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Degree centrality-based 
resting-state functional magnetic 
resonance imaging explores 
central mechanisms in lumbar 
disc herniation patients with 
chronic low back pain
Jianbing Mei  and Yong Hu *

Department of Radiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China

Objective: To investigate the central mechanism of lumbar disc herniation in 
patients with chronic low back pain (LDHCP) using resting-state functional 
magnetic resonance imaging (rs-fMRI) utilizing the Degree Centrality (DC) 
method.

Methods: Twenty-five LDHCP and twenty-two healthy controls (HCs) were 
enrolled, and rs-fMRI data from their brains were collected. We  compared 
whole-brain DC values between the LDHCP and HC groups, and examined 
correlations between DC values within the LDHCP group and the Visual 
Analogue Score (VAS), Oswestry Dysfunction Index (ODI), and disease duration. 
Diagnostic efficacy was evaluated using receiver operating characteristic (ROC) 
curve analysis.

Results: LDHCP patients exhibited increased DC values in the bilateral 
cerebellum and brainstem, whereas decreased DC values were noted in the 
left middle temporal gyrus and right post-central gyrus when compared with 
HCs. The DC values of the left middle temporal gyrus were positively correlated 
with VAS (r  =  0.416, p  =  0.039) and ODI (r  =  0.405, p  =  0.045), whereas there was 
no correlation with disease duration (p  >  0.05). Other brain regions showed no 
significant correlations with VAS, ODI, or disease duration (p  >  0.05). Furthermore, 
the results obtained from ROC curve analysis demonstrated that the Area Under 
the Curve (AUC) for the left middle temporal gyrus was 0.929.

Conclusion: The findings indicated local abnormalities in spontaneous neural 
activity and functional connectivity in the bilateral cerebellum, bilateral brainstem, 
left middle temporal gyrus, and right postcentral gyrus among LDHCP patients.
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1 Introduction

Chronic low back pain (CLBP) is characterized by a 
musculoskeletal syndrome involving lumbar, sacral, and buttock pain 
or numbness persisting for more than 3 months. It is lasting, 
etiologically complex, and more prolonged than compared with acute 
pain (4–12 weeks) (1, 2), and represents one of the leading causes of 
disability worldwide, imposing a heavy burden on societies and 
individuals (3). Lumbar disc herniation (LDH) occurs due to a rupture 
of the annulus fibrosus of the intervertebral disc, leading to protrusion 
or prolapse of the nucleus pulposus into the posterior spinal canal. 
This results in irritation or compression of the corresponding nerve 
roots, manifesting as a series of clinical symptoms including CLBP (4, 
5). LDH is one of the main causes of CLBP, resulting in physical 
inactivity, increased psychological distress, diminished social 
functional capacity, and a significant reduction in quality of life (6). 
Chronic pain is associated with both morphological and functional 
reorganization of the brain (7, 8), and lumbar disc herniation patients 
with chronic low back pain (LDHCP) exhibit disruptions in functional 
networks across the brain (9). LDH may cause compression or 
irritation of the spinal cord, potentially leading to damage of spinal 
cord neurons. This damage can be  transmitted to the brain via 
transverse neural pathways, affecting brain function. Furthermore, 
LDH is linked to elevated levels of inflammatory factors (10), which 
may penetrate the brain via circulation, influencing neuronal activity 
and brain function. Consequently, differences in brain mechanisms 
between LDHCP and other causes of CLBP may exist, potentially 
related to the source of pain, neuropathology, and inflammatory 
response. Given its high prevalence and significant contribution to 
disability, understanding the functional properties of the brain in 
LDHCP patients is of paramount importance.

In recent years, the use of resting-state functional magnetic 
resonance imaging (rs-fMRI), a noninvasive neuroimaging technique 
(11), to study neural activity in the brains of CLBP patients has 
garnered increasing attention. Hong Li chose the thalamus as the 
seed for resting-state functional connectivity analysis and found 
abnormal alterations in brain function between the thalamus and the 
dorsolateral prefrontal cortex (DLPFC) in patients with LDHCP (12). 
Zhang used the amplitude of low-frequency fluctuation (ALFF) 
method to find abnormal alterations in brain function in the 
precentral gyrus, paracentral lobule, and para hypophyseal motor 
areas of patients with CLBP (13). Fuqing Zhou used the Regional 
Homogeneity (ReHo) method to find abnormal alterations in brain 
function in the posterior lobe of the right cerebellum, brainstem, left 
medial prefrontal cortex, and bilateral precuneus in patients with 
LDHCP (14). Previous studies on brain function in CLBP patients 
have concentrated on functional connectivity, ALFF, and ReHo. 
However, metrics that provide information on whole-brain functional 
connectivity (e.g., based on seed points) necessitate a priori 
assumptions that could bias the results. Moreover, ALFF and ReHo 
do not capture alterations in whole-brain functional connectivity. 
Degree centrality (DC) is an important component of graph theory 
and network analysis, which can reflect the strength of functional 
connectivity across the brain without a priori assumptions, helping 
to determine the influence of specific brain regions on pain 
processing and revealing how connectivity between these brain 
regions changes in LDHCP patients. The larger the DC value, the 
more brain regions are connected to the node of interest. Among 

several large-scale network metrics, DC is considered the most 
reliable (15) and has been widely used in brain network research 
(16–18). Additionally, there is a paucity of functional magnetic 
resonance imaging (fMRI) research on the brain function of 
individuals within the LDHCP population. Consequently, this study 
will employ DC analysis to thoroughly investigate functional brain 
changes in LDHCP and examine the correlations with the Visual 
Analogue Score (VAS), Oswestry Dysfunction Index (ODI), and 
disease duration.

2 Materials and methods

2.1 Subjects

This prospective study received approval from the Ethics 
Committee of Yongchuan Hospital of Chongqing Medical University 
(Approval No. 2022–72, Date: 2022-06-30). Written informed consent 
was obtained from all participants, and the methods were conducted 
in accordance with the approved guidelines. A total of 27 LDHCP 
outpatients (LDHCP group) and 22 age-and gender-matched healthy 
volunteers (HC group) were recruited from Yongchuan Hospital of 
Chongqing Medical University between August 2022 and August 
2023. Prior to the MRI examination, LDHCP outpatients completed 
a questionnaire regarding their current pain, including disease 
duration, Visual Analogue Score (VAS), and Oswestry Dysfunction 
Index (ODI) questionnaire scale.

Inclusion criteria for the LDHCP group were as follows: (1) right-
handedness; (2) LDH confirmed by clinical presentation, physical 
examination, and lumbar spine CT or MRI; (3) pain duration was 
longer than 3 months and pain intensity was 3 or higher on a 0–10 
VAS during screening; (4) no use of antipyretic-analgesic, sleeping, or 
hormonal medications within 1 week; (5) between the ages of 18 and 
60, regardless of gender; (6) no pain other than LDH-related pain; (7) 
no psychiatric or neurological disorders; and (8) no abnormal findings 
such as infarcts or focal lesions on brain MRI presentation confirmed 
by two uninformed independent radiologists.

Inclusion criteria for the HC group were as follows: (1) right-
handedness; (2) between the ages of 18 and 60, regardless of gender; 
(3) no history of CLBP or other chronic pain conditions; (4) general 
health with no history of chronic systemic diseases, such as diabetes 
mellitus or hypertension; (5) no psychiatric or neurological disorders; 
and (6) absence of abnormal findings, such as infarcts or focal lesions, 
on brain MRI manifestations, as confirmed by two uninformed 
independent radiologists.

Exclusion criteria for the LDHCP and HC groups were as follows: 
(1) contraindications to and intolerance of MRI examination, such as 
claustrophobia or metallic implants; (2) suffering from other chronic 
pain disorders; (3) other abnormal signal changes in the brain 
parenchyma detected by routine MRI; (4) history of psychiatric 
disorders; (5) age < 18 or > 60 years; and (6) history of surgery or 
lumbar vertebral fracture or neurological disorders.

2.2 Instruments and methods

MRI scans were performed on a 3.0 T Siemens Magnetom Verio 
scanner (Siemens Healthcare, Erlangen, Germany) using a 12-channel 
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phased-array head coil. Subjects underwent conventional T2-weighted 
imaging (T2WI), three-dimensional T1-weighted imaging (3D-T1WI) 
and rs-fMRI. To minimize head movement and reduce noise 
interference, a foam pad, antimagnetic earplugs, and cotton balls were 
used. Participants were instructed to stay awake, breathe steadily, relax 
with their eyes open, and refrain from engaging in specific thought 
processes throughout the test.

3D-T1WI scan: A three-dimensional magnetization-prepared 
gradient rapid acquisition gradient echo (MPRAGE) sequence was 
used to obtain sagittal T1WI, which included the whole brain and 
can provide a template for the segmentation of gray matter, white 
matter, and cerebrospinal fluid. The scanning parameters were as 
follows: repetition time (TR) = 2,300 ms, echo time (TE) = 2.27 ms, 
field of vision (FOV) = 256 × 256 mm, scanning slices = 192 layers, 
slice thickness = l mm, slice gap = 0 mm, flip angle = 7°, voxel 
size = 1 × 1 × 1 mm3.

Rs-fMRI scan: The gradient echo-plane echo imaging pulse 
sequence was used, and 240 time points were acquired in this sequence 
for functional data acquisition. The scanning parameters were as 
follows: TE = 30 ms, TR = 2,000 ms, scanning slices = 35 layers, slice 
thickness = 4 mm, slice gap = 0.5 mm, FOV = 216 mm × 216 mm, flip 
angle = 90°.

2.3 Image analysis

Image preprocessing was conducted using the Data Processing & 
Analysis for Brain Imaging (DPABI)1 (19) and SPM122 running on 
MATLAB R2018b.3 The preprocessing steps were: (1) format 
conversion; (2) removal of the data of the first 10 time points (volume) 
to reduce or eliminate the effect of these data on the results; (3) 
temporal layer correction; (4) head-motion correction, which removes 
subject data with translation >3 mm or rotation >3° in either direction; 
(5) alignment using the MPRAGE sequence of images to normalize 
brain Functional images were aligned using MPRAGE sequence 
images, normalized to the Montreal neurological institute (MNI) 
standard template, and resampled with 3 mm × 3 mm × 3 mm voxels; 
(6) linear offset was removed; (7) regression covariates included 
cerebral white matter, cerebrospinal fluid signals, and Friston’s 24 
cephalic motion parameters; (8) filtering was performed to retain the 
signal at 0.01–0.1 Hz.

Voxel DC computation was performed with the DPABI package 
by treating each voxel as a node. This involved extracting the time 
series for each voxel, calculating the Pearson correlation coefficient 
between the time series of each voxel and all other voxels, and setting 
the threshold of the obtained Pearson correlation coefficient matrix to 
the classical reference value of 0.25 (20). Binary DC values were 
employed (21, 22), and Fisher-Z transformation was applied to the DC 
values of each voxel to generate a z-plot of the gray matter DC values 
for each subject. Image smoothing during statistical analysis was 
achieved using a Gaussian kernel function with a half-height width 
of 6 mm.

1 http://rfmri.org/dpabi

2 fil.Ion.ucl.ac.uk/spm

3 https://uk.mathworks.com/products/matlab

2.4 Statistical analysis

Statistical analyses were conducted using the Statistical Product 
and Service Solution (SPSS) software version 27.0 (IBM, Armonk, NY, 
United States). Categorical variables were presented as n (%), and the 
chi-square test was utilized to compare DC values between patients and 
HCs. The Kolmogorov–Smirnov test was employed to assess the 
normality of continuous quantitative data such as age and clinical 
scores. Normally distributed measurements were expressed as 
mean ± standard deviation (SD), and two independent samples t-tests 
were conducted to compare differences in DC values. Non-normally 
distributed measurements were expressed as median (interquartile 
range). Pearson and Spearman correlation analyses were used to 
examine correlations between DC values in different brain regions and 
VAS, ODI, and disease duration. p < 0.05 was considered statistically 
significant. The Gaussian random field (GRF) method was used to 
correct for multiple comparisons (two-tailed, voxel-level p < 0.001; 
GRF correction, cluster-level p < 0.05). Receiver operating characteristic 
(ROC) curves of subjects with differential brain region DC values were 
plotted to analyze the sensitivity and specificity of significant 
differential brain regions in distinguishing between LDHCP and HCs.

3 Results

3.1 Demographic and clinical data

The demographic and clinical features of the enrolled LDHCP and 
the HC groups are listed in Table 1. Two patients in the LDHCP group 
were excluded because of excessive head motion. A total of 25 
LDHCPs and 22 HCs were finally included. There was no statistically 
significant difference in the age and gender of the subjects between the 
two groups (p > 0.05). And Figure 1 demonstrates lumbar spine MRI 
in some patients in the LDHCP group.

3.2 DC value results

Compared with the HC group, the cerebellar and brainstem DC 
values were increased bilaterally in the LDHCP group; the DC values 
were decreased in the left middle temporal gyrus and the right 
postcentral gyrus, and the differences were statistically significant 
(two-tailed, voxel-level p < 0.001; GRF correction, cluster-level p < 0.05). 
The difference brain regions are shown in Table 2 and Figure 2.

3.3 Clinical magnetic resonance imaging 
correlations

The DC values of the left middle temporal gyrus in the LDHCP 
group showed a positive correlation with the VAS (r = 0.416, p = 0.039) 
and ODI (r = 0.405, p = 0.045), but no significant correlation with 
disease duration (p > 0.05). In addition, the DC values of the remaining 
brain regions had no correlation with VAS, ODI, and disease duration 
(p > 0.05) (Figures 3A,B).
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3.4 ROC curve analysis

The DC values of the brain regions with differences between the 
LDHCP and HC groups were extracted, and the ROC curves were 
plotted to verify the diagnostic efficacy of the DC values of the 
different brain regions. The results show the area under the curve 
(AUC): left brainstem and left cerebellum (0.840, 95% CI: 0.730–0.950, 
P  < 0.001), right brainstem and right cerebellum (0.773, 95% CI: 
0.638–0.908, P  < 0.001), left middle temporal gyrus (0.929, 
95%CI:0.859–1.000, P  < 0.001), and right posterior central gyrus 
(0.836, 95%CI:0.718–0.955, P < 0.001) (Figures 4A,B).

4 Discussion

The current study yielded three main observations: (1) the LDHCP 
group demonstrated increased DC values within the bilateral cerebellum 
and brainstem regions, alongside decreased DC values in the left middle 
temporal gyrus and right postcentral gyrus, compared to HCs. (2) DC 
values in the left middle temporal gyrus were positively correlated with 
the VAS and ODI, with no correlation observed concerning disease 
duration. Moreover, DC values in other brain regions did not correlate 
with VAS, ODI, or disease duration. (3) ROC curve analysis revealed 
high diagnostic efficacy of the left middle temporal gyrus.

TABLE 1 Demographic characteristics of the LDHCP group and HC group.

Group Age Gender Disease 
duration (year)

VAS ODI

Male Female

LDHCP group 

(n = 25)
35.40 ± 10.96 12 (48.0%) 13 (52.0%) 3.0 (4.8) 5.32 ± 1.65 0.25 ± 0.15

HC group (n = 22) 31.45 ± 9.63 14 (63.6%) 8 (36.4%) – – –

X2/t −1.466 1.158 – – –

P 0.15 0.282 – – –

FIGURE 1

Lumbar spine MRI in some patients in the LDHCP group. Red arrows represent herniated discs.
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The cerebellum, a crucial anatomical structure situated between 
the brainstem and cerebral hemispheres, plays a pivotal role in 
coordinating and regulating various functions, including movement, 
balance, and select cognitive processes such as emotional processing, 
learning, memory, and pain regulation (23–28). Animal studies have 
indicated that both electrical and chemical stimulation of the 
cerebellum can modulate nociceptive responses (29, 30). Furthermore, 
studies have consistently shown that cerebellar activation in both 
acute and chronic pain scenarios (31–33). Cerebellar lesions affect 
pain perception in humans, leading to enhanced nociception and 
diminished analgesia (34). In this study, elevated DC in the bilateral 
cerebellum of LDHCP patients suggests increased connectivity with 
other brain regions, potentially related to pain processing, modulation, 
or other neural mechanisms associated with pain. It is conceivable that 
LDHCP brains may employ compensatory mechanisms in response 
to chronic pain, with the cerebellum assuming a crucial role in this 
compensatory process. This could involve maintaining body balance 
and controlling movement to adapt to the effects of pain. Additionally, 
certain pain conditions may induce structural and functional brain 

changes, with the observed increased DC values in the cerebellum 
possibly reflecting abnormal remodeling in response to pain-
related alterations.

TABLE 2 Brain region with a significant difference in DC value between 
the LDHCP group and HC group.

Brain 
regions

Cluster 
size 

(voxels)

Peak MNI 
coordinates

Peak 
point 
t-value

x y z

Brainstem_L, 

Cerebellum_L
50 −3 −36 −30 4.35392

Brainstem_R, 

Cerebellum_R
44 9 −36 −51 4.4352

Temporal_

Mid_L
39 −51 −24 −15 −4.69497

Postcentral_R 35 21 −42 57 −5.02707

Two-sample t-test results of DC value between the LDHCP and HC groups (two-tailed, 
voxel-level P < 0.001; GRF correction, cluster-level P < 0.05).

FIGURE 2

Spatial location map of abnormally activated brain regions in the LDHCP.
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The brainstem, a fundamental component of the central nervous 
system, oversees numerous vital physiological functions and 
neuromodulatory processes. It comprises regions capable of processing 
incremental nociceptive information and modulating neurotransmission 
at primary nociceptive synapses, both directly and indirectly (35, 36). 
Preclinical and human studies on brainstem pain modulatory circuits 
have elucidated the pain-modulatory functions of several key brainstem 
structures (2, 37, 38). This study’s observation of increased DC values in 
the brainstem among LDHCP patients further supports the brainstem’s 
role as a crucial neuromodulatory hub in transmitting and regulating 

pain signals. Additionally, elevated DC values in the brainstem may relate 
to increased inflammation and neuroimmune responses. Chronic pain 
states can provoke inflammatory factor release and immune response 
activation (39), impacting the brainstem and resulting in elevated DC 
values. Persistent chronic pain may also induce neuroplastic changes, 
including increased excitatory synaptic transmission and reduced 
inhibitory synaptic transmission (40). These neuroplastic changes within 
the brainstem, a critical node in neural signaling, can contribute to 
increased DC values. Furthermore, LDHCP may undergo changes in 
central sensitization, potentially leading to abnormal pain signal 
amplification or transmission at the brainstem level, and an increase in 
brainstem DC values is one way in which the central nervous system 
adapts to the state of pain.

The left middle temporal gyrus is instrumental in various cognitive 
domains, including language, hearing, vision, memory, and emotion. 
This region collaborates with other brain regions to form a complex 
neural network that is foundational to higher cognitive functions in 
humans. Studies have shown that temporal lobe involvement is 
associated with unpleasant emotions (41–43) and that the temporal 
lobe is primarily responsible for pain perception and emotional 
processing (5, 44, 45). Presently, researchers are observing structural 
and functional changes in this region in a variety of pain-related 
disorders (46–52). In our study, we discovered a reduction in the DC 
value of LDHCP in the left middle temporal gyrus, indicating potential 
difficulties in regulating pain and emotions; such dysregulation could 
lead to increased pain or emotional instability. This result may also 
relate to abnormal neural activity in this brain region, suggesting that 
the patient’s brain is attempting to adjust to the effects of pain. It is 
noteworthy that these findings may contribute to the development of 
more targeted treatment strategies.

The postcentral gyrus, a pivotal region of the cerebral cortex, is 
recognized for its significant contribution to cognitive control, 
emotion regulation, and information processing, especially in relation 
to the default mode network (DMN) (53, 54). Our study identified a 
reduction in the DC value of LDHCP within the right postcentral 
gyrus, suggesting a potential disruption in neural network connectivity 
in this area and potentially leading to cognitive and affective 
dysfunctions. Additionally, the postcentral gyrus is reputed for its role 
in the pain inhibition process (55, 56). Thus, diminished DC values in 
this region imply a compromised ability in pain modulation, which 
could influence pain perception and management in LDHCP, hinting 

FIGURE 3

(A) Correlation between the left middle temporal gyrus DC values and VAS (r  =  0.416, p  =  0.039). (B) Correlation between the left middle temporal gyrus 
DC values and ODI (r  =  0.405, p  =  0.045).

FIGURE 4

(A) ROC curves using brain regions with elevated DC values in the 
LDHCP group as discriminatory markers. (B) ROC curves using brain 
regions with reduced DC values in the LDHCP group as 
differentiating markers.
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at novel neural mechanisms underlying pain experiences. Moreover, 
these reduced DC values might be indicative of the phenomenon of 
pain chronicity, implying that the neural circuitry in the right 
postcentral gyrus undergoes adaptive changes and remodeling in 
response to prolonged pain conditions, which may be  one of the 
potential mechanisms for chronicity in pain perception in patients.

Correlation analysis in our study unveiled a positive association 
between the DC value of the left middle temporal gyrus and both VAS 
and ODI scores in the LDHCP group. This suggests that the left middle 
temporal gyrus may have a distinctive neuroanatomical function in pain 
transmission and processing in LDHCP patients, contributing to pain 
perception and severity of the condition. The absence of a correlation 
between the DC values of the left middle temporal gyrus and disease 
duration in the LDHCP group could stem from individual clinical 
variations, such as diverse treatment histories among patients, potentially 
obscuring any direct association with disease duration. These findings 
underscore the need for additional research to elucidate the physiological 
and pathological mechanisms at play. Furthermore, while functional 
connectivity abnormalities were also present in other brain regions, they 
did not correlate with VAS, ODI, or disease duration. This suggests that 
various brain regions may have distinct roles in sustaining LDHCP, a 
condition characterized by a complex interplay of physical, psychological, 
and social elements. The results from ROC curve analysis, demonstrating 
an AUC of 0.929 for the left middle temporal gyrus, underscore a 
significant differentiation between the LDHCP and HC groups. This 
leads us to posit that the DC value of the left middle temporal gyrus may 
serve as a potential objective diagnostic marker for LDHCP.

From a clinical perspective, our study provides new perspectives 
on the treatment of LDHCP. First of all, by gaining a deeper 
understanding of the neurobiological hallmarks of the brain in LDHCP 
patients, we can target these abnormalities for more targeted treatment. 
For example, noninvasive brain stimulation techniques can be used to 
modulate the excitability of functional brain regions, target brain-
derived neurotrophic factors to modulate neuroplasticity, and apply 
traditional rehabilitation therapies to regulate functional brain activity. 
In addition, our study provides new methods for the early diagnosis of 
LDHCP and prediction of patient outcomes, which can help clinicians 
detect lesions earlier and take appropriate therapeutic measures for 
better management and treatment of patients with LDHCP.

It is worth mentioning that in capturing subtle differences in the 
brain networks of LDHCP patients, DC can complement other 
network topological indicators, thus providing a more comprehensive 
understanding. Firstly, DC evaluates the number of aberrant 
functional connectivity in the brain network, which provides basic 
information about the importance of nodes in the network but 
overlooks the influence of nodes on information transmission or their 
position in the entire network. In comparison, global indicators such 
as clustering coefficient (Cp), characteristic path length (Lp), global 
efficiency (Eg), and small-world attribute (σ) offer a more holistic view 
of network characteristics (57). Cp reflects the degree of connectivity 
between nodes in the network, Lp evaluates the information 
transmission capacity of the network, Eg assesses the network’s ability 
to globally transmit information, and σ quantifies the network’s small-
world characteristics. These indicators help capture changes in the 
overall structure of brain networks in LDHCP patients, providing a 
more comprehensive understanding. In addition, local indicators such 
as node betweenness and node efficiency can help reveal the 
importance and influence of individual nodes in information 

transmission. Node betweenness reflects the contribution rate of 
nodes to information exchange with other nodes, whereas node 
efficiency reflects the ability of nodes to propagate information to 
other network nodes. These indicators can help capture key nodes 
with significant effects in the brain networks of LDHCP patients, 
revealing subtle differences in the network. Therefore, future research 
should consider integrating degree centrality with other global and 
local indicators to comprehensively analyze changes in the brain 
networks of LDHCP patients, leading to a deeper understanding of the 
neural mechanisms underlying pain and related network alterations.

It is crucial to recognize the limitations inherent in this study. Firstly, 
being a single-center cross-sectional study with a relatively small 
participant base limits our ability to establish a direct causal link between 
the observed neural patterns and LDHCP. Future research should aim 
to conduct longitudinal studies with larger sample sizes to provide a 
more definitive exploration of these relationships. Secondly, in this 
study, only DC was analyzed, after which more network topology 
metrics will be included to characterize the changes in the functional 
networks of LDHCP patients from multiple perspectives. Thirdly, our 
study lacked an assessment of cognitive function and neuropsychological 
aspects of LDHCP. Prolonged low back pain can adversely impact 
patients’ emotional well-being, leading to symptoms such as irritability, 
anxiety, and depression. To gain a more holistic understanding of CLBP, 
future investigations should incorporate relevant clinical assessment 
tools to accurately evaluate the psychological status of patients. Fourthly, 
the focus was exclusively on brain activity, overlooking the assessment 
of clinical pain-related inflammatory markers. An integrative approach 
examining both neural and inflammatory indicators in future studies 
could illuminate the complex biological and neurophysiological 
dynamics involved. Lastly, while this study validated the diagnostic 
efficacy of different brain region DC values for LDHCP using ROC 
curves, we  recognize that in actual clinical practice, the definitive 
diagnosis of LDHCP relies primarily on clinical presentation and lumbar 
MRI/CT imaging. Therefore, the clinical significance of using brain 
function indicators as new neurobiological markers is relatively limited.

5 Conclusion

This study illuminated localized disruptions in spontaneous 
neural activity and functional connectivity in the bilateral cerebellum, 
bilateral brainstem, left middle temporal gyrus, and right postcentral 
gyrus in LDHCP. These abnormally connected brain regions may 
be potential neurobiological markers of LDHCP and are expected to 
offer a fresh perspective on the treatment of LDHCP.
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