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Combined cortical thickness and 
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Objective: To investigate the performance of structural MRI cortical and 
subcortical morphometric data combined with blink-reflex recovery cycle 
(BRrc) values using machine learning (ML) models in distinguishing between 
essential tremor (ET) with resting tremor (rET) and classic ET.

Methods: We enrolled 47 ET, 43 rET patients and 45 healthy controls (HC). 
All participants underwent brain 3  T-MRI and BRrc examination at different 
interstimulus intervals (ISIs, 100–300  msec). MRI data (cortical thickness, 
volumes, surface area, roughness, mean curvature and subcortical volumes) 
were extracted using Freesurfer on T1-weighted images. We  employed two 
decision tree-based ML classification algorithms (eXtreme Gradient Boosting 
[XGBoost] and Random Forest) combining MRI data and BRrc values to 
differentiate between rET and ET patients.

Results: ML models based exclusively on MRI features reached acceptable 
performance (AUC: 0.85–0.86) in differentiating rET from ET patients and 
from HC. Similar performances were obtained by ML models based on BRrc 
data (AUC: 0.81–0.82  in rET vs. ET and AUC: 0.88–0.89  in rET vs. HC). ML 
models combining imaging data (cortical thickness, surface, roughness, and 
mean curvature) together with BRrc values showed the highest classification 
performance in distinguishing between rET and ET patients, reaching AUC of 
0.94  ±  0.05. The improvement in classification performances when BRrc data 
were added to imaging features was confirmed by both ML algorithms.

Conclusion: This study highlights the usefulness of adding a simple 
electrophysiological assessment such as BRrc to MRI cortical morphometric 
features for accurately distinguishing rET from ET patients, paving the way for a 
better classification of these ET syndromes.
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Introduction

Essential tremor (ET) is one of the most common neurological 
disorders, characterized by bilateral action tremor in the upper 
limbs, with or without tremor in other body segments, such as the 
head, jaw, torso or lower limbs (1, 2). ET patients typically present 
with kinetic and postural hand tremor, whereas tremor at rest is 
more suggestive of Parkinson’s disease (PD) (1, 3). Resting tremor, 
however, in the absence of overt bradykinesia or rigidity, has been 
reported also in a large percentage of ET patients (4), and these ET 
patients with resting tremor (rET) are now included into a diagnostic 
category termed “ET plus,” referring to ET patients with additional 
subtle motor or non-motor features (1, 5). This distinction allows 
keeping the ET category as “pure” as possible and may lead to more 
homogenous patient cohorts in research studies and trials, hopefully 
improving the research on these common tremor syndromes (1). 
Recent cohort studies provided evidence that ET plus may have a 
prevalence even higher than classic ET, and resting tremor is one of 
the most common symptoms in ET plus patients (4, 6–11). The 
clinical differential diagnosis between ET and rET is guided by the 
presence/absence of tremor at rest, but it may be  challenging in 
several cases. In ET patients, resting tremor is usually not the main 
complaint, can fluctuate over time and is at times of low amplitude 
or even barely visible in the absence of electrophysiological analysis. 
A recent cohort study (7) including about 200 ET patients, showed 
that the diagnosis switched multiple times over a 5-year follow-up 
from ET to ET plus and vice versa in a significant percentage of 
patients, with resting tremor being the most unstable clinical feature. 
Around 40% of patients who received a clinical diagnosis of rET were 
classified as “pure” ET at follow-up visits and in some of them the 
diagnosis switched back again to rET later on since the resting 
tremor was not always present during consultations (7), making an 
accurate clinical differential diagnosis between ET and rET at 
times challenging.

A few studies explored the potential of paraclinical diagnostic 
procedures to support the differential diagnosis between ET patients 
with and without resting tremor (12, 13). From the neurophysiological 
perspective, the Blink reflex recovery cycle (BRrc), which is a simple 
test exploring the brainstem interneuron excitability (14–16), may 
be useful to this purpose. The blink reflex can be elicited by stimulating 
the supraorbital branch of the trigeminal nerve and is composed by 
an early, homolateral response (Rl) followed by a late, bilateral 
response (R2) (14–16). In healthy subjects, when the R2 response is 
evocated twice by electrical stimuli of equal intensity, the second R2 
signal (R2-BRrc) is strongly inhibited at short interstimulus intervals 
(ISIs) of 100, 150, and 200 ms, while it recovers at longer ISIs 
(500–700 ms) (14, 16–20). In movement disorders, facial reflexes with 
short latencies such as the R1 of the blink reflex are typically normal, 
since the afferent and efferent fibers of the reflex arc are not affected 
by these diseases (14, 16, 21). On the contrary, reflexes with longer 
latencies and polysynaptic pathways are often altered in patients with 
movement disorders (i.e., dystonia, chorea, parkinsonian syndromes), 
since basal ganglia network alterations may produce hyper- or hypo-
excitability of the brainstem inter-neuronal pool (14, 16, 21, 22). In the 
context of ET syndromes, a previous pilot study showed that R2-BRrc 
was enhanced at 150–200 ms in patients with rET but normal in ET 
patients and controls (19), thus suggesting a role of the R2-BRrc at 
short ISIs in distinguishing between these ET phenotypes.

In addition to neurophysiology, brain MRI is also an examination 
available in most centers and often included in the diagnostic work-up 
of patients with tremor syndromes (23). A plethora of imaging studies 
focused on MRI in ET patients (24–27) but there are only few reports 
investigating MR imaging differences between rET and ET patients 
(28–34). In a recent study, we developed a machine learning (ML) 
model based on structural cortical MRI data which differentiated 
these two patient groups with a mean AUC of 0.86 ± 0.11 (31). In the 
current study, we investigated whether adding R2-BRrc data to MRI 
morphometric features could further improve the performances in 
distinguishing between these two ET syndromes.

We employed two modern and well recognized ML decision tree-
based classification algorithms [eXtreme Gradient Boosting 
(XGBoost) (35) and Random Forest (RF) (36)], with two specific aims: 
(i) to compare the classification performance of structural MR 
imaging data with those of the R2-BRrc in distinguishing between rET 
and ET patients, and (ii) to investigate whether a combination of 
R2-BRrc and imaging data may improve the classification of rET and 
ET patients.

Materials and methods

Subjects

Ninety ET patients (43 with and 47 without resting tremor) and 
45 healthy controls (HC) were included in this study. Patients and 
controls were recruited at the Institute of Neurology and the 
Neuroscience Research Center of the Magna Graecia University, 
Catanzaro, Italy between 2017 and 2023. All patients underwent a 
detailed neurological examination performed by movement disorder 
specialists, and the clinical diagnosis of ET or rET was performed 
according to the recent diagnostic criteria of the Movement Disorder 
Society task force (1). Moreover, to provide the highest degree of 
diagnostic certainty in vivo, all patients included in the study 
underwent surface electromyographic tremor analysis as previously 
described (37, 38) to confirm or exclude the presence of resting 
tremor, and single photon emission computed tomography with 
123I-ioflupane (DaTscan), performed as previously described (38), to 
rule out parkinsonian syndromes. A battery of cognitive tests was 
administered by an experienced neuropsychologist, including the 
Mini Mental State Examinations (MMSE) for general cognitive 
impairment (39), the Rey Auditory Verbal Learning Test immediate 
(RAVLT_I) and delayed recalls (RAVLT_D) for verbal learning and 
memory, the Controlled Oral Word Association Test (COWAT) for 
lexical stock, the Digit Span Forwards (Digit Span F) and Backwards 
(Digit Span B) for short-term verbal memory. The inclusion criterium 
for all study participants was the availability of BRrc recording and 
MR images for processing/analysis. Exclusion criteria were: possible 
dysmetabolic causes of tremor, DaTscan abnormal or not available, 
diffuse brain vascular lesions or basal ganglia/brainstem lesions on 
MRI, and ongoing or previous therapy with medications known to 
exacerbate or cause tremor, including amiodarone, amphetamines, 
beta-adrenergic agonists, antipsychotics, prednisone, lithium, and 
valproate. None of control subjects had any history of neurological, 
psychiatric, or major medical illnesses.

Some rET patients (n = 30), ET patients (n = 33) and the HC 
subjects were included in a previous study (31) investigating the 
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performance of structural MRI data alone in differentiating between 
rET and ET patients. The final rET and ET groups, however, partially 
diverged from the previous study (31) due to the inclusion of newly 
enrolled patients and the exclusion of patients with R2-BRrc not 
available for prospective analysis. All study procedures and ethical 
aspects were approved by the institutional review board (Magna 
Graecia University review board, Catanzaro, Italy). Written informed 
consent for the research was obtained from all the individuals 
participating in the study.

Blink reflex recovery cycle examination

All study participants underwent a blink reflex recovery cycle 
(BRrc) recording performed in accordance with previously described 
procedures (17, 19) on the same day of brain MRI and clinical 
examination. In brief, subjects were studied at rest, with eyes gently 
closed; the BRrc recording was performed delivering stimuli of 0.2 ms 
duration to the supraorbital nerve, and the muscular responses at the 
level of ipsilateral and contralateral orbicularis oculi muscles were 
recorded using surface electrodes below the eyelid and on the temple. 
Several stimuli intensities (between 5 and 30 mA) were explored, 
choosing the intensity which was three times the threshold of the 
blink reflex response. The blink reflex response to paired stimulation 
was assessed at interstimulus intervals (ISIs) of 100, 150, 200, and 
300 ms. The area ratio of the R2 component of BRrc (R2 area of the 
conditioned response divided by the R2 area of the unconditioned 
response) was calculated for each ISI. The stimulation was performed 
bilaterally, but no significant differences were observed between the 
R2-BRrc values obtained from the right and left sides at each explored 
ISI; thus, for the purposes of our analysis, the measurements obtained 
from the right side were considered in all subjects. All medications 
with the potential to interfere with R2-BRrc were discontinued 2 days 
before the examination. Electrophysiological assessments were 
conducted and interpreted by an experienced technician who was 
unaware of the patients’ diagnoses.

MRI acquisition and image processing

All study participants underwent a brain MR with a 3 T-MR750 
GE MRI scanner (8-channel head coil), with a recently described 
protocol (40). Automated neuroanatomical segmentation was 
conducted using FreeSurfer 7.0 software (developed by Massachusetts 
General Hospital, Harvard Medical School; available at: http://surfer.
nmr.mgh.harvard.edu) for all study participants. The standard 
“recon-all” pipeline (41) was employed for cortical reconstruction, 
and the Desikan–Killiany atlas was employed to delineate 34 cortical 
regions of interest (ROIs) for each hemisphere, with the subsequent 
automated computation of various morphometric metrics. These 
metrics included cortical thickness (CT), surface area (SA), cortical 
volume (CV), mean curvature (MC), and roughness (RG), this latter 
feature representing the standard deviation of cortical thickness (41, 
42). Volumetric data for subcortical structures (subcortical volumes, 
SV) including the cerebellum, thalamus, caudate, putamen, globus 
pallidus, hippocampus, amygdala, and nucleus accumbens volumes 
were also extracted. Thus, a total of 358 structural MRI features were 
obtained for each subject.

Statistical analysis

We assessed the normality of data distribution using the 
Shapiro–Wilk test. Differences in sex distribution were evaluated 
using Fisher’s exact test. To compare age at examination, age at 
disease onset, disease duration, education level and MMSE among 
subjects, we  employed Kruskal-Wallis test followed by Dwass-
Steel-Critchlow-Fligner pairwise comparison. Cognitive scores 
and imaging data were compared among groups with an analysis 
of covariance (ANCOVA) with covariates including age, sex, and 
education level (and intracranial volume for subcortical volumes). 
Linear correlations between structural imaging metrics and 
clinical/electrophysiological data were evaluated using Spearman’s 
correlation test. All p values were adjusted for multiple comparisons 
using Bonferroni’s correction, and a significance level of p < 0.05 
was adopted. Statistical analyses were conducted using R statistical 
software (R for Unix/Linux, version 4.1.2, the R Foundation for 
Statistical Computing, 2014).

Machine learning models

In this study, we employed Machine Learning (ML) models with 
two alternative algorithms based on decision trees [Random Forest (RF) 
(36) and XGBoost (35)] using structural MR imaging data and or 
R2-BRrc neurophysiological data, in distinguishing ET from HC, rET 
from HC, and rET from ET patients. MRI data included several cortical 
and subcortical features (CT, SA, CV, MC, RG, SV), while R2-BRrc data 
included the R2 area ratio at different ISIs. First, we investigated the 
performances of ML model using either MRI or R2-BRrc data separately; 
second, we tested a model combining imaging and neurophysiologic 
data, aiming to increase the classification performance. For each model, 
the hyperparameters were tuned through five-fold cross-validation (cv) 
with randomized search (10 iterations) to maximize the accuracy, 
splitting the dataset into training (80%) and validation folds (20%). In 
detail, we divided the dataset into K subsets (folds) and iteratively trained 
the model K times. For each iteration, the model was trained on (K-1) 
folds and validated on the Kth fold, which was not used to train the 
model. The hyperparameters tuned for XGB were: learning rate, 
maximum depth, minimum child weight, gamma and colsample bytree 
(the fraction of features [randomly selected] that will be used to train 
each tree) (31, 43). The hyperparameters tuned for RF were: number of 
trees in the forest, max number of features considered for splitting a 
node, max number of levels in each decision tree, min number of data 
points placed in a node before the node is split, min number of data 
points allowed in a leaf node and bootstrap a method for sampling data 
points (31, 44). The feature importance was evaluated through the 
“permutation accuracy importance” technique (45), assessing the Mean 
Decrease in Accuracy after permuting each feature, using 50 repetitions 
to ensure the reliability of the feature ranking. Subsequently, a feature 
selection procedure was applied by iteratively training the models on the 
features ordered according to their importance. Finally, the performance 
of the tuned XGB and RF models trained on the most important features 
were evaluated in five-fold cross-validation analysis (80–20 split), 
repeated 5 times, and the mean and standard deviation of area under the 
curve (AUC), accuracy, sensitivity and specificity in all 25 validation 
folds were calculated. A model was considered able to distinguish 
between groups when the mean AUC was >0.85.
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To evaluate whether of our top-performing models were prone to 
possible overfitting, which may occur when ML approaches are used 
in relatively small sample sets, we performed a permutation analysis as 
previously described (46). All patients from the original dataset were 
randomly assigned to either the “rET,” or “ET” groups, by switching 
randomly the clinical labels, and our best ML model was trained on this 
new artificial dataset (46, 47). This permutation strategy was repeated 
100 times, and the average AUC of our best model was calculated. By 
changing the clinical labels, we could remove the biological differences 
between groups, creating a “random” dataset with feature values in the 
range of the real values. On these bases, a classification performance 
drops to around 50% in permutation analysis is expected, while a 
persistently high AUC may raise concerns of model overfitting the data 
beyond biological differences (46, 47). The analyses were conducted 
with Python 3.9 and the packages scikit-learn v1.0.2.

Results

Demographic, clinical, and 
electrophysiological data

The demographic and clinical data of patients and controls are 
reported in Table 1. There were no differences in demographic variables 
(age at examination, sex, education level) among groups. Both rET 

patients had slightly lower MMSE scores than HC, without any difference 
in other domain-specific tests, and without differences between rET and 
ET groups. rET patients had significantly higher R2-BRrc area ratio values 
at ISIs 150, 200, and 300 ms than ET and HC, while no differences were 
found between ET and HC. At ISI of 100 ms, no differences in R2-BRrc 
area ratio values were found among the three groups, with completely 
inhibited response in HC and very low values in both patient groups.

MRI cortical and subcortical morphometric 
features

As showed in Supplementary Table S1, ET patients with resting 
tremor (rET) had increased roughness in the right lateral orbito-
frontal cortex in comparison with HC, while classic ET patients 
showed increased roughness in the right superior temporal cortex and 
reduced mean curvature in the right rostral anterior cingulate cortex 
compared with HC. By directly comparing the two ET groups 
(Supplementary Table S1), rET patients showed increased roughness 
and mean curvature in temporal regions and reduced surface area in 
the right precentral cortex (frontal lobe). The temporal lobe regions 
showing increased roughness or mean curvature in rET patients 
compared to classic ET, showed significant negative correlations with 
COWAT test in the rET group (Supplementary Table S2). On the 
contrary, no correlations were found between these imaging variables 

TABLE 1 Demographic, clinical and electrophysiological data of patients with classical essential tremor, patients with essential tremor with resting 
tremor, and healthy control subjects.

Data rET (N  =  43) ET (N  =  47) HC (N  =  45) p-value

Sex, (M/F) 21/22 28/19 18/27 0.403a

Age at examination, ysb 63.7 ± 11.2 65.1 ± 9.7 68.5 ± 6.9 0.170c

Disease onset, ysb 47.1 ± 17.1 51.8 ± 17.6 – 0.169c

Disease duration, ysb 17.4 ± 14.1 13.3 ± 15.3 – 0.260c

Education level, ysb 8.68 ± 5.02 11.2 ± 4.90 10.9 ± 4.29 0.128c

MMSEb 26.0 ± 2.61 26.70 ± 2.54 27.6 ± 2.14 0.040c,*

COWATb 22.7 ± 6.75 25.6 ± 6.22 26.1 ± 10.2 0.786d

RAVLT-Ib 34.84 ± 9.66 36.97 ± 9.33 34.2 ± 8.34 0.604d

RAVLT-Db 6.94 ± 2.80 6.81 ± 2.64 6.18 ± 2.43 0.463d

Digit Span Forwardsb 4.91 ± 0.81 5.77 ± 3.83 5.07 ± 0.87 0.808d

Digit Span Backwardsb 3.00 ± 0.68 3.44 ± 0.88 3.3 ± 0.82 0.882d

R2BRrc area ratio – ISI 100b 8.21 ± 2.58 2.53 ± 1.56 0 0.063d

R2BRrc area ratio – ISI 150b 24.56 ± 3.28 3.6 ± 2.0 0 7.48e-7d,*,°

R2BRrc area ratio – ISI 200b 36.51 ± 4.10 4.30 ± 2.26 0 2.73e-9d,*,°

R2BRrc area ratio – ISI 300b 49.47 ± 4.64 19.57 ± 3.12 1.51 ± 5.94 9.59e-7d,*,°

ET, essential tremor; rET, essential tremor with resting Tremor; HC, healthy controls; MMSE, Mini Mental State Examination; COWAT, Controlled Oral Word Association Test; RAVLT-I, Rey 
Auditory Verbal Learning Test immediate recall; RAVLT-D, Rey Auditory Verbal Learning Test delayed recall.
The full cognitive battery was available in 59 participants (19 ET, 20 rET, 19 HC).
All rET patients had rest tremor; regarding other soft signs, 11 patients had subtle parkinsonian signs, 10 patients had mild memory deficits, 9 patients had impaired tandem gait and 3 patients 
had questionable dystonic posturing. 
aFishers exact test.
bData are expressed as mean ± standard deviation.
cKruskal-Wallis test followed by Dwass-Steel-Critchlow-Fligner pairwise comparison.
dANCOVA followed by post-hoc test (covariates: age, sex, education level). 
Significant p-values are highlighted in bold.
*rET vs. HC p-value < 0.05.
°rET vs. ET p-value < 0.05.
#ET vs. HC p-value < 0.05.
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and age, disease duration, education level and R2BRrc data. In contrast 
to cortical regions, no differences were observed in the volumes of 
subcortical structures across the three groups.

Classification performance of ML models in 
distinguishing patients from controls

In the ET vs. HC classification task, neither ML models using MRI 
features without R2-BRrc, nor those using combinations of R2-BRrc 

data without MRI, reached acceptable AUC values (Table 2). With 
both algorithms, the performance increased when imaging and 
neurophysiologic data were used together as input for ML models 
(Table 2), and the best model in distinguishing ET from HC used 
XGBoost algorithm on cortical roughness and R2-BRrc area ratio at 
various ISIs, reaching AUC of 0.94 ± 0.07 in cross-validation analysis 
(Table 2; Figure 1).

In the rET vs. HC classification task, ML models using R2-BRrc 
data only yielded acceptable performances (AUC around 0.88 both 
using XGBoost or RF) and outperformed ML models based on MRI 

TABLE 2 Classification performance of machine learning models with XGBoost and random forest and on R2-BRrc and MR imaging data, in 
distinguishing between patients with essential tremor with and without rest tremor and healthy controls.

Models MRI R2-BRrc MRI  +  R2-BRrc

ET vs. HC

XGBoost AUC: 0.821 (0.106) AUC: 0.797 (0.049) AUC: 0.940 (0.070)

ACC: 0.770 (0.088) ACC: 0.782 (0.049) ACC: 0.882 (0.034)

SENS: 0.810 (0.140) SENS: 0.640 (0.071) SENS: 0.800 (0.080)

SPEC: 0.729 (0.130) SPEC: 0.940 (0.089) SPEC: 0.950 (0.023)

(#9) (#1) (#10)

Random forest AUC: 0.761 (0.089) AUC: 0.780 (0.084) AUC: 0.860 (0.010)

ACC: 0.720 (0.091) ACC: 0.783 (0.083) ACC: 0.783 (0.083)

SENS: 0.767 (0.114) SENS: 0.640 (0.108) SENS: 0.640 (0.108)

SPEC: 0.671 (0.152) SPEC: 0.933 (0.089) SPEC: 0.933 (0.089)

(#3) (#1) (#4)

rET vs. HC

XGBoost AUC: 0.855 (0.130) AUC: 0.889 (0.052) AUC: 0.916 (0.053)

ACC: 0.833 (0.123) ACC: 0.853 (0.050) ACC: 0.861 (0.057)

SENS: 0.822 (0.174) SENS: 0.877 (0.131) SENS: 0.777 (0.136)

SPEC: 0.844 (0.122) SPEC: 0.933 (0.070) SPEC: 0.942 (0.071)

(#6) (#1) (#6)

Random forest AUC: 0.635 (0.127) AUC: 0.881 (0.050) AUC: 0.912 (0.061)

ACC: 0.602 (0.096) ACC: 0.848 (0.050) ACC: 0.866 (0.054)

SENS: 0.523 (0.179) SENS: 0.749 (0.120) SENS: 0.777 (0.131)

SPEC: 0.676 (0.172) SPEC: 0.832 (0.070) SPEC: 0.951 (0.063)

(#4) (#1) (#5)

rET vs. ET

XGBoost AUC: 0.858 (0.075) AUC: 0.815 (0.079) AUC: 0.941 (0.052)

ACC: 0.780 (0.099) ACC: 0.822 (0.075) ACC: 0.882 (0.081)

SENS: 0.751 (0.165) SENS: 0.697 (0.123) SENS: 0.860 (0.093)

SPEC: 0.802 (0.113) SPEC: 0.936 (0.086) SPEC: 0.901 (0.098)

(#12) (#1) (#12)

Random forest AUC: 0.696 (0.136) AUC: 0.821 (0.080) AUC: 0.872 (0.073)

ACC: 0.662 (0.121) ACC: 0.822 (0.075) ACC: 0.820 (0.084)

SENS: 0.585 (0.198) SENS: 0.697 (0.123) SENS: 0.818 (0.108)

SPEC: 0.731 (0.155) SPEC: 0.936 (0.086) SPEC: 0.823 (0.125)

(#13) (#1) (#3)

ET, essential tremor; rET, essential tremor with resting tremor; HC, healthy controls; AUC, Area Under the Curve, ACC, accuracy; SENS, sensitivity; SPEC, specificity. The classification 
performances are shown as mean (standard deviation) in the repeated 5-fold cross-validation folds. The number of features used by each model determined using the feature selection is 
reported in round brackets (#). Data shown in the table refer to the best model for each feature group.
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only (barely acceptable performance with XGBoost [AUC: 
0.85 ± 0.13], and very low performance with RF [AUC: 0.63 ± 0.13]), 
as shown in Table  2. An increase in AUC values, however, was 
observed with models combining MRI and R2-BRrc data (AUC: 
0.91 ± 0.05, both with XGBoost and RF). The best models with feature 
importance analysis are shown in Figure 2.

Classification performance of ML models in 
distinguishing between ET groups

Similar to the previous classification tasks, the two algorithms 
reached almost identical performances when using R2-BRrc data, while 
XGBoost outperformed RF with MRI data. Thus, the superiority of 
models using selectively either MRI or R2-BRrc data in distinguishing 
the two ET groups varied depending on the algorithm employed: 
MRI-based models were more powerful than R2-BRrc-based models 
when XGBoost was used and vice versa with RF (Tables 2, 3). The best 
model using MRI only reached AUC: 0.86 ± 0.07 (XGBoost), while the 
best models using R2-BRrc data obtained AUC values around 0.81–0.82 
(Table 2). Both algorithms showed a significant improvement in the 
classification performance when neurophysiologic data were added to 

the MR imaging features as input for ML models (Tables 2, 3). The 
performance of XGBoost best model raised from AUC: 0.86 ± 0.07 
(obtained using MRI only) to AUC: 0.94 ± 0.05 (obtained using MRI and 
R2-BRrc data) in distinguishing between rET and ET patients (Table 2). 
The same phenomenon was confirmed by RF models, whose AUC raised 
from 0.70 ± 0.14 (MRI only) to AUC: 0.87 ± 0.07 (MRI and R2-BRrc 
data). The feature importance analysis identified the R2-BRrc at ISI 200 
and the mean curvature in temporal regions as the most informative 
features for classification between ET groups in both XGBoost and RF 
best models (Figure 3).

Permutation analysis on the best ML 
models

The permutation analysis performed through random 
re-classification of patients repeated 100 times showed a marked drop 
in the classification performances of the best models for each 
classification task, demonstrating that our models did not significantly 
overfit the data beyond biological differences. In detail, the best model 
for classification between rET and ET showed a drop in the AUC from 
0.94 to 0.61; similar results were found for the best models for rET vs. 

FIGURE 1

The top-performing machine learning models in differentiating between ET patients and healthy controls. At the top, the best XGBoost model (A); at 
the bottom, the best Random Forest model (B). On the left side of the figure, it is shown the ROC curve. On the right side, it is shown the relative 
importance of the features selected by the model in distinguishing between the two groups assessed via permutation method. Features are shown in 
descending order from the most to the less important feature. Rh, right; Lh, left; AUC, area under the curve; thicknessstd, standard deviation of 
thickness, which is the roughness; ISI, interstimulus interval.
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HC (AUC from 0.91 to 0.57) and ET vs. HC classification (AUC from 
0.94 to 0.61).

Discussion

In this study, we employed a ML approach based on different 
cortical and subcortical MRI morphometric measurements and 
R2-BRrc data to distinguish between patients with ET with and 
without rest tremor. This study demonstrated that both these 
techniques may be useful in the differential diagnosis between these 
two ET syndromes. Moreover, the addition of BRrc data to MRI 
features in ML models can significantly improve the classification 
performances, suggesting a complementary diagnostic value of these 
two diagnostic procedures and enabling a better classification of 
ET patients.

The recent consensus statement of tremors included ET patients 
with rest tremor (rET) into a category termed “ET plus” referring to ET 
patients with additional motor or non-motor features (rest tremor, 

FIGURE 2

The top-performing machine learning models in differentiating between rET patients and healthy controls. At the top, the best XGBoost model (A); at 
the bottom, the best Random Forest model (B). On the left side of the figure, it is shown the ROC curve. On the right side, it is shown the relative 
importance of the features selected by the model in distinguishing between the two groups assessed via permutation methods. Features are shown in 
descending order from the most to the less important feature. Rh, right; Lh, left; AUC, area under the curve; thicknessstd, standard deviation of 
thickness, which is the roughness; ISI, interstimulus interval.

TABLE 3 Statistical differences among the performances of different 
models in distinguishing between patients with essential tremor with and 
without rest tremor.

Data MRI R2-BRrc
Combined 

model

XGBoost MRI – p = 0.021 p = 0.001

R2-BRrc – – p < 0.001

Random 

forest

MRI – p = 0.003 p < 0.001

R2-BRrc – – p = 0.01

The combined models included MRI models and R2-BRrc. The performances were 
compared across different models using Friedman test followed by the Durbin-Conover 
post-hoc for pairwise comparisons.
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impaired tandem gait, cognitive impairment, questionable dystonic 
posturing or subtle parkinsonian features) (1). At the present time, 
however, it is not yet known whether these two ET phenotypes (classical 
ET and ET plus) are either part of a continuum or two separated entities 
(6, 12, 48–50). Some authors suggested that rest tremor could represent 
a late clinical feature of ET, while others argued that rET may be a 
disorder distinct from ET, with higher age at disease onset or a 
transitional state between ET and PD (6, 12, 48–50). On these bases, it 
is key to explore similarities and differences between ET and ET plus 
patients to improve the knowledge of these tremor syndromes.

The current study is one of the few reports assessing MRI 
differences between different ET syndromes and revealed a slight 
cortical involvement characterized by increased roughness and mean 
curvature and reduced surface area in some fronto-temporal regions in 
rET patients compared to those with ET and HC, correlating with 

cognitive scores. These differences were identified since we employed 
advanced surface-based techniques capable of estimating multiple 
complementary morphometric characteristics of cortical structures, 
providing additional insights into brain structure and detecting even 
subtle cortical alterations (41, 42, 51–53). We indeed examined various 
cortical metrics, encompassing not only the well-established parameters 
like cortical thickness and volume (which revealed no differences 
between ET and rET), but also surface area, roughness and mean 
curvature, which may be more sensitive indicators of cortical atrophy 
(51–53). Roughness, a recently introduced metric, is computed as the 
standard deviation of cortical thickness, and an increase in this metric 
implies some degree of cortical atrophy (52). Mean curvature values 
furnish a quantitative gage of cortical folding, with increased values 
indicating sharper cortical folds, which could signify cortical atrophy 
or subcortical white matter atrophy (51). In addition to structural 

FIGURE 3

The top-performing machine learning models in differentiating between ET patients and rET patients. At the top, the best XGBoost model (A); at the 
bottom, the best Random Forest model (B). On the left side of the figure, it is shown the ROC curve. On the right side, it is shown the relative 
importance of the features selected by the model in distinguishing between the two groups assessed via permutation methods. Features are shown in 
descending order from the most to the less important feature. Rh, right; Lh, left; AUC, area under the curve; thicknessstd, standard deviation of 
thickness, which is the roughness; ISI, interstimulus interval.
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cortical differences, previous functional MRI studies have also 
identified differences between these two ET syndromes in cortical 
regions using different techniques. A resting-state MRI study (33) 
revealed reduced neural activity in secondary motor cortex regions 
(right superior and middle frontal gyrus, right precentral gyrus, and 
right Supplementary motor area) in rET patients compared with ET 
patients, and another study (29) reported decreased activation in 
parietal areas in rET compared to ET patients. Differently from cortical 
regions, we did not find any differences between rET and ET patients 
in the volumes of subcortical structures. These results are in line with 
previous studies showing no differences in the degree of cerebellar 
involvement between these ET syndromes (25, 28, 29, 32, 34); on the 
other hand, some diffusor tensor imaging (DTI) studies exploring 
white matter integrity suggested the implication of basal ganglia circuits 
in the physiopathology of rET (29, 30), while classic ET syndrome did 
not show the involvement of these structures, leading to the hypothesis 
that rest tremor associated with ET might be linked to basal ganglia 
dysfunction. It is possible to hypothesize that MR volumes may be not 
sensitive enough, (i.e., less than DTI) in detecting such differences.

In a recent previous study (31), we found that subtle cortical MRI 
differences between rET and ET could lead to acceptable classification 
performances (AUC of 0.86 ± 0.11) in distinguishing between these 
syndromes leveraging modern ML algorithms (XGboost). Here, 
we  investigated whether the addition of R2-BRrc data to MRI 
morphometric features could further improve the performances in 
distinguishing between these two ET syndromes. The current study 
expands our previous work in several ways: (i) demonstrating an overt 
superiority of XGBoost over RF algorithms when dealing with 
morphometric MRI data such as thickness, volumes, roughness, 
surface area and mean curvature in all comparisons, (ii) allowing to 
accurately distinguish classic ET patients from HC, which was not 
possible by using MRI morphometric features alone, and most 
importantly (iii) improving the distinction between rET and ET 
patients (compared to ML models using MRI alone) without the 
drawback of additional costs or complexity; this was obtained through 
the addition of R2-BRrc test, which is an extremely simple, cheap and 
widely available neurophysiological procedure. The rationale of adding 
these neurophysiologic data was that the R2-BRrc area ratio at short 
ISIs has been reported to be higher in rET patients compared to ET in 
a previous pilot study (19). In this study, a ML approach based only on 
R2-BRrc area ratio at ISIs of 100, 150, 200, and 300 ms showed AUC 
of 0.81–0.82, confirming the potential usefulness of this diagnostic test 
in distinguishing rET from ET. When these neurophysiologic data 
were included together to MRI morphometric features in ML models, 
we found a significant increase in classification performances, with the 
best model achieving an excellent AUC of 0.94 ± 0.05 in distinguishing 
between the two ET syndromes. Of note, the R2-BRrc area ratio at ISI 
of 200 ms was one of the two most important features used for 
classification by the models (together with the mean curvature of 
temporal regions, which was also significant in ANCOVA), both with 
XGBoost and RF algorithms. This result proved that the R2-BRrc was 
indeed not a minor addition to the models, and highlighted the 
importance of coupling neurophysiologic and imaging data which may 
have a complementary diagnostic value. The accurate classification of 
rET and ET patients is of high relevance for several reasons. First, it 
can have strong implications for future research; this perfectly aligns 
with the purposes of the recent consensus statement on tremors by the 
Movement Disorders Society, which created the new diagnostic 
category of “ET plus” (including ET patients with rest tremor) to 

reduce heterogeneity in ET cohorts (1, 5, 12). The main advantage of 
this new approach is to recruit homogenous patient groups for clinical 
and translational research studies in ET, likely improving future 
understanding of this tremor syndrome (1, 5, 12). Moreover, a recent 
study (54) showed higher percentage of longitudinal clinical tremor 
worsening and lower responsiveness to anti-tremor medications in ET 
plus compared to “pure” ET patients, suggesting that an accurate 
classification of ET syndromes may have prognostic implications. 
Further studies, however, are needed to confirm these data.

Beyond patient classification, our study also provides insights on the 
highly debated relationship between these two syndromes, suggesting 
that rET is likely to be a distinct syndrome (or a different subtype of the 
same syndrome) rather than just a late stage of ET, with possible 
pathophysiological differences. Indeed, while the slightly higher cortical 
involvement in rET might suit with the “late stage” hypothesis, the 
enhanced brainstem excitability (reflected by higher R2-BRrc) observed 
in rET does not. In other conditions (i.e., PD or dystonia), the R2-BRrc 
is clearly enhanced already in the early stages of the disease (14, 20, 55); 
therefore, it may be a bit odd to hypothesize a completely opposite 
behavior in ET, with a R2-BRrc remaining normal for many years and 
becoming abnormal in the advanced stages of the disease. The BRrc 
alteration, however, is not pathognomonic of a single neurological entity, 
thus precluding a definitive association of rET syndrome with either 
Parkinson’s disease or dystonic syndromes. Future imaging or genetic 
studies exploring similarities and differences between rET patients and 
these other neurological disorders may shed more light on this point.

In the current study, the advantage of combining MRI and 
R2-BRrc data was confirmed by two distinct ML algorithms. By 
looking at the classification performances, XGBoost was more 
powerful than RF when using multiple MRI morphometric features. 
Both XGBoost and RF are tree-based ML algorithms sharing common 
rules for tree growth, but they diverge in their approach to constructing 
an ensemble of trees. RF employs a technique known as bagging to 
simultaneously construct multiple trees, followed by making 
predictions through a majority voting mechanism (36). On the 
contrary, XGB constructs a sequential ensemble of trees with the goal 
of enhancing the performance of each subsequent tree by rectifying 
the errors of the preceding one (35, 56). It is possible to hypothesize 
that the ability of XGBoost learn from its wrong predictions and 
correct its mistakes may be  responsible for his generally higher 
classification performances (56), but this hypothesis is only speculative 
in nature, since these powerful ML algorithms function as “black 
boxes,” making decisions without providing supporting evidence.

Despite some discrepancy in the absolute performances, both 
algorithms, however, provided comparable results in terms of 
performance increase when the two sources of data were combined 
together, strengthening the reliability of our main findings and take-
home messages.

The current study has several strengths. First, rET and ET clinical 
diagnoses were performed by a movement disorder specialist according 
to international diagnostic criteria (1); in addition, the clinical 
diagnosis was supported by electrophysiological tremor recording 
confirming/excluding the presence of rest tremor and by a normal 
DaTscan, thus ruling out Parkinson’s disease. Second, all MRI data were 
acquired through fully automated and validated procedures. Third, 
we employed two distinct ML algorithm and compared the results 
between them to enhance the robustness and reliability of our findings.

The main limitation to this study is the relatively small sample size 
and the lack an independent validation cohort; thus, future studies in 

https://doi.org/10.3389/fneur.2024.1372262
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Calomino et al. 10.3389/fneur.2024.1372262

Frontiers in Neurology 10 frontiersin.org

large international patient cohorts are needed to demonstrate the 
generalizability of our results. Since the limited sample size coupled to 
a relatively large number of predictors may at times lead to data 
overfitting by ML models, in this study, we performed a permutation 
analysis to investigate/exclude the presence of data overfitting (46, 47). 
The classification accuracy dropped from above 0.90 to around 0.60 in 
permutation analysis, suggesting that the model was not able to 
correctly classify patients when the biological differences were 
artificially removed, thus demonstrating no significant overfitting by 
our ML models. A second limitation is the lack of post-mortem 
pathological examination. We  used clinical and paraclinical 
investigation to reach the highest degree of diagnostic certainty in vivo, 
as described above; however, misdiagnosis may have occurred in a few 
cases; moreover, it is not possible to exclude that some ET patients may 
develop rest tremor and thus evolve to ET plus in the future. Third, this 
is a cross-sectional study; future longitudinal studies are warranted to 
investigate the possible usefulness of these models in predicting 
diagnosis refinement at follow-up (i.e., patients with ET diagnosis who 
may develop rest tremor over time). A final limitation to the immediate 
large use of our approach is the complexity of ML approaches; however, 
there has been a growing interest in artificial intelligence within the 
medical field, and classification models, often combining different 
types of biomarkers, are increasingly recognized as valuable tools for 
facilitating the differential diagnosis process and providing guidance 
in clinical decision-making (57–60); thus, this technology will likely 
find its place in clinical practice quite soon. In this context, the 
availability of T1-weighted MRI and simple low-cost neurophysiologic 
examinations such as R2-BRrc may significantly contribute to a 
widespread use of this biomarker. Indeed, though not mandatory for 
clinical diagnosis in patients with isolated tremor syndromes, 
structural MRI examination is often performed in patients with tremor 
to investigate/exclude the presence of lesions or atrophy in the basal 
ganglia, cerebellum and brainstem (23). The BRrc, due to its simplicity 
and low associated economic burden, could be considered a screening 
test in patients presenting with tremor providing hints in the 
differential diagnosis between “pure ET” and other tremor syndromes, 
to include in the protocols of neurophysiology tremor studies.

In conclusion, this study demonstrates that ML models combining 
structural MRI measurements of cortical regions and R2-BRrc values 
showed excellent performance in distinguishing rET from ET patients. 
This novel approach holds promise in facilitating the precise 
classification of ET patients, which is crucial for a better understanding 
of these still largely unexplored tremor syndromes.
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