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Introduction: Some studies have found that probiotics have the potential to 
treat PD, and earthworm protein is a traditional Chinese medicine used for 
the treatment of PD. The purpose of this study was to evaluate the safety and 
efficacy of Bacteroides fragilis 839 (BF839)  +  earthworm protein supplement as 
an adjunctive therapy for PD and to observe changes in the gut microbiota.

Methods: Forty-six patients with PD were recruited for a 12-week 1:1 
randomized, double-blind, placebo-controlled clinical trial to evaluate 
changes in motor and some non-motor symptom scores and detect 
metagenomic changes in the gut microbiota.

Results: From baseline to 12 weeks, compared with placebo, the trial group 
showed significant reductions in the United Parkinson’s Disease Rate Scale 
(UPDRS) total score (−7.74 ± 5.92 vs. –1.83 ± 4.14, p < 0.001), UPDRS part 
I  (−0.72 ± 0.81 vs. –0.20 ± 0.72, p = 0.026), UPDRS part II (−2.50 ± 2.24 vs. 
–0.22 ± 1.98, p = 0.001), UPDRS part III (−3.43 ± 3.42 vs. –1.33 ± 2.65, p = 0.024), and 
UPDRS part IV (−1.13 ± 1.19 vs. –0.15 ± 0.57, p = 0.001). Significant reductions in 
the Hamilton Depression Scale-24 score (−3.91 ± 3.99 vs. +1.15 ± 3.42, p < 0.001), 
Self-Rating Anxiety Scale scores (−7.04 ± 5.71 vs. –1.23 ± 2.34, p < 0.001), and 
Constipation scoring system scores (−8.59 ± 4.75 vs. 0.27 ± 1.24, p < 0.001), were 
also noted. In the trial group, one patient experienced mild eczema and one 
suffered low blood pressure, which could not be  conclusively attributed to 
supplementation. Compared to the placebo group, the trial group showed a 
marked increase in Enterococcus faecium and a decrease in Klebsiella.

Conclusion: This study is the first to report that probiotics plus earthworm 
protein can remarkably improve the motor and some non-motor symptoms 
of PD without serious adverse effects. However, further clinical trials and 
exploration of the underlying mechanisms are required.

Clinical trial registration: Clinical trial registry http://www.chictr.org.cn/, 
Identification No: ChiCTR2000035122.
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1 Introduction

Parkinson’s disease (PD) is a common neurodegenerative 
disorder. The primary treatment involves drugs such as levodopa 
to elevate dopamine levels and ameliorate symptoms. Currently, 
there are no preventive or disease modifying treatments for PD. As 
the disease progresses, the symptomatic treatment needs to 
be escalated and becomes more complex, which results in greater 
risk of side effects.

The relationship between PD etiology and gut microbiota 
imbalance has garnered increasing interest. PD has been proposed 
to originate in the gut (1). The gut microbiota composition differs 
between patients with PD and healthy individuals (2). 
Transplantation of feces from patients with PD into PD mice 
model aggravates motor deficits (3), and supplementation with 
mixed probiotics (4) slightly improves the movement dysfunction 
of PD mice model. Supplementation with a single (5) or mixed (6) 
probiotic improves non-motor symptoms such as gastrointestinal 
constipation, abdominal pain, bloating, anxiety, and sleep 
disturbance in humans. However, few studies have reported that 
probiotics can extensively improve motor function in patients 
with PD.

Bacteroides fragilis (BF) abundance in the feces of patients with 
PD is low (2). BF has attracted much attention in the second-
generation probiotics studies (7). BF839—a non-toxic BF strain—is 
a symbiotic intestinal bacterium isolated from the feces of healthy 
infants (8). BF839 prevents intestinal and respiratory diseases and 
promotes physical growth and development in children (9). 
We recently reported that BF839 was effective in treating psoriatic 
disease (10), refractory epilepsy (11), and autoimmune epilepsy 
(12) in humans and improves learning and memory in mice with 
fragile X syndrome (13). Because it can substantially affect the 
brain, BF839 may also play a role of PD treatment.

The traditional medicinal use of earthworms, also known as 
Lumbricus, in China dates back 2,000. Per an analysis of multiple 
classical prescriptions of Chinese traditional medicine for the 
treatment of PD, the usage frequencies of earthworms were 95% 
(14). Thus, earthworms are a “common drug” for treating PD in 
Chinese traditional medicine. Earthworm proteins are an approved 
new food resource in China and have been on the market for 
13 years without serious adverse effects. Lumbricusin, an 
antimicrobial peptide isolated from earthworms, enhances 
neuroprotection and ameliorates motor dysfunction in a PD mice 
model (15).

This pilot study evaluates the safety and efficacy of 
BF839 + earthworm protein supplementation as an adjunctive therapy 
for patients with PD, compared with a placebo. The preliminary 
mechanism was explored by detecting metagenomic changes in the 
patient’s gut microbiota.

2 Patients and methods

2.1 Ethical considerations

This single-center, double-blind, randomized, placebo-controlled 
trial was conducted at the Neurology and Clinical Nutrition Department 
of the Second Affiliated Hospital of Guangzhou Medical University. The 

study was approved by the hospital’s Ethics Committee (Project No. 
2019-hs-42), and is registered in the Chinese Clinical Trial Registry 
(http://www.chictr.org.cn/; Identification No: ChiCTR2000035122). 
Participants provided written informed consent before starting the trial.

2.2 Trial design and participants

A 12-week Randomized Controlled Trial (RCT) was 
performed, and metagenomic changes in the gut microbiota of 
some patients were detected. Figure 1 illustrates the trial process. 
Participants were enrolled from September 1, 2020 to August 31, 
2021. The inclusion criteria were: (1) meeting the diagnostic 
criteria of the Movement Disorder Society (MDS) Clinical 
Diagnostic Criteria and Hoehn and Yahr stages 1–3 (16, 17), 
indicating clinically established PD; (2) the ability to independently 
or with assistance from family members complete examinations, 
questionnaires, and provide medical history; (3) use of anti-
parkinsonian drugs such as levodopa, dopadecarboxylase-
inhibitor, dopamine agonists (DA), monoamine oxidase type B 
inhibitor, catechol-o-methyltransferase inhibitor, amantadine 
hydrochloride, and trihexyphenidyl provided that the dosage 
remained unchanged in the 30 days leading up to enrollment. The 
exclusion criteria were: (1) severe cognitive impairment or aphasia 
and dysarthria leading to communication difficulties; (2) severe 
liver or kidney dysfunction or tumors; (3) use of 
immunosuppressants, antibiotics, or other probiotics, or fecal 
microbiotic transplantation 30 days prior to enrollment; (4) history 
of severe and uncontrolled hypertension; and (5) spontaneous 
bleeding, coagulopathy, or long-term use of anticoagulants. The 
exit criteria were: (1) lost to follow-up; (2) unacceptable or serious 
adverse events; (3) adjustment of anti-parkinsonian drug dosage 
during the trial; and (4) using <20% of the trial supplement dose. 
All patients had primary PD without family history of PD. However, 
genetic testing was not performed, and the exclusion of patients 
with multifactorial PD was based primarily on the absence of 
established concomitant neurologic conditions, such as dementia, 
brain atrophy, stroke.

An independent neurologist is responsible for the assessment 
of patients. The assessment scales include the UPDRS scale, 
Hamilton Depression Scale-24 (HAMD-24), Self-Rating Anxiety 
Scale (SAS), Constipation Scoring System Scale (CSS), and 
Minimum Mental State Examination (MMSE). The patients were 
evaluated at day 0, 6 weeks and 12 weeks. Each evaluation was 
performed at the same time of day for each patient before and after 
enrollment, thus basically excluding the influence of motor 
fluctuations and dyskinesia on the results. In fact, four patients in 
this trial experienced motor fluctuations, yet they were in the ‘ON’ 
state during each evaluation. The response rate was defined as the 
proportion of Minimal Clinically Important Difference change in 
patient scores from baseline to 12 weeks (Supplementary Data 1.1).

2.3 Sample size estimation

Per previous study results (18), the total UPDRS reduction from 
baseline with placebo as adjunctive therapy was 8.5% in Hoehn-Yahr 
I–III patients. In our preclinical trial data, we observed a substantial 
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decrease of 45% in the UPDRS. We set the alpha value at 0.05, power 
effect value at 80%, and a ratio of 1, and calculated the required sample 
size to be 40 (20 per group) using pass 11.0 software (NCSS, Inc., 
USA). Considering a 15% dropout rate, 46 patients (23 patients per 
group) were enrolled.

2.4 Recruitment and randomization

Participants were allocated (1:1) to the trail or placebo group 
using a concealed random allocation from a computer-generated 
random numbers table produced using the Python programming 
environment. A nurse dispensed the trial supplement, but she did 
not know which trial supplement the patient received. 
BF839 + earthworm protein supplements and placebo were prepared 
and packaged by Guangzhou Totem Life Medical Research Co. Ltd., 
China. The two products are almost identical and cannot 
be distinguished. To ensure the authenticity of the statistical results, 

both the participants and researchers (including people of trial 
organization, follow-up, evaluation, data entry and statisticians) 
were blinded. Unblinding was only indicated upon serious adverse 
events, with approval of a Steering.

2.5 Interventions

10 g BF839 + earthworm protein supplement trial solution 
dissolved in 200 mL water, twice daily, or matching placebo as an 
adjunctive therapy for 12 weeks. 10 g trial supplement contains 
106 BF839 and 0.3 g earthworm protein. More details about BF839 
and earthworm protein production can be  seen in 
Supplementary material 1.2. The placebo was made from 
maltodextrin and had a similar odor and taste than did the 
BF839 + earthworm protein supplement with identical packaging. 
Concomitant anti-parkinsonian medications were retained, and 
no changes were allowed throughout the trial.

FIGURE 1

Trial process.
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2.6 Adverse events

Patients were monitored for gastrointrial inal-related diseases, 
including common adverse events such as nausea, vomiting, diarrhea, 
constipation, increased exhaust, and rash. Unexpected adverse events 
were also recorded.

2.7 Stool sample collection and processing 
and analysis

Stool samples were collected from 20 randomly selected patients 
on both day 0 and week 12. Ten patients were selected from the 
placebo group; two failed to provide stool samples at week 12, resulting 
in a total of 18 samples. In the test group, 10 patients were selected, 
resulting in a total of 20 samples. Samples were collected at home and 
shipped to Shenzhen 01 Life Institute Co. Ltd. at room temperature 
for testing. R3.6.3 was used to calculate species count and Shannon 
diversity to assess microbiota diversity. Bray-Curtis distance and 
PCoA were applied to analyze microbiota composition changes, with 
a permutational multivariate analysis of variance performed to 
identify temporal and group differences in microbiota composition. 
Gene set alignment and intestinal metabolic modules prediction were 
performed (Supplementary material 1.3–1.8).

2.8 Statistical analyses

Clinical data were analyzed using per-protocol and intention-to-
treat analyses. Statistical analyses were performed using SPSS 
statistical software (version 22.0; SPSS Inc., Chicago, IL, USA). 
Measurement data were expressed as mean ± SD, and the comparison 
between groups was analyzed using t-test. Count data are expressed 

as number of cases (%), and the chi-square or Fisher’s exact test was 
used for between-group comparison. Statistical significance was set at 
p < 0.05.

3 Results

3.1 Baseline patient characteristics

Of 50 patients screened between September 1, 2020, and August 
31, 2021, 46 were included. In the trial group, one patient exited 
because of a change in anti-parkinsonian drugs, and another because 
of an adverse event. In the placebo group, one patient withdrew 
consent because he participated in another trial and another could not 
return to the hospital due to the COVID-19 prevention policy. 
Forty-two patients completed the trial. Table  1 presents their 
baseline characteristics.

3.2 BF839  +  earthworm protein remarkably 
improved PD-related motor and 
non-motor symptoms

At 6 weeks, in the intention-to-treat analysis, the trial group 
exhibited a significant reduction in the UPDRS total and UPDRS part 
IV scores compared with the placebo group. Additionally, the trial 
group showed a non-significant downward trend in the UPDRS part 
I, II, and III scores than the placebo group. Compared with the 
placebo group, the trial group exhibited significant reduction in the 
HAMD-24, SAS, and CSS scores. A similar trend was observed in the 
per-protocol analysis (Table 2).

At 12 weeks, in the intention-to-treat analysis, the trial group 
demonstrated significant decreases in the UPDRS total, UPDRS part 

TABLE 1 Patients’ baseline characteristics.

Basic information Trial (n  =  21) Placebo (n  =  21) P

Sex 0.747

Male, N (%) 13 (61.9) 14 (66.7)

Female, N (%) 8 (38.1) 7 (33.3)

Age (year, mean ± sd) 62.29 ± 8.90 59.57 ± 7.77 0.299

Total UPDRS 22.33 ± 10.09 20.52 ± 7.21 0.614

Course of the disease(year, mean ± sd) 6.19 ± 4.33 6.14 ± 4.73 0.755

Hoehn-Yahr Disease stage 0.757

I-II installment, N (%) 12 (57.1) 11 (52.4)

III installment, N (%) 9 (42.9) 10 (47.6)

On medication(species, mean ± sd) 3.00 ± 1.05 3.01 ± 1.32 0.898

Levodopa + DDC-I, N (%) 19 (90.47) 17 (80.95) 0.378

Levodopa + DDC-I sustained-release tablets, N (%) 6 (28.57) 4 (19.05) 0.469

DA, N (%) 13 (61.90) 16 (76.19) 0.063

MAO-BI, N (%) 7 (33.33) 9 (42.86) 0.525

Artane, N (%) 2 (9.52) 3 (14.29) 0.634

Amantadine, N (%) 2 (9.52) 1 (4.76) 0.549

P, comparison between trail and placebo groups using chi-square test; DDC-I, dopadecarboxylase-inhibitor, dopamine agonists; MAO-BI, monoamine oxidase type B inhibitor.
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TABLE 2 Comparison of the scores of 0d, 6-week data with the baseline (day 0), and 12w-0d between the trail and placebo groups.

Scale 
score

Per-protocol analysis Intention-to-treat analysis

0d 6-week data with the 
baseline (day 0)

12  weeks with the baseline 
(day 0)

0d 6-week data with 
baseline data (day 0)

12  week data with 
baseline data (day 0)

Trial 
(n  =  21)

Placebo 
(n  =  21)

Pa Trial 
(n  =  21)

Placebo 
(n  =  21)

Pb Trial (n  =  21) Placebo 
(n  =  21)

Pc Trial 
(n  =  23)

Placebo 
(n  =  23)

Pa Trial 
(n  =  23)

Placebo 
(n  =  23)

Pb Trial 
(n  =  23)

Placebo 
(n  =  23)

Pc

Total UPDRS 22.33 ± 10.09 20.52 ± 7.21 0.614 −4.30 ± 3.64 −1.83 ± 3.58 0.032 −8.37 ± 5.65 −2.00 ± 4.30 <0.001 21.54 ± 9.99 19.87 ± 7.21 0.653 −3.93 ± 3.69 −1.67 ± 3.45 0.037 −7.74 ± 5.92 −1.83 ± 4.14 <0.001

UPDRS part 

I mentation, 

behavior and 

mood

1.19 ± 1.17 0.52 ± 0.81 0.052 −0.45 ± 0.79 −0.24 ± 0.62 0.285 −0.79 ± 0.82 −0.21 ± 0.75 0.009 1.11 ± 1.15 0.48 ± 0.79 0.0035 −0.41 ± 0.76 −0.22 ± 0.60 0.339 −0.72 ± 0.81 −0.20 ± 0.72 0.026

UPDRS part II 

activities of 

daily living

8.30 ± 4.33 8.35 ± 3.63 0.536 −1.38 ± 2.16 −0.33 ± 1.31 0.064 −2.74 ± 2.20 −0.24 ± 2.07 <0.001 8.28 ± 4.17 8.15 ± 3.53 0.909 −1.26 ± 2.09 −0.30 ± 1.25 0.067 −2.50 ± 2.24 −0.22 ± 1.98 0.001

UPDRS part III 

motor 

examination

10.45 ± 4.52 10.69 ± 4.10 0.859 −1.98 ± 2.22 −1.11 ± 2.54 0.251 −3.76 ± 3.40 −1.45 ± 2.74 0.020 9.91 ± 4.68 10.35 ± 4.08 0.739 −1.80 ± 2.20 −1.02 ± 2.45 0.259 −3.43 ± 3.42 −1.33 ± 2.65 0.024

UPDRS part III 

speed, Facial 

expression

1.36 ± 0.94 1.05 ± 1.00 0.225 −0.09 ± 0.68 −0.19 ± 0.46 0.408 −0.45 ± 0.93 −0.12 ± 0.67 0.189 1.33 ± 0.90 1.04 ± 0.95 0.307 −0.08 ± 0.65 −0.17 ± 0.44 0.599 −0.41 ± 0.90 −0.11 ± 0.64 0.193

UPDRS part III 

Tremor at rest, 

action or 

Postural 

Tremor of 

hands

0.93 ± 1.12 1.55 ± 0.84 0.028 −0.14 ± 0.32 −0.21 ± 0.62 0.569 −0.29 ± 0.70 −0.26 ± 0.66 0.860 0.89 ± 1.09 1.46 ± 0.86 0.057 −0.13 ± 0.31 −0.20 ± 0.60 0.645 −0.26 ± 0.67 −0.24 ± 0.63 0.911

UPDRS part III 

Rigidity

1.02 ± 0.68 1.29 ± 0.92 0.487 −0.24 ± 0.45 −0.31 ± 0.68 0.904 −0.43 ± 0.51 −0.36 ± 0.71 0.840 198 ± 0.68 1.22 ± 0.91 0.320 −0.22 ± 0.45 −0.28 ± 0.65 0.695 −0.39 ± 0.50 −0.32 ± 0.71 0.714

UPDRS part III 

Figer Taps, 

Hand 

movements, 

Rapid 

Alternating 

Movements of 

Hands

2.12 ± 1.64 3.26 ± 1.64 0.076 −0.36 ± 0.96 −0.10 ± 1.06 0.458 −0.74 ± 1.37 −0.52 ± 1.44 0.740 2.07 ± 1.58 3.11 ± 2.00 0.057 −0.33 ± 0.92 −0.09 ± 1.01 0.406 −0. 

67 ± 1.32

−0.48 ± 1.38 0.625

(Continued)
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TABLE 2 (Continued)

Scale 
score

Per-protocol analysis Intention-to-treat analysis

0d 6-week data with the 
baseline (day 0)

12  weeks with the baseline 
(day 0)

0d 6-week data with 
baseline data (day 0)

12  week data with 
baseline data (day 0)

Trial 
(n  =  21)

Placebo 
(n  =  21)

Pa Trial 
(n  =  21)

Placebo 
(n  =  21)

Pb Trial (n  =  21) Placebo 
(n  =  21)

Pc Trial 
(n  =  23)

Placebo 
(n  =  23)

Pa Trial 
(n  =  23)

Placebo 
(n  =  23)

Pb Trial 
(n  =  23)

Placebo 
(n  =  23)

Pc

UPDRS part III 

Leg agility, 

Arising from 

Chair

1.29 ± 1.27 1.14 ± 0.99 0.907 −0.17 ± 0.76 0.00 ± 0.98 0.154 −0.55 ± 0.93 0.07 ± 1.04 0.030 1.26 ± 1.21 1.13 ± 0.94 0.686 −0.15 ± 0.73 0.00 ± 0.94 0.543 −0.50 ± 0.90 0.07 ± 0.99 0.050

UPDRS part III 

Posture, Gait, 

Postural 

Stablility, Body 

Bradykinesia 

and 

Hypokinesia

3.33 ± 2.63 2.73 ± 1.80 0.630 −0.55 ± 1.09 −0.57 ± 1.06 0.804 −0.98 ± 1.44 −0.67 ± 1.58 0.576 3.17 ± 2.57 2.63 ± 1.76 0.408 −0.50 ± 1.06 −0.52 ± 1.03 0.944 −0.89 ± 1.40 −0.61 ± 1.52 0.515

UPDRS part IV 

DYSKINESIAS

2.43 ± 2.64 0.93 ± 1.50 0.010 −0.50 ± 0.55 −0.071 ± 0.58 0.031 −1.23 ± 1.19 −0.17 ± 0.60 <0.001 2.28 ± 2.57 0.87 ± 1.44 0.026 −0.46 ± 0.54 −0.07 ± 0.55 0.019 −1.13 ± 1.19 −0.15 ± 0.57 0.001

MMSE 29.00 ± 1.58 28.86 ± 2.26 0.787 +0.10 ± 0.77 +0.43 ± 1.363 0.558 +0.43 ± 1.21 +0.62 ± 1.47 0.940 28.87 ± 1.63 28.91 ± 2.17 0.939 +0.09 ± 0.73 +0.39 ± 1.30 0.335 +0.39 ± 1.58 +0.57 ± 1.40 0.650

HAMD-24 14.19 ± 6.33 14.19 ± 7.61 1.000 −2.79 ± 4.71 +0.48 ± 2.22 0.032 −4.29 ± 3.98 +1.26 ± 3.57 <0.001 14.00 ± 6.13 13.96 ± 7.31 0.983 −2.54 ± 4.56 +0.43 ± 2.13 0.007 −3.91 ± 3.99 +1.15 ± 3.42 <0.001

SAS 43.51 ± 8.27 37.60 ± 6.57 0.014 −4.52 ± 4.58 −0.05 ± 3.31 0.001 −7.71 ± 5.51 −1.23 ± 2.43 <0.001 42.77 ± 8.40 37.59 ± 6.31 0.022 −4.13 ± 4.56 −0.04 ± 3.15 0.001 −7.04 ± 5.71 −1.23 ± 2.34 <0.001

CSS 16.15 ± 4.80 15.63 ± 3.56 0.705 −7.05 ± 2.78 0.26 ± 1.19 <0.001 −9.45 ± 4.05 0.42 ± 1.21 <0.001 16.09 ± 4.58 15.55 ± 3.32 0.705 −6.41 ± 3.36 0.18 ± 1.14 <0.001 −8.59 ± 4.75 0.27 ± 1.24 <0.001

Pa: Comparison at baseline between trail and placebo groups. Pb: Comparison at 6-week data with the baseline (day 0) between trail and placebo groups. Pc: Comparison at 12 weeks with the baseline (day 0) between trail and placebo groups.
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I, UPDRS part II, UPDRS part III, and UPDRS part IV scores 
compared to the placebo group. The trial group showed better 
improvement than the placebo group, especially in the leg symptom 
(Leg agility、Arising from Chair) of UPDRS part III score. Other 
symptoms assessed by UPDRS part III (Table  2), also showed a 
non-significant downward trend in the trial group compared to the 
placebo group. Compared to the placebo group, the trial group 
showed significant decreases in the HAMD-24, SAS, and CSS scores. 
A similar trend was observed in the per-protocol analysis (Table 2).

In intention-to-treat analysis n, at 12 weeks, compared with the 
placebo group, the trial group had a significantly higher response rate 
in patients with score decrease of total UPDRS≥8 point (47.82% Vs 
4.34%, p = 0.001), UPDRS part II ≥ 2 point (60.87% Vs 17.39%, 
p = 0.003), UPDRS part III ≥ 5 point (30.43% Vs 4.34%, p = 0.02), and 
CSS >30% (95.65% Vs 0%, p < 0.001). Per-protocol analysis showed 
similar results (Supplementary Table S1). Two special cases in the trial 
group did not receive levodopa and took only rasagiline (1 mg/day). 
Their UPDRS scores reduced substantially from 13 and 14 at baseline 
to 5.5 and 4.5 at 12 weeks, respectively. Both patients regained their 
sense of smell at 12 weeks. Additionally, one patient in the trial group 
reported regaining his sense of smell.

3.3 Adverse events

In the trial group, 4.3% (1 of 23) of the patients reported mild 
eczema at 3 weeks, which resolved spontaneously after one week and 
did not lead to an exit from the study. Additionally, 4.3% (1 of 23) of 
the patients in the trial group experienced dizziness and low blood 
pressure (80–105 mmHg/50–60 mmHg), resulting in withdrawal from 
the study. However, this patient was concurrently using other Chinese 
medicines, including sodium aescinate tablets, ginkgo ketone drop 
pills, and compound Xueshuantong capsules containing notoginseng, 
Astragalus, Salvia miltiorrhizae, and Radix scungshentch, to improve 
circulation. Therefore, it is difficult to determine the correlation 
between these adverse events and the use of the trail medication. 
Additionally, two cases of bloating were reported in the placebo group; 
however, these did not meet the criteria for study withdrawal.

3.4 Changes in gut microbiota

There was no significant difference in diversity (Figures 2A,B) and 
species-level abundance (Figures 2C,D) between the placebo and trial 
groups on day 0.

At 12 weeks, there was a greater decrease in microbiome diversity 
in the trail than placebo group; however, the difference was not 
significant (Figure 2A). No clustering was observed for the Bray–Curtis 
dissimilarity in principal coordinates analysis (PCoA) (Figure 2B).

Compared with the placebo group, the trial group exhibited a 
marked increase in the abundance of Enterococcus faecium at 12 weeks. 
Conversely, the abundances of Klebsiella variicola, Roseburia 
intestinalis, Sellimonas intestinalis, and Klebsiella aerogenes considerably 
decreased in the trial group (Figure 2C). When compared with day 0, 
the placebo group showed higher levels of Eubacterium eligens and 
Bacteroides uniformis at week 12. However, the trial group exhibited a 
higher abundance of Enterococcus faecium and a lower abundance of 
Eubacterium eligens at week 12 compared to day 0 (Figure 2D).

The metabolic functions of the neuroactive compounds encoded 
by gut microbes were analyzed. No significant differences were 
observed between the placebo and trial groups on day 0 and at 12 weeks. 
The bifidobacterial shunt, lactate production, and pentose phosphate 
pathway (non-oxidative branch) metabolic functions in the trial group 
were remarkably increased compared to those in the placebo group. 
Meanwhile, glutamine degradation II, nitrate reduction (dissimilatory), 
and fucose degradation considerably decreased (Figure  2E). At 
12 weeks, succinate production, nitrate reduction (dissimilatory), and 
lysine degradation I-related functions were markedly enhanced in the 
placebo group compared to those at day 0. Contrastingly, glycerol 
degradation II, cysteine biosynthesis/homocysteine degradation, and 
homoacetogenesis considerably decreased. At 12 weeks, in the trial 
group, the pentose phosphate pathway (oxidative phase) and pyruvate: 
formate lyase increased compared to those at day 0. Meanwhile, 
glutamate degradation I  and pyruvate: ferredoxin oxidoreductase 
substantially decreased (Figure 2F).

4 Discussion

We observed a significant diminishment of total UPDRS score 
(−7.74 ± 5.92 vs. –1.83 ± 4.14, p < 0.001), Hamilton Depression Scale-24 
score (−3.91 ± 3.99 vs. +1.15 ± 3.42, p < 0.001), Self-Rating Anxiety 
Scale scores (−7.04 ± 5.71 vs. –1.23 ± 2.34, p < 0.001), and Constipation 
scoring system scores (−8.59 ± 4.75 vs. 0.27 ± 1.24, p < 0.001) when 
compared with the placebo group, which means implementing 
probiotics combined with earthworm protein intervention as an 
adjunctive therapy for PD patients were beneficial for both motor and 
certain non-motor symptoms. This improvement surpasses previous 
research findings (19), which reported a 6% decrease in the 
MDS-UPDRS total score with mixed probiotics, as our research 
revealed approximately a 35% (7.74/22.33) reduction (Table 2).

Several animal studies have shown that intestinal dysbiosis affects 
the occurrence and development of PD by increasing intestinal 
permeability, neuroinflammation, accumulation of abnormal levels of 
synuclein fibrils, oxidative stress, and production of neurotransmitters 
(20). However, the exact mechanism by which gut microbiota affects 
PD remains unclear. Non-toxic forms of BF can prevent intestinal 
inflammation in animal models of colitis, protects against 
experimental autoimmune encephalomyelitis, and activates intestinal 
sensory neurons (21). The administration of BF to offspring mice with 
maternal immune activation (MIA) and autistic traits has been shown 
to correct intestinal permeability by ameliorating MIA-related 
alterations in the expression of colonic tight junction proteins, 
specifically claudin 8 and claudin 15. This, in turn, corrects 
MIA-induced abnormalities in serum metabolites, including 
4-ethylene phenyl sulfate, and improves communication, repetitive 
behaviors, anxiety-like behaviors, and sensorimotor function (22). 
While acknowledging the significant differences between humans and 
mice, the observed therapeutic effects may indicate that this could 
be one of the mechanisms underlying the efficacy of BF treatment, 
necessitating further research. Notably, despite the absence of 
detectable BF in the fecal samples of offspring treated with BF and no 
significant difference in microbial richness indicated by the PCoA 
score, BF supplementation still alleviated the changes in specific 
microbiota associated with MIA (22), this findings of Hsiao are 
consistent with our findings that BF839 was not detected in feces and 
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FIGURE 2

Changes in the intestinal microbiota. Diversity of microorganisms at the species-level: (A) Diversity of fecal microbiota at the species-level between the 
placebo and trial groups on day 0 and week 12: (left) community abundance and (right) Shannon diversity index. Elements of box plot: Centerline: 
median; end of the box: upper and lower quartiles; dot: outlier. (B) PCoA scores for the placebo and trial groups on day 0 and week 12 with different 
colors for each group of samples. Between-group differences in microbiota at the species-level: (C) Between-group comparisons conducted to assess 
the microbial abundance on day 0 and at week 12. No significant difference in microbial abundance was observed between the two groups at day 0. 
However, a significant increase/decrease in microbial abundance was observed between the two groups at 12  weeks. (D) Within-group comparison of 
the abundance between day 0 and week 12. At week 12, significant changes in abundance, including both increases and decreases, were observed in 
both groups compared to day 0. *p  <  0.05. Analysis of the intestinal metabolic modules (GMMs): (E) Between-group comparison of the distribution of 
intestinal metabolic modules on day 0 and at week 12. A significant between-group difference was observed at week 12, but not on day 0. (F) Within-
group comparison of the distribution of intestinal metabolic modules on day 0 and at week 12. Significant increases/decreases in abundance in both 
groups were observed at week 12 compared with day 0. *p  <  0.05, **p  <  0.01.
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that microbial community diversity, including diversity index and 
PCoA score, was not significantly different from that in the 
placebo group.

Our findings further support the notion that BF may not establish 
long-term colonization but can modulate the bacterial species 
associated with the disease (22), thereby improving symptoms. 
We observed a marked increase in Enterococcus faecium and a marked 
decrease in Klebsiella faecium in the trial group compared to the 
placebo group. These findings are consistent with previous studies, in 
which Enterococcus faecium was transplanted into mice with PD. The 
Enterococcus faecium significantly increased dopamine levels in the 
brain and ameliorated PD manifestations in these mice (23), while 
Klebsiella has been positively correlated with PD duration and severity 
(24), suggesting a mechanistic link. Klebsiella may produce metabolites 
that are toxic to dopaminergic neurons, directly damaging nervous 
system function; Klebsiella may trigger systemic inflammatory and 
immune responses by activating the intestinal immune system, 
affecting central nervous system function. The microbiome interacts 
with the brain through a complex network of pathways involving the 
immune system, vagus nerve, enteric nervous system, tryptophan 
metabolism, branched-chain amino acids, short-chain fatty acids, 
peptidoglycans, other microbial metabolites (25), and unidentified 
substances. Pinpointing the specific mechanism by which BF839 
exerts its beneficial effects against PD is challenging, as it likely 
involves a combination of factors.

Although earthworms are one of the most commonly used 
anti-PD drugs in traditional Chinese medicine, the underlying 
mechanism remains unclear. To survive, earthworms must code and 
synthesize special proteins, especially those of the proteolytic isozyme 
family, in their digestive system. Earthworm proteases have been used 
to treat cerebrovascular diseases because of their fibrinolytic and 
anticoagulant effects (26). Patients with PD exhibit extensive or focal 
hypoperfusion of the cerebral blood (27). Probiotics may influence PD 
through diverse pathways, primarily by modulating metabolites, 
neurotransmitters, and nutrients that have the potential to reach the 
brain through the bloodstream. As a result, we hypothesized that 
enhancing cerebral blood flow perfusion could potentially increase the 
efficacy of probiotics. Lumbricusin, an 11-merantibacterial peptide 
(NH2-RNRRWCIDQQA) isolated from earthworms, significantly 
increases the proliferation of mouse neural stem cells (MNSCs) 
isolated from the mouse brain, enhances proteasome-mediated 
p27Kip1 degradation in MNSCs, protects MNSCs against 
6-hydroxydopamine-induced apoptosis, and attenuates motor 
impairments in the PD mouse model (15). Therefore, Lumbricusin’s 
potential for treating PD is supported by our study. However, this 
disease modifying mechanism cannot explain completely the 
symptomatic improvement observed in the trial. The potential 
beneficial effect of the investigational product being 
strictly symptomatic.

The two patients who did not receive levodopa in our study had a 
greater improvement in UPDRS scores than patients who received 
levodopa. This is consistent with previous findings showing greater 
improvement in the UPDRS scores of patients taking pramipexole 
without concomitant levodopa (28). Therefore, patients may benefit 
more from earlier treatment without madopar. Surprisingly, three 
patients reported recovery of their lost sense of smell. Given that there 
is no effective method to improve the sense of smell in patients with 
PD, this study provides important clues for improving this symptom.

While probiotic microbial supplementation in humans is 
generally regarded as safe, it may cause an enhanced response to 
allergens during immune regulation. The occurrence of mild 
eczema in 4.3% of the patients in our study serves as evidence of 
this phenomenon. However, the severity and incidence of such 
reactions need to be  further observed in larger sample sizes in 
future studies. Some studies reported that the earthworm protein 
capsule exhibited antihypertensive effects on spontaneously 
hypertensive rats by inhibiting Renin-angiotensin-Aldosterone 
system (RAAS) overactivation and the expression of vascular 
endothelial growth factor protein (VEGF) and transforming growth 
factor-β1 (TGF-β1) (29). Earthworm protein capsule also has 
antihypertensive effects in humans (30). In the current study, one 
patient dropped out of the trail due to low blood pressure. This 
patient was simultaneously taking other traditional Chinese 
medicines that act on the cardiovascular system; therefore, it is 
unclear whether the low blood pressure was directly related to the 
trail material used in this study. However, because a drop in blood 
pressure is a common non-motor symptom in patients with PD, 
levodopa aggravates this tendency. To ensure safety, future studies 
should aim to evaluate the incidence and severity of hypotension in 
a larger cohort of subjects, which may provide a clearer 
understanding of the potential risks associated with the intervention 
and help establish appropriate safety guidelines.

5 Conclusion

The combination of probiotic BF839 and earthworm protein as an 
adjunctive therapy for PD remarkably improved motor and some 
non-motor symptoms without serious adverse effects. The trial group 
demonstrated a substantial increase in Enterococcus faecium levels, 
while Klebsiella exhibited a notable decrease. These findings provide 
potential clues that may explain some of the underlying mechanisms. 
Further studies with larger sample sizes are warranted to more 
precisely define the efficacy, adverse effects, and underlying 
mechanisms involved.

5.1 Limitations

This is only a small sample size pilot trial, the results need to 
be  validated in more samples. We  did not employ specifically 
non-motor symptoms scales for PD patients to assess their 
cardiovascular symptoms, sleep and gastrointestinal function et al., 
which leading to the result is imperfection. We tested only 20 stool 
samples and can not exclude the possibility that maltodextrin 
could affect the gut microbiota, which resulted in insufficient 
confidence in the results of gut microbiota testing. We  do not 
record the levodopa equivalent daily dose, also a limitation of 
the experiment.
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