x y Z

VIIb L PCG 44 20 −45 15 39 4.103 Patients>HCs 0.00014

R IPL 39 29 33 −75 45 4.636 Patients> HCs 0.00002

VIIIa R IFG 44 18 54 12 27 3.905 Patients>HCs 0.00025

L IPL 7 29 −24 −69 54 3.684 Patients>HCs 0.00053

VIIIb L Precuneus 7 21 −3 −72 36 3.775 Patients>HCs 0.00039

L MFG 6 25 −39 12 60 4.320 Patients> HCs 0.00006

L SPG 7 21 -−24 −69 54 3.881 Patients>HCs 0.00028

R SPG 7 31 18 −66 54 4.399 Patients>HCs 0.00005

T, t score of the voxel with peak intensity; JME, Juvenile myoclonic epilepsy; dFC, dynamic functional connectivity; BA, Brodmann Area; MNI, Montreal Neurological coordinate; PCG,

precentral gyrus; IPL, inferior parietal lobule; MFG, middle frontal gyrus; IFG, inferior frontal gyrus; SPG, superior parietal gyrus; L (R), left (right) hemisphere.

FIGURE 2

Variability of dFC in motor cerebellar seeds exhibiting between-group di�erences. T, t score of the voxel with peak intensity. The color bar on the

right indicated the strength of dFC variability changes, with blue representing decreased dFC variability in JME patients compared to HCs group, and

yellow indicating increased dFC variability in JME patients than in HCs.

of dFC predominantly manifested between the motor cerebellum

and SMN and DMN (detailed in Supplementary Figures 1, 2,

Supplementary Tables 1, 2).

4 Discussion

The present study firstly investigated the dFC of the motor

cerebellum in patients with JME. The major findings were as

follows. First, patients with JME showed increased dFC between

the motor cerebellum with SMN and DMN. Besides, the strength

of dFC between lobule VIIIb and left precuneus was negatively

related with the frequency score of myoclonic seizures. These

results suggest that the motor cerebellum has characteristic dFC

alterations in JME, and these dFC alterations may provide the

first evidence for the dynamic and wide involvement of the motor

cerebellum in the seizure of motor symptoms in JME.

The cerebellum is not only a gateway for neural regulation by

the cerebrum (38), but also stimulation signals originating from

the cerebellum could alter the functional connections of distant
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FIGURE 3

Significant correlations between dFC of motor cerebellum and clinical variables in JME group. The strength of dFC between lobule VIIIb and left

precuneus was negatively (r = −0.424, p = 0.025, Bonferroni correction) related with the frequency score of myoclonic seizures in JME.

cerebral cortices (39, 40). Different cerebellar regions have distinct

functions, with the anterior cerebellum involved in feedforward

motor control, while the posterior half could transform visual

feedback for precise motor adjustments (41). Based on functional

distinctions or preferential connectivity, the cerebellum could be

further divided into a “motor” region, which includes lobules V, VI,

VIIb, andVIII, and a “cognitive” region that comprises Crus I and II

within lobule VIIa (18, 42, 43). Therefore, it could be demonstrated

that using dFC analysis of the five seeds of the motor cerebellum

(lobules I–V, VI, VIIb, VIIa, and VIIIb) can better understand the

role of the motor cerebellum in the onset of motor symptoms

in JME.

Motor symptom seizures such as myoclonic seizures are

characteristic seizure types of JME. Researchers have demonstrated

that the cerebellum receives extensive information widely from the

cerebral cortex (44), and projects it to the primary motor cortex

through the thalamus to regulate movement (45). A proportion

of epileptic seizures may be directly triggered by the cerebellum

(46), and the most common symptom of seizures caused by lesions

located in the cerebellum is myoclonic seizures (8). Additionally,

increased connectivity between the cerebellum and the precentral

gyrus (47, 48) (regulating movement) as well as the insula (49) and

amygdala (50) (regulating emotions) might bypass the executive

control network (ECN), which could help explain the involuntary

movements and motor manifestations during epileptic seizures

(44, 51). The inferior parietal lobule (IPL) plays an important role

in the continuous movement of skilled actions and the associated

control processes (52), whereas during parietal lobe seizures, there

is an increase in FC between the premotor cortex and the superior

parietal lobule (SPG) (53). In our study, JME patients showed

an increased connectivity between the motor cerebellum and the

cortex involved in SMN such as IPL and precentral gyrus. SMN, as a

sensor of the brain, is responsible for perceiving physical inputs and

initiating physical reactions (54). Therefore, these results indicate

that the alterations of the dFC between the motor cerebellar with

SMNmay be associated with motor symptoms in JME patients.

Prolonged recurrent dischargesmay impair the overall function

of DMN (24), and dysfunction of DMNmay indicate a disturbance

of fundamental brain functions (55), which has been validated in

neurological disorders such as schizophrenia (56) and Parkinson’s

disease (57). Studies have found that functional connectivity

within the DMN is abnormal in IGE patients, irrespective of

the presence or absence of GSWDs (58). The cerebellar output

to the cerebral cortex is predominantly inhibitory (59), and an

increased excitatory cerebellar outflow to the cerebral cortex

may attenuate seizure activity (60). Previous studies have found

that in IGE patients, the thalamus and cerebellum can weaken

the interaction between DMN and SMN (61). The reduction in

cerebellar inhibitory function has been identified as a cause of

somatosensory enhancement, which could be a reason for motor

abnormalities in epilepsy (62). In our study, we found that the

increased functional connectivity strength between the motor

cerebellum (lobule VIIIb) and DMN (precuneus) was negatively

correlated with the fraction of myoclonic seizure frequency in the

JME patient group. According to this, we propose a reasonable

speculation that the motor cerebellum impacts various targets by

Frontiers inNeurology 06 frontiersin.org

https://doi.org/10.3389/fneur.2024.1373125
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Yang et al. 10.3389/fneur.2024.1373125

multiply pathway which may contribute to the motor symptoms in

JME, or which are inferred to imply a subdued unrestrictive effect

of the motor cerebellum on the cerebral cortex in JME and could be

the secondary compensation mechanism. In summary, our results

further support and supplement the changes in the connectivity of

the motor cerebellum with DMN and SMN, and are involved in the

abnormal processing of sensory-motor information in JME.

Cerebellum has been considered involved in high-

order cognitive network. Previous studies showed that the

cerebellum exhibits intrinsic connectivity with the DMN in

healthy participants (63). The precuneus is the core node

of DMN (64), and its prominent functions are emotional

processing (65) and interpersonal communication (66).

Increased functional connectivity in the cerebellar-thalamo-

cortical (CTC) pathway with the precuneus has been found

in IGE patients (15), consistent with our study, suggesting

aberrant interactions between the motor cerebellum and

the default mode network (DMN), which may contribute to

cognitive dysfunction in JME patients, yet further exploration is

still required.

5 Limitations

Our study has limitations which are mentioned below. First,

the sample size is relatively modest in our group; the findings of

this work should be replicated and validated with a larger sample.

Secondly, the effect of medication response on dFC variability

was not explored in our study, and this work should include

validation with more JME patients who have not used antiseizure

medications (ASMs). Thirdly, the direct relationship between dFC

and cognitive dysfunction could not be assessed; further, we

will quantify cognitive dysfunction in patients using cognitive

function scales and specialized cognitive assessment methods.

Educational information might influence cognitive function, yet

the education status of the subjects was not documented in this

study, thus precluding the avoidance of potential impacts of this

factor on the results. In future investigations delving into the

relationship between motor cerebellum and cognitive function in

JME patients, we will incorporate the lessons learned from this

experience. Additionally, it is imperative that we acknowledge

the relatively permissive statistical threshold employed in our

analyses within this study, which may be conducive to an

elevated rate of Type I errors. Finally, although procedures were

carried out to minimize the impact of head motion on dFC

results, the effects cannot be completely eliminated. In future

research, we will expand the sample size and use big data

models as well as data-driven approaches to further explore

the pathophysiological mechanisms of JME, drug responses,

and more.

6 Conclusion

In patients with JME, there is a functional dysregulation

between the motor cerebellum with DMN and SMN, and

the variability of dynamic functional connectivity may be

closely associated with the occurrence of motor symptoms

in JME.
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