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Enhanced nerve function 
recovery in radial nerve palsy 
patients with humerus shaft 
fracture: a randomized study of 
low-frequency pulse electrical 
stimulation combined with 
exercise therapy
Shaoyan Shi , Xuehai Ou  and Xiaolong Du *

Honghui Hospital, Xi'an Jiaotong University, Xi'an, China

Objective: To evaluate the effect of low-frequency pulse electrical stimulation 
plus exercise therapy on nerve function recovery in patients with radial nerve 
palsy after humerus shaft fracture.

Methods: A total of 110 patients with humerus shaft fracture and radial nerve 
injury admitted to our hospital from January 2017 to December 2021 were 
recruited. They were randomized to receive either conventional exercise 
therapy (control group) or conventional exercise therapy plus low-frequency 
pulse electrical stimulation (study group) according to the random number table 
method, with 55 cases in each. Clinical efficacy, muscle strength recovery, nerve 
conduction velocity (MCV), amplitude, wrist joint, and elbow joint activities of 
patients were analyzed and compared.

Results: Patients with low frequency stimulation (LFS) showed significantly 
higher treatment effectiveness (89.09%) than those with exercise therapy 
only (69.09%). The incorporation of LFS with exercise therapy provided more 
enhancement in the muscle strength of wrist extensor and total finger extensor 
in patients when compared with a mere exercise intervention, suggesting better 
muscle function recovery of patients produced by LFS. Moreover, a significant 
increase in MCV and its amplitude was observed in all included patients, among 
which those receiving LFS showed a greater escalation of MCV and its amplitude. 
Following a treatment duration of 6  months, more patients in the LFS cohort 
were reported to achieve a wrist extension and elbow extension with an angle 
over 45° than the controls. There was no notable variance in adverse responses 
noted between the two patient groups.

Conclusion: In patients afflicted with humerus shaft fracture and radial nerve 
injury, the amalgamation of exercise therapy with low-frequency pulse electrical 
stimulation can significantly improve clinical efficacy, promote nerve function, 
and muscle strength recovery, and features a high safety profile.

Relevance to clinical practice: The combination of exercise therapy and low-
frequency pulsed electrical stimulation can notably improve the promotion of 
neurologic function and muscle strength recovery in patients with humerus 
shaft fractures and radial nerve injuries with a high degree of safety.
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1 Introduction

Peripheral nerve injuries accompanied by fractures are 
predominantly reported in the upper limbs, constituting 
approximately 95% of all cases of fractures with peripheral nerve 
damage. Among these, radial nerve injuries associated with humeral 
shaft fractures represent the most common scenario (1). Humeral 
shaft fractures account for about 3% of all orthopedic injuries (2). 
Radial nerve palsy (RNP) is a common complication of humeral shaft 
fractures and is classified into primary RNP and secondary RNP (3). 
Primary RNP refers to nerve injuries potentially induced by localized 
compression at the fracture site, transverse disruption of fracture 
fragments, or local swelling at the moment of the fracture (4). 
Secondary RNP, also known as iatrogenic RNP, develops as a result of 
medical treatment or intervention, accounting for 10%–20% of all 
humeral shaft fracture-related RNPs (5). The occurrence of radial 
nerve injuries is closely associated with its anatomical location. The 
close proximity to the humeral shaft in the middle and lower third 
renders the radial nerve susceptible to injury in cases of humeral shaft 
fractures. Excessive callus formation, radial head dislocation, and 
inadvertent surgical trauma can also lead to radial nerve compression 
(6). Recent retrospective studies have reported an incidence of radial 
nerve injuries associated with humeral shaft fractures ranging from 
11% to 18% (7).

Damage to the radial nerve can result in deficiencies in both 
motor and sensory capacities, chiefly marked by the inability to 
perform wrist, thumb, and finger extensions, coupled with numbness 
on the dorsal side of the hand. Recovery from radial nerve injuries 
tends to be  protracted, fueling an ongoing discourse about their 
clinical treatment strategies (8). The primary objectives in managing 
radial nerve palsy involve addressing muscle weakness, preventing 
muscular wasting, enhancing the overall quality of life, and 
minimizing risks of disability (9). Low-frequency pulsed electrical 
stimulation, as a clinically commonly used rehabilitation treatment, is 
often combined with other drug therapies to promote the recovery of 
elderly patients with intertrochanteric hip fractures (10), and has 
shown good clinical efficacy in promoting the recovery of limb 
function in children with brachial plexus nerve injuries (11). 
Traditional approaches to humeral shaft fractures with concomitant 
radial nerve injuries typically involve conservative treatment, but the 
treatment outcomes are incongruent across studies. Low-frequency 
pulse electrical stimulation therapy refers to a treatment approach that 
involves applying electrical currents with a low pulse frequency, 
typically ranging from 1 to 10 Hz or lower, to the body for therapeutic 
purposes (12). In recent years, with the continuous advancement of 
medical devices, Devices utilizing low-frequency pulse electrical 
stimulation therapy have been progressively incorporated into the 
clinical treatment of diverse medical conditions, exhibiting 

encouraging outcomes across a spectrum of medical disciplines (13). 
In the current study, a combination of physical exercise and 
low-frequency pulse electrical stimulation was applied and yielded 
positive outcomes in cases of humeral shaft fractures with radial 
nerve injuries.

2 Materials and methods

2.1 Study subjects and design

Our Institutional Review Board approved this single-center, 
randomized, double-blinded, parallel controlled trial (project approval 
number researchregistry9461), registered at ClinicalTrials.gov.1 The 
study was carried out in the Honghui Hospital, Xi’an Jiaotong 
University, from January 2017 to December 2021. A total of 110 
patients with humerus shaft fracture and radial nerve injury admitted 
to our hospital from January 2017 to December 2021 were recruited 
and randomized to receive either conventional exercise therapy 
(control group) or conventional exercise therapy plus low-frequency 
pulse electrical stimulation (study group) according to the random 
number table method, with 55 cases in each group. Before patients are 
officially enrolled, neither the experimenter nor the participants can 
know the specific grouping situation. Before enrollment, subjects were 
informed about the study protocol and provided informed consent. 
All procedures in this study adhered to the ethical principles of the 
Helsinki Declaration regarding clinical research and were approved by 
our hospital’s ethics committee (no. 2021092106).

2.2 Inclusion and exclusion criteria

Inclusion criteria: (1) Confirmed humeral shaft fracture by 
X-ray or other examinations; (2) Received fracture treatment at our 
hospital; (3) Radial nerve injury confirmed by electromyography: 
(1) Complete injury: There is spontaneous electrical activity, but 
there is no spontaneous electrical activity in MUP (Motor Unit 
Potential). CMAP (Compound Muscle Action Potential), SNAP 
(Sensory Nerve Action Potential), and MNCV (Motor Nerve 
Conduction Velocity) all disappear. (2) Severe injury: There is 
spontaneous electrical activity, but no spontaneous electrical 
activity in MUP. The amplitude of CMAP decreases, SNAP 
decreases or disappears, and MNCV slows down or disappears. (3) 
Incomplete injury: There is prolongation of spontaneous electrical 

1 https://www.researchregistry.com
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activity or insertion potential, reduction of MUP, decrease in 
CMAP and SNAP, while MNCV remains normal or decelerates (14, 
15). (4) Age between 18 and 80 years; (5) Patients with 
initial fractures.

Exclusion criteria: (1) Neural compression is not relieved, and 
nerve rupture is not repaired; (2) Other peripheral nerve injuries, such 
as ulnar nerve injury or median nerve injury; (3) Uncontrolled 
diseases that affect postoperative recovery, such as hypertension, 
diabetes, or hyperlipidemia; (4) Coagulation disorders, immune 
dysfunction, or similar conditions; (5) Communication barriers or 
mental disorders; (6) Poor compliance, unable to cooperate with the 
rehabilitation treatment plan or unable to accept postoperative 
follow-up.

2.3 Intervention measures

Upon admission, all patients received intramuscular injections of 
nerve growth factor at a dose of 15,000 U daily, along with oral 
administration of 10 mg of vitamin B1, thrice daily, and 500 μg of 
methylcobalamin, thrice daily, for 30 days. During the study period, 
patients in both groups did not take other neurotrophic drugs. 
Patients with open fractures underwent surgical treatment, including 
exploration of the elbow blood vessels and nerves. If there was a 
combination of blood vessel and nerve rupture, the stump was treated, 
and anastomosis was performed after stable fixation with Kirschner 
wires at the elbow. The control group received exercise therapy, while 
the study group received low-frequency pulse electrical stimulation 
therapy combined with exercise therapy. Based on the patient’s 
tolerance, exercise therapy should be conducted 1 to 2 times per day. 
The same physicians administered the treatment to the individuals 
and assessed their clinical scores.

Exercise therapy encompassed both active and passive exercises. 
Passive exercises involved gently performing slow joint movements to 
achieve a normal range of motion. For the affected limb, gentle 
pressing and tapping of acupoints such as Hegu, Quchi, and Waiguan 
were conducted, accompanied by a light brushing of the active muscle 
surfaces in the direction of joint movement. Active exercises 
comprised wrist extension and finger extension exercises, progressively 
transitioning to muscle contraction exercises and resistance training. 
Exercise therapy was started the day after fracture surgery. The 
intervention lasted for 2 months, gradually transitioning from passive 
to active exercises.

Low frequency pulsed electrical stimulation was used for low 
frequency pulsed electrical stimulation. The process involved the use 
of two electrodes (4 cm × 8 cm) placed in a water-soaked sponge bag, 
secured onto the extensor digitorum brevis, extensor hallucis longus, 
and radial wrist extensor muscles on the affected side. The positive 
electrode was positioned in proximity to the site of radial nerve injury, 
while the negative electrode was placed distally.

The stimulation of finger and wrist extension was achieved by 
adjusting the current intensity on the device unit, ranging from 2 to 
19.5 mA, with a frequency of 2 to 10 Hz, using the Keypoint four-
channel electromyography evoked potential instrument (Dantec 
Dynamics, Denmark). A biphasic current with symmetrical waveform 
was delivered continuously for 15 s, with a rise time of 3 s and a rest 
period of 30 s. The pulse duration was set at 250 μs. The intensity was 
individually adjusted by each subject to their maximum tolerable limit 

and applied four times per session on the affected limb, with a total 
intervention period of 2 months.

2.4 Outcome measures

2.4.1 Clinical efficacy
After 6 months of treatment, the nerve function improvement 

rates of the two groups were compared. Evaluation was conducted 
based on the functional criteria for repaired radial nerve injuries, 
which were categorized as significantly effective, effective, less 
effective, or ineffective. The evaluation criteria for radial nerve 
function refer to the “Trial Standards for Functional Evaluation of 
Upper Limbs of the Chinese Medical Association Hand Surgery 
Society” (16). Specifically, significantly effective was defined as a score 
of 13 to 16, effective as a score of 9 to 12, less effective as a score of 5 
to 8, and ineffective as a score of ≤4. The clinical effective rate was 
calculated as follows: Clinical effective rate = (significantly effective + 
effective)/Total number of cases × 100.00%.

2.4.2 Electromyography results
Prior to treatment and after 6 months of treatment, 

electromyographic (EMG) indicators of extensor digitorum and wrist 
extensor muscle strength recovery were assessed and compared using 
an electromyography apparatus for both groups of patients. The 
measurement of muscle strength referred to the muscle strength 
observation indicators established by Wang Rao et  al. (17). 
Electromyography indicators of muscle strength recovery of the 
extensor digitorum communis and extensor carpi radialis longus 
muscles in the two groups of patients were detected and compared 
using electromyography before and after treatment.

Additionally, needle electrodes were inserted into the muscle belly 
of the wrist extensor and extensor digitorum muscles to serve as 
9033G0701 electromyograph (Dantec Dynamics, Denmark). 
Stimulation potentials were applied at sites including the biceps 
brachii and triceps brachii intramuscular heads near the axilla, as well 
as at the Erb’s point near the suprascapular nerve, long thoracic nerve, 
and distal to the dorsal scapular nerve. This procedure allowed for the 
measurement of nerve conduction velocity (MCV) and amplitude of 
the EMG signals.

2.4.3 Wrist and elbow extension angles
After 6 months of treatment, wrist and elbow extension angles 

were measured. The range of motion (ROM) of normal active 
movements of the wrist and elbow joints was measured. The normal 
ROM for wrist flexion and extension is from 60° dorsiflexion to 60° 
palmar flexion. The functional position for lateral deviation is 0°~10°, 
and the normal ROM for wrist lateral deviation ranges from 20° radial 
deviation to 30° ulnar deviation. The normal ROM for the elbow joint 
is as follows: flexion from 0° to 150°, extension from 0° to 10° 
hyperextension, pronation from 0° to 90°, and supination from 0° to 
90°. An angle greater than 60° was classified as excellent, 45°–60° as 
good, and less than 45° as poor (16).

2.4.4 Complications
All patients were followed up continuously for 2 months, with 

weekly visits to record and compare the occurrence rates of infections, 
joint pain, and delayed fracture healing during the treatment period.
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2.5 Statistical analysis

Participants did not know which group they were assigned to. The 
staff member responsible for sample selection was unaware of the 
specific implementation plan for each group. The staff member 
responsible for data collection was unaware of the group assignments 
and the specific implementation plan for each group. The researcher 
was aware of the three specific implementation plans but did not know 
the group assignments. Data were processed and analyzed using SPSS 
22.0 software, and figures were generated using GraphPad Prism 9.0. 
Measurement data were expressed as mean ± standard deviation and 
compared between groups using the independent samples t-test. 
Count data were expressed as rates and compared between groups 
using the chi-square test. A significance level of α = 0.05 was used to 
determine statistical significance.

3 Results

3.1 Baseline patient profiles

All subjects were included in the observation, and there were no 
dropouts during the study period. All patients completed follow-up 
visits after surgery. The comparison of baseline characteristics 
between the two patient groups is presented in Table 1. In the control 
group, there were 36 males and 19 females, with an average age of 
48.26 ± 7.15 years and an average duration of illness of 
4.25 ± 1.05 weeks. Among them, 22 cases had left-sided injuries and 
33 cases had right-sided injuries. The distribution of fractures 
included 38 cases of mid-upper humeral fractures, 17 cases of 
humeral condyle fractures, 9 cases of open fractures, and 46 cases of 
closed fractures. In the observation group, there were 32 males and 
23 females, with an average age of 46.95 ± 9.21 years and an average 

duration of illness of 4.11 ± 1.17 weeks. Among them, 27 cases had 
left-sided injuries and 28 cases had right-sided injuries. The 
distribution of fractures included 34 cases of mid-upper humeral 
fractures, 21 cases of humeral condyle fractures, 11 cases of open 
fractures, and 44 cases of closed fractures. The two groups were well-
balanced in terms of baseline patient profiles (p > 0.05), 
indicating comparability.

3.2 Clinical efficacy

In the control group, there were 11 cases with significantly 
effective outcomes, 27 cases with effective outcomes, 10 cases with less 
effective outcomes, and 7 cases with ineffective outcomes, yielding a 
clinical effective rate of 69.09% (38/55). In the study group, 23 cases 
with significantly effective outcomes, 26 cases with effective outcomes, 
4 cases with less effective outcomes, and 2 cases with ineffective 
outcomes, yielding a clinical effective rate of 89.09% (49/55). Patients 
with low frequency stimulation (LFS) showed significantly higher 
treatment effectiveness (89.09%) than those with exercise therapy only 
(69.09; Table 2; p < 0.05).

3.3 Comparison of wrist extensor and 
finger extensor muscle strength

Before treatment, there were no significant differences in wrist 
extensor and finger extensor muscle strength between the two groups 
(p > 0.05). The incorporation of LFS with exercise therapy provided 
more enhancement in the muscle strength of wrist extensor and total 
finger extensor in patients when compared with mere exercise 
intervention, suggesting better muscle function recovery of patients 
produced by LFS (Figure 1; p < 0.05).

3.4 Comparison of nerve conduction 
velocity and amplitude

Prior to treatment, no significant differences were observed in 
MCV and amplitude between the two groups (p > 0.05). Moreover, a 
significant increase in MCV and its amplitude was observed in all 
included patients, among which those receiving LFS showed a greater 
escalation of MCV and its amplitude (Figure 2; p < 0.05).

3.5 Comparison of wrist and elbow 
extension angles

In terms of wrist extension angles, in the control group, there were 
16 cases rated as “excellent,” 23 cases as “good,” and 16 cases as “poor.” 
In the study group, there were 30 cases rated as “excellent,” 19 cases as 
“good,” and 6 cases as “poor.” As for elbow extension angles, In the 
control group, there were 18 cases rated as “excellent,” 20 cases as 
“good,” and 17 cases as “poor.” In the study group, there were 26 cases 
rated as “excellent,” 24 cases as “good,” and 5 cases as “poor.” Following 
a treatment duration of 6 months, more patients in the LFS cohort 
were reported to achieve a wrist extension and elbow extension with 
an angle over 45° than the controls (Tables 3, 4; p < 0.05).

TABLE 1 Patient characteristics.

Control 
group

Study 
group

χ2/t p-
value

n 55 55

Age (x±s, years old) 48.26 ± 7.15 46.95 ± 9.21 0.833 0.407

Gender (n, %) 0.616 0.432

Male 36 32

Female 19 23

Disease course (x±s, 

years weeks)

4.25 ± 1.05 4.11 ± 1.17 0.660 0.510

Fracture side (n, %) 0.920 0.338

Left 22 27

Right 33 28

Fracture location (n, %) 0.643 0.423

Middle and lower part 38 34

Supracondylar 17 21

Type of injury 0.244 0.621

Open fractures 9 11

Closed fractures 46 44
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TABLE 2 Comparison of clinical efficacy.

n
Significantly 

effective
Effective Less effective Ineffective Effective rate

Control group 55 11 27 10 7 38 (69.09%)

Study group 55 23 26 4 2 49 (89.09%)

χ2 6.652

P 0.01

FIGURE 1

Comparison of wrist extensor and finger extensor muscle strength, ***p  <  0.001.

FIGURE 2

Comparison of nerve conduction velocity and amplitude, ***p  <  0.001.

TABLE 3 Comparison of wrist extension angles.

n Excellent Good Poor
Effective 

rate

Control 

group

55 16 23 16 39 (70.91%)

Study 

group

55 30 19 6 49 (89.09%)

χ2 5.682

P 0.017

TABLE 4 Comparison of elbow extension angles.

n Excellent Good Poor
Effective 

rate

Control 

group

55 18 20 17 38 (69.09%)

Study 

group

55 26 24 5 50 (90.91%)

χ2 8.182

P 0.004
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3.6 Comparison of complications during 
follow-up

In the control group, there were 2 cases of incisional infection, 1 
case of joint pain, 1 case of delayed fracture healing, and 1 case of 
other complications, resulting in a total complication rate of 9.09% 
(5/55). In the study group, there were 3 cases of incisional infection, 2 
cases of joint pain, and 2 cases of other complications, yielding a total 
complication rate of 12.73% (7/55). No significant difference in 
adverse reactions was observed between the two groups of patients 
(p > 0.05; Table 5).

4 Discussion

The radial nerve, the largest nerve in the upper limb, originates 
from the posterior cord of the brachial plexus and gives off nerve 
branches. Its fibers arise from the C5-8 spinal nerve roots. The radial 
nerve is situated within the spiral groove of the humerus shaft and is 
frequently jeopardized following humeral shaft fractures (18). Radial 
nerve injuries are often transient and can be  managed with 
conservative treatments such as rest, functional exercises, 
nonsteroidal anti-inflammatory drugs, and functional bracing. Radial 
nerve injury represents a prevalent category within peripheral nerve 
injuries. Despite the regenerative capabilities possessed by damaged 
axons, their functional recovery is often suboptimal. Without 
neuronal contact, injured nerves progressively lose their regenerative 
capacity in a time-sensitive and length-dependent manner. Schwann 
cells, which lose nerve innervation, eventually atrophy and cannot 
support axon regeneration (19). Thus, it is vital to provide appropriate 
treatment strategies that facilitate the reconnection of nerves in the 
affected area and enhance the speed of nerve regeneration (20). The 
prognosis of humeral shaft fractures combined with radial nerve 
injury varies with the degree of injury, the location of the damage, 
and most patients’ symptoms resolve within a few weeks. However, 
severe cases may persist for months, years, or even lifetime (21).

In the present study, low-frequency pulse electrical stimulation 
therapy was incorporated with exercise therapy for radial nerve palsy 
following humeral shaft fractures, resulting in significant benefits in 
muscle strength recovery, elbow and wrist extension angles, as well as 
nerve conduction velocity and amplitude. Exercise therapy is the 
fundamental treatment approach for humeral shaft fractures 
complicated with radial nerve injury, primarily aimed at restoring the 
functional movement of relevant muscles. Early mobilization of 
affected joints and muscles is necessary to prevent tendon adhesions 
and joint stiffness. Nevertheless, the impact of exercise therapy alone 
is constrained (22). Low-frequency pulse electrical stimulation therapy 
is an emerging clinical treatment modality that can effectively regulate 

neurophysiological activities, inhibit nerve degeneration, and promote 
nerve regeneration (23). Previous research has shown that 
low-frequency pulse electrical stimulation therapy has positive effects 
on patients with median nerve injury caused by carpal tunnel release 
surgery, accelerating axon regeneration and muscle nerve innervation 
without compromising the functional recovery of carpal tunnel 
syndrome patients (12). Research has demonstrated that low-frequency 
pulse electrical stimulation therapy can promote M2 macrophage 
expression, activate early steps in muscle regeneration, and accelerate 
collagen synthesis, thereby enhancing nerve repair speed (24). 
Furthermore, low-frequency stimulation therapy induces Ca2+ influx, 
leading to upregulation of brain-derived neurotrophic factor (BDNF) 
and tyrosine kinase receptor B expression in nerve cells (25). 
Overexpression of BDNF inhibits phosphodiesterase activity, causing 
sustained increases in cAMP levels, activating cyclic AMP response 
element-binding protein (CREB), upregulating regeneration-associated 
genes (RAGs) such as tubulin-alpha-1 and growth-associated 
protein-43 (GAP-43) expression, and suppressing Rho to accelerate 
cytoskeletal formation, thereby enhancing nerve regeneration (26, 27). 
In addition to nerve cells, Schwann cells are also affected by electrical 
stimulation. In a tibial nerve transection animal model, brief electrical 
stimulation during surgery was used to improve axon regeneration of 
transplanted nerves (28). Combined treatment of low-frequency pulse 
electrical stimulation therapy with exercise therapy can promote nerve 
cell regeneration, increase nerve blood flow, provide a favorable 
nutritional environment for nerve regeneration, and promote nerve 
function recovery. This contributes to the restoration of normal joint 
activity, leading to significantly higher clinical effectiveness, muscle 
strength recovery, wrist extension angle, and elbow extension angle 
efficacy in the study group compared to the control group.

The results of this study suggest that the excellent rate of neurological 
recovery in the combined group was 89.09%, which was higher than that 
in the control group (69.09%; p < 0.05). The reason lies in the fact that 
electrical stimulation improves blood circulation in the affected limb, 
thereby accelerating the exchange of nutrients needed for nerve repair. 
Low-frequency pulsed electrical stimulation is beneficial for the 
proliferation and differentiation of bone cells, thereby accelerating bone 
healing. For the local swelling and bleeding that occur after a fracture, 
goal-directed rehabilitation therapy can promote soft tissue recovery and 
relieve pain at the fracture site. In addition, it can promote fracture 
healing, facilitate callus connection, and enhance bone density to some 
extent. Furthermore, Gordon et al. (29) demonstrated that impaired 
nerve regeneration is associated with transient expression of growth-
related genes, leading to a decline in the regenerative capacity of neurons 
and Schwann cells over time. However, low-frequency electrical 
stimulation has been shown to expedite the growth of motor and sensory 
axons at the site of injury. This effect has been observed in both animal 
models and patients even when there is a delay in surgical repair of the 

TABLE 5 Comparison of complications during follow-up.

n Incisional 
infection

Joint pain Delayed 
fracture 
healing

Other complications Incidence of 
complications

Control group 55 2 1 1 1 5 (9.09%)

Study group 55 3 2 0 2 7 (12.73%)

χ2 0.374

P 0.541
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injured nerve. Electrical stimulation enhances nerve regeneration and 
promotes target reinnervation, as it elevates the levels of neuronal cyclic 
adenosine monophosphate (cAMP), thereby increasing the expression 
of neurotrophic factors and other growth-related genes, including 
cytoskeletal proteins. Future research should focus on the mechanism of 
action of low-frequency pulsed electrical stimulation on bone cells, as 
well as its effects on ions such as calcium, magnesium, and phosphorus 
in the human body. Neurological rehabilitation is a relatively long 
process, and apart from the efforts of medical workers, the level of patient 
cooperation is also one of the important factors that determine the final 
rehabilitation outcome. Low-frequency pulsed electrical therapy can 
alleviate patient pain, promote neurological recovery, and accelerate 
bone healing, showing significant clinical effects.

This study has the following limitations. Firstly, in terms of the 
selection of research subjects, objective assessment of nerve injury 
location and severity is scarce. Secondly, only clinical outcomes and 
EMG results were included, lacking investigations on underlying 
mechanisms. Thirdly, the follow-up period was relatively short, and 
long-term effectiveness remains unclear.

5 Conclusion

In patients afflicted with humerus shaft fracture and radial 
nerve injury, the amalgamation of exercise therapy with 
low-frequency pulse electrical stimulation can significantly improve 
clinical efficacy, promote nerve function and muscle strength 
recovery, and features a high safety profile. For patients with 
humeral shaft fractures combined with radial nerve injury, the 
combination of exercise therapy and low-frequency pulsed electrical 
stimulation can significantly improve clinical efficacy, promote the 
recovery of nerve function and muscle strength, thereby helping to 
improve patient compliance with rehabilitation treatment, reduce 
the risk of complications, and have practical significance in 
reducing patients’ secondary hospitalization plans and saving 
medical costs.
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