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Prediction of early neurologic
deterioration in patients with
perforating artery territory
infarction using machine
learning: a retrospective study

Wei Liu1, Longbin Jia1*, Lina Xu1*, Fengbing Yang1*,

Zixuan Guo1*, Jinna Li1, Dandan Zhang1, Yan Liu2, Han Xiang2,

Hongjiang Cheng1, Jing Hou1, Shifang Li1 and Huimin Li1

1Department of Neurology, Jincheng People’s Hospital, Jincheng, China, 2The First Clinical College of

Changzhi Medical College, Changzhi, China

Background: Early neurological deterioration (END) is a frequent complication

in patients with perforating artery territory infarction (PAI), leading to poorer

outcomes. Therefore, we aimed to apply machine learning (ML) algorithms to

predict the occurrence of END in PAI and investigate related risk factors.

Methods: This retrospective study analyzed a cohort of PAI patients, excluding

those with severe stenosis of the parent artery. We included demographic

characteristics, clinical features, laboratory data, and imaging variables. Recursive

feature elimination with cross-validation (RFECV) was performed to identify

critical features. Seven ML algorithms, namely logistic regression, random forest,

adaptive boosting, gradient boosting decision tree, histogram-based gradient

boosting, extreme gradient boosting, and category boosting, were developed

to predict END in PAI patients using these critical features. We compared the

accuracy of these models in predicting outcomes. Additionally, SHapley Additive

exPlanations (SHAP) values were introduced to interpret the optimal model and

assess the significance of input features.

Results: The study enrolled 1,020 PAI patients with a mean age of 60.46

(range 49.11–71.81) years. Of these, 30.39% were women, and 129 (12.65%)

experienced END. RFECV selected 13 critical features, including blood urea

nitrogen (BUN), total cholesterol (TC), low-density-lipoprotein cholesterol

(LDL-C), apolipoprotein B (apoB), atrial fibrillation, loading dual antiplatelet

therapy (DAPT), single antiplatelet therapy (SAPT), argatroban, the basal ganglia,

the thalamus, the posterior choroidal arteries, maximal axial infarct diameter

(measured at <15mm), and stroke subtype. The gradient-boosting decision tree

had the highest area under the curve (0.914) among the seven ML algorithms.

The SHAP analysis identified apoB as the most significant variable for END.

Conclusion: Our results suggest that ML algorithms, especially the

gradient-boosting decision tree, are e�ective in predicting the occurrence

of END in PAI patients.
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early neurologic deterioration, perforating artery territory infarction, machine learning,
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1 Introduction

Perforating artery territory infarction (PAI), a subtype of single

subcortical infarction (SSI) caused by the occlusion of a perforating

artery, is frequently observed in acute ischemic stroke, accounting

for approximately 15.3–25% of all stroke cases (1, 2). The etiology of

PAI may involve several mechanisms, such as lipohyalinosis, large

plaques in the parent artery, andmicroatheroma (3). Lipohyalinosis

is a vasculopathy that affects cerebral small vessels, leading to a

“lacunar infarct” (LI), a major contributor to PAI (4, 5). Similarly,

large plaques in the parent artery with severe stenosis may result in

perforating artery embolisms. Additionally, microatheromas may

give rise to branch atheromatous disease (BAD), characterized by

ischemic lesions of ≥15mm in diameter, typically observed on

radiological imaging and the absence of severe stenosis of the

parent artery (6).

Early neurological deterioration (END), characterized as a

rapid exacerbation of neurological symptoms during the acute

phase of a stroke, has been observed in 20–43% of PAI patients

(7–9) and is linked to unfavorable patient outcomes (10, 11). The

efficacy of treatment strategies for END in PAI patients, particularly

those without severe stenosis of the parent artery, such as in LI

and BAD cases, remains uncertain. The prediction of END in these

patients is complex and heterogeneous, posing challenges to clinical

management. Thus, identifying risk factors, pinpointing high-risk

patients, and implementing timely interventions are essential for

managing END in PAI patients without severe stenosis of the

parent artery.

Advancements in computing power, the proliferation of big

data, and the evolution of algorithms have significantly propelled

machine learning (ML) in disease prediction (12). ML algorithms,

a crucial aspect of artificial intelligence, excel at discerning patterns

within intricate datasets using computational methods (13, 14).

Compared to traditional statistics, ML shows greater proficiency in

forecasting complex clinical events influenced by numerous factors

and variables (15). Consequently, this research aims to develop ML

models adept at predicting END in PAI patients without severe

stenosis of the parent artery, utilizing data from a real-world,

single-center cohort database.

2 Methods

2.1 Study design and patients

This retrospective, observational study was conducted on

a cohort of PAI patients at Jincheng People’s Hospital from

September 2016 to July 2022. The inclusion criteria were as follows:

patients aged 18 years or older, those diagnosed with PAI, and those

admitted within 24 h of symptom onset. PAI was characterized as a

single, small subcortical infarction in the territory of a perforating

arteriole (16), identified bymagnetic resonance imaging (MRI), and

without significant large vessel stenosis (>50%), as confirmed by

magnetic resonance angiography (MRA) or computed tomography

angiography (CTA), with no maximum diameter limit (17). The

exclusion criteria encompassed patients with multiple or cortical

lesions, a premorbid modified Rankin Scale (mRS) score of ≥2,

stroke mimics, or MRI-negative stroke. The study was approved

by the ethics committee of Jincheng People’s Hospital, and written

informed consent was waived due to its retrospective nature; all

patient information was anonymized before analysis.

2.2 Baseline data

We collected baseline data, including demographic details

such as age, sex, and body mass index (BMI). We also gathered

information on current smoking and drinking habits (≥20 g/day),

medical history (including stroke, hypertension, diabetes, coronary

atherosclerotic heart disease, and atrial fibrillation), secondary

prevention treatment, laboratory data, clinically significant features

[such as time from onset to presentation, National Institutes of

Health Stroke Scale (NIHSS) score, pre-stroke mRS score], acute

phase treatment [including IV thrombolysis with alteplase, loading

dose dual antiplatelet therapy (DAPT, 100mg aspirin and 300mg

clopidogrel), single antiplatelet therapy (SAPT), lipid-lowering

drugs, and argatroban], and radiological characteristics.

Radiological characteristics encompassed location (such as the

internal capsule, basal ganglia, thalamus, pons, lateral ventricle, and

centrum semiovale), the culprit vessel supplying the basal ganglia

(including the lenticulostriate artery (LSA), posterior choroidal

artery, and the recurrent artery of Heubner), stroke subtypes

(such as LI and BAD), maximum axial infarct diameter, layers of

cerebral infarct lesions, and white matter hyperintensities (WMH).

The definition of BAD is based on infarct lesions observed in

transversal diffusion-weighted imaging (DWI) scans that extend

for at least three consecutive slices within LSA terminations or

unilateral involvement of the pons connected to the cerebral surface

of the ventral pons without crossing the midline in the paramedian

pontine artery (PPA) terminations (1, 18). Maximal axial infarct

diameter and layers of cerebral infarct lesions were measured in

transversal DWI scans at baseline, with WMH severity at baseline

categorized using the modified Fazekas scale (19).

Following data collection, a total of 65 variables were included

in the baseline data analysis.

2.3 Outcome definition

The primary outcome of this analysis was END, defined as

an increase in the NIHSS score of ≥2 and a rise in the motor

component of the NIHSS score of ≥1 compared to the initial

NIHSS score within 7 days of hospital admission.

2.4 Machine learning algorithms

In this study, we utilized seven ML models to predict END

in PAI patients: logistic regression (LR) (20), random forest (RF)

(21), adaptive boosting (AdaBoost) (22), gradient boosting decision

tree (GBDT) (23), histogram-based gradient boosting (HGB) (24,

25), extreme gradient boosting (XGBoost) (26), and category

boosting (CatBoost) (27, 28). The best-performing model was

selected based on its evaluation metrics. LR, suited for binary

classification problems, predicts outcomes by converting a linear
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function into a sigmoid function, ranging from 0 to 1. RF, an

ensemble learning method, combines multiple decision trees, each

built from randomly selected subsets of training data and features,

to enhance performance and generalizability. AdaBoost, GBDT,

HGB, XGBoost, and CatBoost are ensemble learning methods that

strengthen models by sequentially training multiple weak learners,

with each new model focusing on correcting the errors of its

predecessors. The following provides a comprehensive examination

of the five ensemble learning methodologies.

2.4.1 AdaBoost
The fundamental principle of the AdaBoost algorithm involves

categorizing a collection of weak learners through a process of

weighted majority voting, or summation. This method takes into

account the errors committed by preceding weak learners and

consistently refines the dataset (22, 29).

2.4.2 GBDT
The core concept of GBDT involves employing a gradient-

boosting methodology to train a series of decision trees. In each

iterative training phase, GBDT computes the residual or gradient

of the existing model and utilizes it as the training objective for the

subsequent decision tree. The incorporation of new decision trees

aims to approximate this residual or gradient, thereby progressively

enhancing the performance of the model (23).

2.4.3 HGB
HGB refers to the implementation of gradient boosting

algorithms, particularly the popular XGBoost and LightGBM

libraries, which use histograms to approximate the distribution

of the data. This approach enhances the efficiency and scalability

of the model training process without sacrificing much accuracy

(24, 25).

XGBoost, a sophisticated and scalable machine learning

technique, is renowned for its exceptional proficiency in efficiently

managing missing data and seamlessly integrating weak predictive

models to form a more precise one. It employs a second-order

Taylor expansion to compute the loss function, thereby exhibiting

superior performance in both computational speed and prediction

accuracy (30, 31).

2.4.4 CatBoost
Amachine learning library that has been designed to efficiently

handle categorical features. Developed by Yandex, it is renowned

for its superior performance in gradient-boosting algorithms,

particularly when applied to datasets that contain both numerical

and categorical variables (28).

2.5 Data processing

In this study, continuous variables were imputed using the

median values for each variable to address missing values.

Categorical variables were converted into numerical values through

dummy encoding. All numerical values were then standardized to

ensure uniformity in scale and precision in comparisons.

2.6 Feature selection

Feature selection (32), a process used to eliminate superfluous

features from a large dataset, improves a machine learning model’s

efficiency. We employed recursive feature elimination with cross-

validation (RFECV), a prominent algorithm in feature selection,

which methodically removes the least important features to

pinpoint the most effective subset. This study used RFECV based

on logistic regression for optimal variable selection.

2.7 Model derivation and validation

Patients were randomly divided into training and testing sets

at a 7:3 ratio. For model derivation, a shuffle-split cross-validation

method was employed to prevent overfitting to a specific dataset

and to ensure model generalizability. Shuffle-split cross-validation

(33) is a resampling technique employed in machine learning to

assess model performance on a constrained data sample. This

method entails the random division of the dataset into two

subsets: one designated for training and the other for testing. The

procedure is executed multiple times, or “folds”, to yield an average

performance metric. Widely adopted in machine learning, shuffle-

split cross-validation ensures that model efficacy remains robust,

avoiding overreliance on specific data partitioning. This approach

effectively reduces biases and offers a more dependable estimation

of the model’s generalization capabilities for novel, unseen datasets.

Additionally, GridSearch CV with shuffle-split cross-validation

was utilized to fine-tune and optimize the model hyperparameters

on the training set. Supplementary Table 1 details the selected

parameter values for each algorithm in the grid-search process.

After optimization on the training set, model performance in

the testing set was assessed using various metrics, including

receiver operating characteristic (ROC) curve, accuracy, F1-score,

Matthew’s correlation coefficient (MCC), specificity, sensitivity,

positive predictive value (PPV), negative predictive value (NPV),

and Youden’s index.

2.8 Model interpretation

To evaluate the importance of each variable, the Shapley

Additive exPlanations (SHAP) values were utilized to interpret

the machine learning model. Originating from cooperative game

theory (34), SHAP assigns an importance value to each feature for

a given prediction. A positive SHAP value signifies a beneficial

impact on the model’s prediction, whereas a negative value

indicates an adverse effect. The SHAP method thus serves as a vital

tool for understanding and interpreting the behavior of machine

learning models.
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FIGURE 1

Flow diagram of the included patients.

2.9 Statistical analysis

Patients were divided into two groups based on the END

outcome: the END group and the clinically stable group.

Continuous variables were presented as mean± standard deviation

for normally distributed variables and as medians with interquartile

ranges (IQRs) for non-normally distributed data. Categorical

variables were expressed as percentages. Categorical variables

were analyzed using Fisher’s exact test or a χ2 test, while

continuous variables were assessed using the Student’s t-test or

Mann–Whitney U-test. Statistical analyses were conducted using

IBM SPSS Statistics for Windows, version 25.0 software (IBM

Corp., Armonk, NY, USA), and a two-sided p-value of ≤0.05

was considered statistically significant. The ML algorithms were

implemented using Python software (version 3.9).

3 Results

3.1 Baseline characteristics

The study initially included 1,273 patients, but 1,020 PAI

patients were enrolled for evaluation after excluding 253 subjects

due to missing data and fulfilling the exclusion criteria. Figure 1

presents the patient flow diagram. The baseline characteristics

are detailed in Table 1. The average age of the 1,020 patients

was 60.46 (range 49.11–71.81) years, with 30.39% of them being

women. The END group comprised 129 (12.65%) patients with

an average age of 59.08 (range 48.29–69.87) years, and 27.91%

were women; the clinically stable group included 891 (87.35%)

patients, averaging 60.66 (range 49.24–72.08) years, with 30.74%

being women. The median time to END onset was 16 (range

5–25) h. The univariate analysis indicated that factors such as

apolipoprotein B (Apo B), the ratio of apolipoprotein A1 (ApoA1)

to ApoB, admission NIHSS score, motor arm NIHSS score, motor

leg NIHSS score, facial palsy NIHSS score, alteplase, argatroban,

lesion location (including the basal ganglia, internal capsule, lateral

ventricle, and thalamus), lenticulostriate artery, stroke subtype, and

maximal axial infarct diameter were significantly associated with an

increased risk of END.

3.2 Features selection

Based on the RFECV results, 13 variables were identified

for the predictive model, including blood urea nitrogen (BUN),

total cholesterol (TC), low-density lipoprotein cholesterol (LDL-

C), apolipoprotein B (apoB), atrial fibrillation, loading-dose dual

antiplatelet therapy (DAPT), single antiplatelet therapy (SAPT),

argatroban, the basal ganglia, the thalamus, the posterior choroidal
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TABLE 1 Baseline variables for the total population and for both groups.

Variables Clinically stable
(n = 891)

END
(n = 129)

Total
(n = 1,020)

P-value

Demographics

Women, n (%) 274 (30.74) 36 (27.91) 310 (30.39) 0.5114

Age, mean (SD) 60.66± 11.42 59.08± 10.79 60.46± 11.35 0.1406

BMI, kg/m2 (IQR) 24.22 (22.49–26.66) 24.21 (22.82–26.34) 24.22 (22.55–26.66) 0.698

Medical history n (%)

Hypertension 665 (74.63) 97 (75.19) 762 (74.71) 0.8915

Diabetes 165 (18.52) 29 (22.48) 194 (19.02) 0.2839

Coronary heart disease 65 (7.30) 6 (4.65) 71 (6.96) 0.2701

Atrial fibrillation 13 (1.46) 0 (0.00) 13 (1.27) 0.1674

Ischemic stroke 148 (16.61) 16 (12.4) 164 (16.08) 0.224

Hemorrhagic stroke 28 (3.14) 3 (2.32) 31 (3.04) 0.8632

Secondary prevention treatment, n (%)

Antihypertensive treatment 390 (43.77) 46 (35.66) 436 (42.75) 0.0817

Antidiabetic treatment 109 (12.23) 19 (14.73) 128 (12.55) 0.424

Lipid-lowering treatment 150 (16.84) 18 (13.95) 168 (16.47) 0.4069

Antiplatelet therapy 155 (17.40) 21 (16.28) 176 (17.25) 0.7536

Anticoagulant therapy 6 (0.67) 0 (0.00) 6 (0.59) 0.3499

Smoking history, n (%) 202 (22.67) 29 (22.48) 231 (22.65) 0.9615

Drinking history (≥20 g/day),

n (%)

74 (8.31) 13 (10.08) 87 (8.53) 0.5006

Laboratory data

WBC count, ∗109 (IQR) 6.40 (5.30–7.70) 6.70 (5.49–7.85) 6.43 (5.32–7.70) 0.3883

RBC count, ∗1012 (SD) 4.71± 0.56 4.73± 0.54 4.75± 0.55 0.7484

Hemoglobin, g/L (IQR) 145.00 (136.00–157.00) 146.00 (136.50–157.00) 145.10 (136.00–157.00) 0.4197

Platelet count, ∗1012 (IQR) 255.00 (215.00–312.80) 257.00 (210.00–312.00) 214.50 (175.25–255.00) 0.9621

Lymphocyte count, ∗109

(IQR)

2.02 (1.54–2.51) 1.97 (1.55–2.50) 1.54 (1.19–2.01) 0.5901

Neutrophil count, ∗109 (IQR) 5.34 (4.22–6.78) 5.48 (4.41–7.00) 4.23 (3.33–5.38) 0.3002

Neutrophil to lymphocyte

ratio (IQR)

2.63 (1.94–3.76) 2.60 (1.88–4.27) 2.62 (1.93–3.84) 0.5424

Platelet-to-lymphocyte ratio

(IQR)

138.24 (103.82–177.23) 135.83 (104.29–183.37) 138.23 (104.01–178.40) 0.8353

BUN, mmol/L (IQR) 5.02 (4.19–5.92) 4.66 (3.97–5.95) 4.96 (4.14–5.92) 0.11

Creatinine, µmol/L (IQR) 65.1 (55.2–75.8) 65.2 (53.6–75.55) 65.1 (55–75.78) 0.5847

Glucose on admission,

mmol/L (IQR)

6.57 (5.68–8.00) 6.83 (5.8–9.26) 6.59 (5.69–8.10) 0.1123

CRP, mg/L (IQR) 5.35 (3.02–5.80) 5.32 (3.01–5.98) 5.34 (3.02–5.83) 0.5633

D-dimer level on admission

mg/L (IQR)

0.10 (0.06–0.16) 0.10 (0.05–0.16) 0.10 (0.06–0.16) 0.6774

TC mmol/L (IQR) 3.91 (3.27–4.58) 4.01 (3.19–4.70) 3.94 (3.26–4.59) 0.5695

Triglyceride, mmol/L (IQR) 1.34 (1.00–1.80) 1.33 (1.01–1.89) 1.34 (1.00–1.80) 0.7775

HDL-C mmol/L (IQR) 0.96 (0.83–1.10) 0.93 (0.82–1.10) 0.96 (0.82–1.10) 0.4494

LDL-C, mmol/L (IQR) 2.41 (1.89–2.95) 2.56 (1.97–3.10) 2.43 (1.89–2.97) 0.1922

(Continued)
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TABLE 1 (Continued)

Variables Clinically stable
(n = 891)

END
(n = 129)

Total
(n = 1,020)

P-value

ApoA1, mmol/L (IQR) 1.12 (1.04–1.18) 1.12 (1.03–1.20) 1.12 (1.04–1.19) 0.0771

Apo B, mmol/L (IQR) 0.86 (0.78–1.04) 0.96 (0.83–1.09) 0.78 (0.67–0.87) <0.0001

ApoA1 to ApoB ratio, (IQR) 1.57 (1.29–1.66) 1.47 (1.14–1.52) 1.57 (1.27–1.65) 0.0001

Homocysteine, µmol/L (IQR) 19.60 (14.30–32.20) 19.00 (15.25–27.25) 19.5 (14.40–31.80) 0.8667

HbA1c, % (IQR) 5.90 (5.60–6.30) 6.00 (5.60–6.42) 5.90 (5.60–6.30) 0.5895

Clinical features

Prestroke mRS score, (IQR) 0 (0–0) 0 (0–0) 0 (0–0) 0.879

Time from onset to

presentation, h (IQR)

10 (6–18) 9 (4–15) 10 (5–17) 0.096

Admission NIHSS score,

(IQR)

3 (1–4) 4 (2–5) 3 (1–4) <0.0001

Motor arm NIHSS score,

(IQR)

1 (0–1) 1 (0–2) 1 (0–1) <0.0001

Motor leg NIHSS score, (IQR) 1 (0–1) 1 (0–2) 1 (0–1) <0.0001

Dysarthria NIHSS score,

(IQR)

1 (0–1) 1 (0–1) 1 (0–1) 0.1002

Sensory NIHSS score (IQR) 0 (0–0) 0 (0–0) 0 (0–0) 0.9652

Facial palsy NIHSS score,

(IQR)

1 (1) 1 (1) 1 (1) 0.001

Time to onset of END, hours

(IQR)

– 16 (5–25) – –

Treatment of the acute phase, n (%)

Alteplase 66 (7.41) 17 (13.18) 83 (8.14) 0.0251

Loading DAPT 507 (56.90) 67 (51.94) 574 (56.27) 0.288

SAPT 373 (41.86) 51 (39.53) 424 (41.57) 0.616

Lipid-lowering drugs 877 (98.43) 129 (100) 1,006 (98.63) 0.1517

Argatroban 119 (13.36) 8 (6.20) 127 (12.45) 0.0214

Lesion location, n (%)

Basal ganglia 171 (19.19) 43 (33.33) 214 (20.98) 0.0002

Internal capsule 136 (15.26) 31 (24.03) 167 (16.37) 0.0119

Lateral ventricle 208 (23.34) 18 (13.95) 226 (22.16) 0.0164

Centrum semiovale 70 (7.86) 5 (3.88) 75 (7.35) 0.1055

Pons 143 (16.05) 28 (21.71) 171 (16.76) 0.108

Thalamus 163 (18.29) 4 (3.10) 167 (16.37) <0.0001

Culprit vessel supplying the basal ganglia, n (%)

Lenticulostriate artery 507 (56.90) 91 (70.54) 598 (58.63) 0.0033

Posterior choroidal artery 5 (0.56) 0 (0.00) 5 (0.49) 0.3937

The recurrent artery of

Heubner

3 (0.34) 1 (0.78) 4 (0.39) 0.4564

Stroke subtype, n (%)

Lacunar infarction 616 (69.14) 44 (34.11) 660 (64.71) <0.0001

Branch atheromatous disease 275 (30.86) 85 (65.89) 360 (35.29) <0.0001

Maximal axial infarct

diameter, n (%)

<0.0001

(Continued)
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TABLE 1 (Continued)

Variables Clinically stable
(n = 891)

END
(n = 129)

Total
(n = 1,020)

P-value

<15mm 684 (76.76) 61 (47.28) 745 (73.04)

15–20mm 144 (16.16) 38 (29.46) 182 (17.84)

>20mm 63 (7.07) 30 (23.26) 93 (9.12)

Layers of cerebral infarction

lesions, (IQR)

2 (1–3) 2 (2–3) 2 (1–3) <0.0001

WMH, (IQR) 2 (1–3) 2 (1–3) 2 (1–3) 0.0513

BMI, body mass index; WBC, white blood cell; RBC, red blood cell; BUN, blood urea nitrogen; CRP, C-reactive protein; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol;

LDL-C, low-density lipoprotein cholesterol; Apo A1, apolipoproteins A1; ApoB, apolipoproteins B; HbA1c, glycated hemoglobin A 1c; mRS, modified Rankin Scale; NIHSS, National Institutes

of Health Stroke Scale; DAPT, dual antiplatelet therapy; SAPT, single antiplatelet therapy; WMH, white matter hyperintensities.

FIGURE 2

Features selection accuracy curve (the accuracy achieved its peak when the number of variables was 13).

arteries, maximum axial infarct diameter (measured at <15mm),

and stroke subtype. Figure 2 shows how accuracy varies with

changes in variables.

3.3 Model performance

The training set for model development comprised 714

patients, including 90 with an END outcome, while the testing

set for evaluating model performance consisted of 306 patients,

39 of whom experienced an END outcome. Supplementary Table 2

provides a detailed overview of the features selected for both

datasets. We employed seven ML algorithms, namely LR, RF,

AdaBoost, GBDT, HGB, XGBoost, and CatBoost, to determine the

most effective predictive model. Table 2 displays the area under the

curve (AUC) for these seven ML algorithms on both the training

and testing datasets. Additionally, it offers a comprehensive

analysis of accuracy, F1-score, Matthew’s correlation coefficient

(MCC), specificity, sensitivity, positive predictive value (PPV),

negative predictive value (NPV), and Youden’s index for these

algorithms on the testing dataset. The GBDT model achieved the

highest AUC value at 0.914—an essential measure for evaluating

predictive model performance, followed by the CatBoost, XGBoost,

HGB, RF, AdaBoost, and LR models (0.8923, 0.8807, 0.876,

0.8639, 0.8184, 0.7838, respectively). Figure 3 illustrates the

ROC curve and AUC for each ML classifier in the testing

dataset. In conclusion, the GBDT model outperformed the

other six ML algorithms, suggesting its superior effectiveness

in our study. The confusion matrix for GBDT is shown in

Figure 4.
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3.4 Interpretation of the machine learning
model

To evaluate the significance of each feature in the predictive

model, we applied the SHAP method to the GBDT model in the

testing dataset. The SHAP value analysis revealed that the most

impactful features were apoB, TC, BUN, LDL-C, and a maximal

axial infarct diameter of<15mm. Following these features were the

stroke subtype, the basal ganglia, the thalamus, argatroban, single

antiplatelet therapy, and loading dual antiplatelet therapy. Atrial

fibrillation and posterior choroidal arteries also contributed to the

prediction model but exhibited lower SHAP values. Figure 5 shows

the SHAP summary plot for the GBDTmodel in the testing dataset,

where each dot represents an individual case; the color indicates

the feature’s value (red for higher, blue for lower). Notably, a higher

SHAP value for a feature indicates a greater likelihood of END

occurrence. Figure 6 displays the ranking of feature importance

based on SHAP values.

4 Discussion

ML techniques that are integral to artificial intelligence have

gained substantial attention and are increasingly employed in

medical research for tasks such as screening, diagnosis, and

prognosis. Recent studies (15, 35) have investigated the use of

ML algorithms in predicting END in patients with acute minor

stroke and atrial fibrillation-related stroke. Although these studies

yielded promising results with ML, they did not specifically focus

on predicting END in patients with PAI—a stroke subtype with a

high incidence of END. Our study aimed to use seven ML models

to predict END in PAI patients. To address the inherent “black

box” nature of ML, we employed the SHAP method to elucidate

the predictions of the most effective model, ensuring both the

model’s performance and its clinical interpretability. This approach

enabled the effective communication of information through

intuitive visual tools, thereby enhancing clinicians’ comprehension

of the model’s decision-making process and aiding in the clinical

application of the prediction results.

In our research, we demonstrated that interpretable machine

learning techniques can effectively predict END and personalize

predictions for individual patients. The results showed that

the GBDT model surpassed six other ML algorithms in terms

of AUC and accuracy. Furthermore, the five most important

variables associated with END prediction were identified as apoB,

TC, BUN, LDL-C, and a maximum axial infarct diameter of

<15mm. Previous studies have indicated that the END in single

subcortical infarctions, including lacunar stroke, is influenced

by various factors such as capsular warning syndrome, higher

mean arterial pressure at admission, the location of the infarct

in the ventral pons, and the extent of hypoperfusion lesion

on perfusion-weighted imaging (17). Other factors, such as the

initial NIHSS score, pulsatility index, parent artery disease, and

neutrophil-to-lymphocyte ratio, also play significant roles (9).

In our study, END in PAI was determined by multiple factors,

distinguishing it from previous research. The differences between

studies may be attributed to variations in study populations, the
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FIGURE 3

ROC curves of seven ML algorithms based on variables in the testing dataset.

FIGURE 4

The confusion matrix of the most e�ective model, GBDT.
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FIGURE 5

The SHAP summary plot on the test data derived from the optimal prediction model, GBDT.

FIGURE 6

Ranking of the features’ importance indicated by SHAP analysis of the best prediction model, GBDT.
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influence of different statistical methodologies, and the inclusion

of diverse variables.

Initially, the END group exhibited dyslipidemia, characterized

by higher levels of apoB, TC, and LDL-C compared to the

clinically stable group. ApoB, an essential structural component

of atherogenic lipoprotein particles such as LDL, lipoprotein,

and triglyceride-rich lipoproteins, is acknowledged as a predictor

of ischemic cerebrovascular events in patients with preexisting

cardiovascular diseases (36). LDL-C, a commonly used clinical

lipid marker for assessing lipid-associated risk, including ischemic

stroke, has been linked to a reduced frequency of cardiovascular

events at lower levels (37). Moreover, previous studies have shown

a positive association between TC levels and ischemic stroke

risk (38). However, the exact relationship between these lipids

and the outcome of END is not yet fully understood. Elevated

apoB levels may increase endothelial permeability to LDL, and

there is a positive correlation between hypercholesterolemia and

apoB generation within plaques. High apoB levels facilitate the

penetration of particles into the arterial wall, leading to localized

accumulation within the subendothelium. This process heightens

the susceptibility to modifications in the artery wall, contributing

to the onset of atherosclerosis and plaque progression. Thus, this

study suggests that high levels of apoB, TC, and LDL-C, particularly

apoB, are linked to END in PAI patients. Previous studies have

revealed that a high baseline level of apoB correlates with an

increased risk of major adverse cardiovascular events in acute

coronary syndrome (39). This study observed lower BUN levels

in the END group, with reduced BUN levels correlating with an

increased risk of developing END, aligning with previous research

(40), which suggested that lower BUN levels were observed in

patients with progressive infarction in the anterior circulation and

small subcortical infarction.

Previous studies have reported that END is more frequently

observed in patients with BAD (41), a trend also evident in our

study, suggesting an association between BAD-related PAI and

the development of END. We also found that the proportion

of maximum axial infarct diameters of <15mm was lower in

the END group than in the clinically stable group. This finding

implies that smaller infarct diameters (<15mm), typically linked

to LI, are negatively correlated with the occurrence of END. The

infarction location significantly influences functional limitations,

clinical progression, and patient outcomes (42). Previous studies

have indicated that infarct locations within the brainstem, corona

radiata, and lenticulostriate artery area, including the internal

capsule, are associated with an increased risk of END (4, 43–45).

In our study, lesions in the basal ganglia (excluding the internal

capsule) and thalamus were identified as predictors of END, with

the former located in the lenticulostriate artery area, aligning with

previous studies, and the latter showing comparatively favorable

outcomes in terms of mortality and permanent motor deficits.

In the management of acute ischemic stroke, antiplatelet

therapy is a fundamental therapeutic strategy. Several studies have

indicated that DAPT reduces the risk of END (17, 46, 47). In our

study, the utilization of antiplatelet therapy in the END group

was less frequent than in the clinically stable group. However,

our findings suggest that DAPT does not show a clear advantage

over SAPT in preventing END. Moreover, we observed that

combining argatroban with antiplatelet therapy was associated with

a decreased risk of END in patients with PAI, consistent with

previous research (48). The contribution of the AF and posterior

choroidal artery to the model was found to be minimal.

Our analysis demonstrated that ML models, particularly the

GBDT algorithm, showed promising outcomes in predicting END

in PAI patients. GBDT, a sophisticated ML algorithm, integrates

multiple decision trees to develop a more accurate and robust

model. This algorithm effectively handles both continuous and

categorical variables, shows a lower susceptibility to overfitting

compared to more complex models, and adeptly manages missing

data. Considering the inherent multivariate heterogeneity and

noise in clinical research data, such as demographic information,

laboratory findings, and radiological results available upon hospital

arrival, it is critical to choose variables based on prior knowledge.

Consequently, we used recursive feature elimination with cross-

validation (RFECV) to select 13 predictors for the model,

enhancing prediction accuracy.

A strength of this study is that the model performance

and clinical interpretability were ensured by using the SHAP

algorithm, which was effectively presented to users through easy-

to-use visualization tools. Clinicians could better understand the

model’s decision-making process, thus facilitating the clinical

application of prediction results. In addition, our ML model for

interpreting predictions was based on a large number of variables,

including demographics and laboratory/radiological data obtained

from real-world clinical situations at hospital admission. Finally,

we demonstrated the potential of interpretable machine learning

methods for predicting END in PAI patients and personalizing

these predictions within patient populations.

The limitations of our study are as follows: First, the data used

in this study is retrospective in nature and sourced from a single

center. The retrospective nature of the data may have introduced

recall and selection biases to varying degrees. Therefore, it is

necessary to usemore datasets and conduct prospectivemulticenter

clinical trials to further verify the results and enhance the model’s

accuracy. Second, we only performed internal validation for dataset

validation, but external validation is needed to assess the robustness

of the ML model further. Third, missing values were handled

using mean interpolation, which inevitably introduces a degree of

bias. However, if missing values are removed, some selection bias

cannot be completely avoided. Fourth, the exclusion of omics data

from the study may potentially limit the predictive performance to

some extent.

5 Conclusion

We have demonstrated that seven ML models, particularly

the GBDT model, can accurately predict END in PAI patients.

However, further research with a larger cohort is essential to

validating themodel’s accuracy. Additionally, the predictive efficacy

of this model merits exploration in prospective clinical studies.
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