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Objective: Acute ischemic stroke (AIS) is a heterogeneous condition. To stratify

the heterogeneity, identify novel phenotypes, and develop Clinlabomics models

of phenotypes that can conduct more personalized treatments for AIS.

Methods: In a retrospective analysis, consecutive AIS and non-AIS inpatients

were enrolled. An unsupervised k-means clustering algorithm was used to

classify AIS patients into distinct novel phenotypes. Besides, the intergroup

comparisons across the phenotypes were performed in clinical and laboratory

data. Next, the least absolute shrinkage and selection operator (LASSO) algorithm

was used to select essential variables. In addition, Clinlabomics predictivemodels

of phenotypes were established by a support vector machines (SVM) classifier.

We used the area under curve (AUC), accuracy, sensitivity, and specificity to

evaluate the performance of the models.

Results: Of the three derived phenotypes in 909 AIS patients [median age 64

(IQR: 17) years, 69% male], in phenotype 1 (N = 401), patients were relatively

young and obese and had significantly elevated levels of lipids. Phenotype

2 (N = 463) was associated with abnormal ion levels. Phenotype 3 (N =

45) was characterized by the highest level of inflammation, accompanied by

mild multiple-organ dysfunction. The external validation cohort prospectively

collected 507 AIS patients [median age 60 (IQR: 18) years, 70% male]. Phenotype

characteristics were similar in the validation cohort. After LASSO analysis,

Clinlabomics models of phenotype 1 and 2 were constructed by the SVM

algorithm, yielding high AUC (0.977, 95% CI: 0.961–0.993 and 0.984, 95% CI:

0.971–0.997), accuracy (0.936, 95% CI: 0.922–0.956 and 0.952, 95% CI: 0.938–

0.972), sensitivity (0.984, 95% CI: 0.968–0.998 and 0.958, 95% CI: 0.939–0.984),

and specificity (0.892, 95% CI: 0.874–0.926 and 0.945, 95% CI: 0.923–0.969).

Conclusion: In this study, three novel phenotypes that reflected the abnormal

variables of AIS patients were identified, and the Clinlabomics models of

phenotypes were established, which are conducive to individualized treatments.
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Introduction

Acute ischemic stroke (AIS) is a highly heterogeneous disease

characterized by a high risk of morbidity, disability, recurrence,

and mortality (1, 2). It has been reported that the number of IS-

related deaths is expected to increase further from 3.29 million in

2019 to 4.90 million by 2030 (3). Administration of antiplatelet

and statin drugs in AIS patients is recommended by the American

Heart Association (AHA) to reduce the risk of stroke recurrence

and cardiovascular events (4). However, despite patients following

the therapies of the guidelines, there is a substantial risk of recurrent

stroke in AIS patients (5). A major barrier to intervention is the

high heterogeneity of AIS. Therefore, stratifying the heterogeneity

of AIS using multiple features can identify undescribed phenotypes

that may respond differently to medication, making it possible

to offer more personalized treatment to AIS patients. Recently,

Ding et al. (6, 7) used unsupervised clustering algorithms to

identify novel phenotypes with distinct traits in non-cardioembolic

ischemic stroke (NCIS). Similarly, Chen et al. (8) and Schütz

et al. (9) used the latent class analysis method to reveal the

potential phenotypes of ischemic stroke with obstructive sleep

apnea (OSA). Likewise, Lattanzi et al. (10) adopted the hierarchical

cluster analysis to distinguish clinical phenotypes of the embolic

stroke of an undetermined source. These studies elucidate the new

tendency to discover potential phenotypes by understanding the

heterogeneity of diseases based on a clustering algorithm.

The k-means clustering, as an unsupervised learning algorithm,

can classify unlabeled data by maximizing the heterogeneity within

different phenotypes (11) and also can identify similarities of

potential phenotypes in a dataset (12). A large body of research

work has shown that the k-means clustering algorithm can

be used to reveal novel phenotypes of stroke (13), sepsis (14,

15), early-onset Alzheimer’s disease (16), postoperative delirium

symptoms (17), and coronary heart disease (CHD) (18), which

can help to understand the potential pathogenesis and treatment

respondence of diseases. For instance, with the availability of

laboratory data, Guo et al. (15) used k-means clustering to

categorize sepsis phenotype, reflecting the severity of sepsis

and treatment effects. Similarly, Sriprasert et al. (18) classified

postmenopausal women into different phenotypes based on nine

metabolic laboratory indicators, revealing the relationship of

subtypes to subclinical atherosclerosis.

Although clinical laboratories produce large amounts of

laboratory results each day to assist clinical diagnosis (19), these

data are not fully utilized (20). Hence, Wen et al. proposed a

concept of clinical laboratory omics (Clinlabomics) using machine

learning (ML) or deep learning algorithms to establish models

based on clinical and laboratory data that can reveal valuable

information hidden in a great deal of data (20).

Therefore, the objectives of this study were to investigate

novel phenotypes of AIS patients based on clinical and laboratory

data using a k-means clustering algorithm and maximizing the

heterogeneity, compare the differences among phenotypes based on

demographic, clinical, individual traits, physiological indices, and

laboratory data, develop Clinlabomics models of AIS phenotypes,

and evaluate the diagnostic performance of models, which have not

been done previously.

Methods

Study design and population

This study consecutively enrolled AIS inpatients attending

Lanzhou University Second Hospital between Dec 2019 and

Dec 2022. Furthermore, we also prospectively collected AIS

patients from January 2023 to January 2024 as an external

validation dataset. The inclusion criteria were as follows: (1)

age ≥18 years old; (2) first-ever AIS at admission within 24 h.

Patients were excluded for malignant tumors, mental conditions,

autoimmune diseases, intracranial hemorrhage, infection within

2 weeks before the onset of stroke, recurrent stroke, transient

ischemic attacks (TIA), treated with anticoagulation or reperfusion,

or missing data >5%. AIS, as defined by the World Health

Organization (WHO), is a clinical syndrome with rapidly

developing neurological deficit due to cerebrovascular cause,

persisting for more than 24 h or death (21). The AIS was

confirmed by computed tomography (CT) scan or diffusion

weight imaging (DWI) on admission. Further, we also included

a control group with 484 inpatients without any type of current

or prior cerebral infarction but possessing clinical manifestations

similar to AIS patients. This study was approved by the Ethics

Committee of the Lanzhou University Second Hospital (IRB

number: 2022A-710). Informed consent was obtained from

all participants.

Clinical and laboratory data collection

Medical records provided routinely available clinical data,

including demographic data (age, gender, nationality, education,

marriage), individual traits (height, weight, body mass index),

vascular risk factors (the history of hypertension, diabetes, atrial

fibrillation, coronary disease, and unhealthy habits including

smoking and drinking), physiological indices (heart rate, oxygen

saturation, blood pressure), the National Institutes of Health

Stroke Scale (NIHSS) score that evaluates the stroke severity,

Glasgow coma scale (GCS) that determines the degree of coma,

modified Rankin scale (mRS) that assesses the degree of disability

caused by stroke, Trial of Org 10172 in Acute Stroke Treatment

(TOAST) classification that classifies etiological subtypes, and

CT or DWI results that confirm the location and numbers of

lesions. Based on the NIHSS score, scores of 1–4, 5–15, 16–

20, and 21–42 were regarded as mild, moderate, moderate-

to-severe, and severe stroke, respectively (22). An experienced

senior neurologist (BY) examined and verified the NIHSS score,

GCS, mRS, and TOAST classification in all included patients.

There was a green channel for patients suspected of AIS, whose

blood collection and detection were conducted immediately upon

admission. In general, the results of complete blood count (CBC),

biochemical tests, and coagulation examinations needed to be

reported in 10, 30, and 30min, respectively. Laboratory test results

on admission were collected from the laboratory information

system (LIS).
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Variable selection

In total, we collected data on 97 variables, where 76 variables

could be measured, detected, or calculated. The calculation

formula of inflammatory biomarkers was as follows: neutrophil to

lymphocyte ratio (NLR) = neutrophil (NEU)/lymphocyte (LYM);

lymphocyte to monocyte ratio (LMR) = LYM/ monocyte (MON);

monocyte to high-density lipoprotein-cholesterol ratio (MHR)

= MON/ high-density lipoprotein-cholesterol (HDL-C) (23);

neutrophil to high-density lipoprotein-cholesterol ratio (NHR)

= NEU/HDL-C (23); systemic immune-inflammation index (SII)

= platelet (PLT) × NLR (24); system inflammation response

index (SIRI) = NUE × MON/LYM (24); multi-inflammatory

index 1 (MII-1) = NLR × C-reaction protein (CRP) (25); multi-

inflammatory index 2 (MII-2)=PLT/LYM × CRP (25); multi-

inflammatory index 3 (MII-3) = (PLT × NLR) × CRP (25); red

blood cell distribution width to platelet ratio (RPR) = red blood

cell distribution width coefficient of variation (RDWCV)/PLT (26).

Additionally, we used the ln [total triglyceride (TG) (mg/dL)

× fasting blood glucose (FBG) (mg/dL)/2] formula to calculate

the triglyceride-glucose (TyG) index (27). The corresponding

lipid parameters of the atherogenic index of plasma (AIP),

lipoprotein combine index (LCI), non-high-density lipoprotein-

cholesterol (non-HDL-C), atherogenic coefficient (AC), Castelli’s

index-I (CRI-I), and Castelli’s index-II (CRI-II) were calculated

by lg (TG/HDL-C) (28), total cholesterol (TC) × TG × low-

density lipoprotein-cholesterol (LDL-C)/HDL-C (29), TC–HDL-

C (30), non-HDL-C/HDL-C (31), TC/HDL-C (31), and LDL-

C/HDL-C (31), respectively. We classified the 76 variables into 11

domains according to their commonality, including non-invasive

physiological indices, individual characteristics, inflammatory

biomarkers, red blood cell-related parameters, lipid parameters,

diabetes-related biomarkers, renal function indicators, ions,

liver function-related indicators, myocardial injury markers, and

coagulative markers. Categorical variables, such as gender and

stroke severity, were excluded because of the requirements of

clustering analysis.

Statistical analyses

A normal distribution of data was determined by the

Kolmogorov-Smirnov test. The use of frequency counts and

proportions (n%) expressed categorical variables that were

compared using the Chi-square test and Fisher’s exact test, if

appropriate. Mean and standard deviation (SD), namely mean ±

SD, was used to express normally distributed continuous variables,

which were compared by a t-test. In contrast, non-normally

distributed continuous variables were presented using median and

interquartile range (IQR), namely M (Q1 - Q3), and compared

by the Mann–Whitney U-test. The k-means clustering algorithm

was used to identify novel phenotypes of AIS patients, where

the optimal k was determined by the elbow method (32). The

original data was transformed into standardized values (mean

= 0, SD = 1) for clustering analysis. This clustering algorithm

can partition observations into k clusters by assigning each

observation to the nearest centroid (33). Once determined the

phenotypes of AIS, we performed intergroup comparisons for

the identification of significantly different variables. Further, a

FIGURE 1

The patient selection process and flow chart. AIS, acute ischemic stroke; TIA, transient ischemic attack; LASSO, the least absolute shrinkage and

selection operator; AUC, the area under curve; PPV, positive predictive value; NPV, negative predictive value.
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TABLE 1 Baseline characteristics of included participants in the retrospective cohort.

Variables All participants
(n = 1,393)

AIS group (n = 909) Non-AIS group
(n = 484)

p-value

Demographic characteristics

Age 65 (55, 72) 64 (55, 72) 66 (57, 72) 0.172

Gender

Female (%) 507 (36) 281 (31) 226 (47) <0.001

Male (%) 886 (64) 628 (69) 258 (53)

Nationality

Han (%) 1,294 (93) 845 (93) 449 (93) 0.982

Minority (%) 99 (7) 64 (7) 35 (7)

Marriage

Married (%) 1,374 (99) 893 (98) 481 (99) 0.132

Other status (%) 19 (1) 16 (2) 3 (1)

Education

High school diploma or higher (%) 473 (34) 285 (31) 188 (39) 0.006

Others (%) 920 (66) 624 (69) 296 (61)

Previous history

HTN

No (%) 665 (48) 398 (44) 267 (55) <0.001

Yes (%) 728 (52) 511 (56) 217 (45)

AF

No (%) 1,373 (99) 892 (98) 481 (99) 0.103

Yes (%) 20 (1) 17 (2) 3 (1)

CHD

No (%) 1,330 (95) 873 (96) 457 (94) 0.212

Yes (%) 63 (5) 36 (4) 27 (6)

DM

No (%) 1,137 (82) 720 (79) 417 (86) 0.002

Yes (%) 256 (18) 189 (21) 67 (14)

Unhealthy habits

Smoking

No (%) 1,140 (82) 706 (78) 434 (90) <0.001

Yes (%) 253 (18) 203 (22) 50 (10)

Drinking

No (%) 1,297 (93) 832 (92) 465 (96) 0.002

Yes (%) 96 (7) 77 (8) 19 (4)

Non-invasive physiological indices

HR (bpm) 77 (70, 86) 77 (70, 86) 77 (70, 85) 0.497

SBP (mmHg) 137 (123, 151) 140 (127, 156) 128 (119, 142) <0.001

DBP (mmHg) 80 (71, 89) 82 (73, 91) 76 (70, 84) <0.001

SaO2 (%) 96 (94, 96) 96 (94, 96) 95 (94, 96) 0.213

(Continued)
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TABLE 1 (Continued)

Variables All participants
(n = 1,393)

AIS group (n = 909) Non-AIS group
(n = 484)

p-value

Individual characteristics

Weight (Kg) 67 (60, 75) 68 (60, 75) 65 (59, 74) 0.001

Height (cm) 167 (160, 172) 168 (160, 172) 165 (160, 170) <0.001

BMI (Kg/m2) 24.22 (22.32, 26.22) 24.34 (22.41, 26.26) 24.16 (22.26, 26.08) 0.168

Inflammatory biomarkers

WBC (109/L) 6.16 (5.10, 7.66) 6.54 (5.40, 8.20) 5.60 (4.61, 6.66) <0.001

NEU (109/L) 3.75 (2.86, 5.01) 4.25 (3.18, 5.56) 3.14 (2.46, 3.91) <0.001

LYM (109/L) 1.63 (1.28, 2.06) 1.59 (1.25, 2.01) 1.70 (1.38, 2.10) 0.002

MON (109/L) 0.44 (0.35, 0.56) 0.45 (0.36, 0.58) 0.42 (0.33, 0.52) <0.001

NLR 2.23 (1.64, 3.34) 2.55 (1.83, 3.77) 1.85 (1.38, 2.46) <0.001

LMR 3.72 (2.79, 4.82) 3.50 (2.61, 4.67) 4.05 (3.14, 5.14) <0.001

MHR 0.43 (0.31, 0.58) 0.46 (0.33, 0.61) 0.38 (0.29, 0.53) <0.001

NHR 3.65 (2.63, 5.24) 4.16 (3.04, 5.98) 2.89 (2.14, 3.90) <0.001

SII (109/L) 413 (281, 667) 487 (323, 748) 330 (232, 472) <0.001

SIRI (109/L) 1.01 (0.65, 1.64) 1.16 (0.78, 1.92) 0.79 (0.51, 1.13) <0.001

MII-1 6.27 (2.43, 13.05) 7.98 (2.61, 16.33) 5.00 (2.07, 7.89) <0.001

MII-2 205 (88, 602) 341 (115, 721) 115 (68, 283) <0.001

MII-3 1,115 (417, 2503) 1,413 (464, 3211) 841 (353, 1496) <0.001

RPR 0.09 (0.06, 1.12) 0.07 (0.06, 0.09) 3.70 (1.01, 3.70) <0.001

CRP (mg/L) 0.90 (0.09, 5.47) 2.84 (0.99, 5.96) 0.07 (0.06, 0.09) <0.001

Red blood cell-related parameters

RBC (1012/L) 4.72 (4.35, 5.11) 4.78 (4.41, 5.16) 4.59 (4.29, 4.97) <0.001

HGB (g/L) 148 (136, 158) 149 (138, 160) 143 (133, 156) <0.001

HCT 0.44 (0.41, 0.47) 0.44 (0.41, 0.48) 0.43 (0.4, 0.46) <0.001

MCV (fL) 93.3 (90.0, 96.1) 92.9 (89.7, 95.9) 93.8 (90.9, 96.5) <0.001

MCH (pg) 31.3 (30.1, 32.4) 31.2 (30.1, 32.4) 31.3 (30.1, 32.4) 0.995

MCHC (g/L) 335 (327, 342) 336 (329, 342) 332 (325, 340) <0.001

RDWCV (%) 12.8 (12.3, 13.3) 12.8 (12.3, 13.4) 12.9 (12.4, 13.3) 0.623

Lipid parameters

TC (mmol/L) 4.01 (3.33, 4.72) 3.99 (3.31, 4.70) 4.06 (3.36, 4.76) 0.386

TG (mmol/L) 1.38 (1.01, 1.87) 1.41 (1.04, 1.95) 1.31 (0.96, 1.77) 0.005

HDL-C (mmol/L) 1.03 (0.88, 1.22) 1.00 (0.85, 1.18) 1.10 (0.94, 1.27) <0.001

LDL-C (mmol/L) 2.66 (2.12, 3.21) 2.67 (2.13, 3.2) 2.66 (2.12, 3.24) 0.924

AIP 0.12 (-0.03, 0.28) 0.14 (0, 0.3) 0.08 (-0.08, 0.24) <0.001

LCI 13.96 (7.79, 25.81) 14.57 (7.99, 27.35) 12.91 (7.33, 21.99) 0.002

non-HDL-C (mmol/L) 2.96 (2.35, 3.61) 2.99 (2.37, 3.62) 2.91 (2.32, 3.58) 0.416

AC 2.87 (2.16, 3.58) 2.97 (2.27, 3.71) 2.67 (2.00, 3.37) <0.001

CRI-I 3.87 (3.16, 4.58) 3.97 (3.27, 4.71) 3.67 (3.00, 4.37) <0.001

CRI-II 2.59 (1.99, 3.15) 2.69 (2.08, 3.27) 2.42 (1.89, 3.02) <0.001

(Continued)
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TABLE 1 (Continued)

Variables All participants
(n = 1,393)

AIS group (n = 909) Non-AIS group
(n = 484)

p-value

Diabetes-related biomarkers

GLU (mmol/L) 5.44 (4.77, 7.09) 5.89 (4.93, 7.98) 5.02 (4.58, 5.90) <0.001

TyG 8.74 (8.36, 9.22) 8.85 (8.41, 9.35) 8.61 (8.24, 8.97) <0.001

Renal function indicators

Urea (mmol/L) 5.6 (4.5, 6.8) 5.7 (4.5, 6.9) 5.5 (4.6, 6.7) 0.192

CREA (µmol/L) 63.1 (52.7, 74.2) 63.9 (53.5, 75.3) 61.1 (50.9, 71. 7) 0.001

UCR 0.09 (0.07, 0.11) 0.08 (0.07, 0.10) 0.09 (0.07, 0.11) 0.053

UA (µmol/L) 308 (252, 371) 312 (254, 379) 299 (249, 355) 0.008

Ion

K (mmol/L) 3.82 (3.57, 4.04) 3.79 (3.53, 4.01) 3.87 (3.64, 4.09) <0.001

NA (mmol/L) 140.1 (138.3, 142.0) 140.0 (138.0, 141.7) 141.0 (139.0, 142.2) <0.001

Cl (mmol/L) 106.0 (104.0, 108.0) 105.6 (103.0, 107.3) 106.7 (105.0, 108.1) <0.001

CO2 (mmol/L) 24.5 (22.8, 26.2) 24.3 (22.6, 26.0) 25.0 (23.4, 26.5) <0.001

Ca (mmol/L) 2.25 (2.18, 2.32) 2.25 (2.18, 2.32) 2.25 (2.18, 2.32) 0.585

P (mmol/L) 1.07 (0.94, 1.20) 1.04 (0.92, 1.18) 1.11 (0.98, 1.23) <0.001

Mg (mmol/L) 0.86 (0.81, 0.91) 0.85 (0.80, 0.90) 0.87 (0.83, 0.91) <0.001

Liver function-related indicators

TBIL (µmol/L) 14.4 (11.0, 18.9) 14.8 (11.0, 19.5) 14.0 (11.1, 17.9) 0.118

DBIL (µmol/L) 2.8 (2.0, 3.8) 2.8 (2.0, 4.0) 2.7 (2.0, 3.6) 0.046

IBIL (µmol/L) 11.5 (8.7, 15.3) 11.7 (8.7, 15.6) 11.1 (8.7, 14.7) 0.254

ALT (U/L) 18 (13, 27) 18 (12, 26) 19 (13, 28) 0.042

AST (U/L) 22 (18, 27) 22 (18, 27) 22 (18, 27) 0.85

AAR 1.17 (0.89, 1.55) 1.18 (0.92, 1.60) 1.14 (0.86, 1.47) 0.006

GGT (U/L) 24 (16, 36) 24 (17, 38) 22 (16, 34) 0.002

ALP (U/L) 84 (70, 102) 87 (72, 105) 80 (67, 94) <0.001

CHE (U/mL) 7.8± 1.55 7.87± 1.61 7.68± 1.43 0.028

TP (g/L) 66.9 (62.6, 71.4) 67.3 (62.8, 71.6) 66.1 (62.1, 70.9) 0.005

ALB (g/L) 39.8 (37.4, 42.4) 39.8 (37.4, 42.3) 39.9 (37.5, 42.8) 0.295

GLB (g/L) 26.9 (23.8, 30.1) 27.3 (24.1, 30.7) 26.0 (23.5, 29.1) <0.001

AGR 1.49 (1.32, 1.68) 1.46 (1.29, 1.66) 1.54 (1.40, 1.71) <0.001

Myocardial injury marker

CK (U/L) 73 (51, 101) 73 (51, 103) 72 (53, 100) 0.644

CK-MB (U/L) 12 (10, 15) 12 (10, 15) 12 (10, 14) 0.016

LDH (U/L) 189 (165, 220) 193 (166, 223) 184 (161, 211) <0.001

Coagulative markers

PT (s) 11.1 (10.6, 11.7) 11.2 (10.7, 11.8) 11 (10.5, 11.4) <0.001

PTA (%) 99 (91, 106) 97 (90, 105) 100 (93, 107) <0.001

INR 1.00 (0.96, 1.05) 1.00 (0.96, 1.05) 1.00 (0.96, 1.04) 0.563

APTT (s) 30.8 (28.7, 33.1) 30.5 (28.5, 33.1) 31.2 (29.0, 33.2) 0.039

FIB (g/L) 2.97 (2.61, 3.40) 3.03 (2.67, 3.48) 2.89 (2.51, 3.24) <0.001

(Continued)
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TABLE 1 (Continued)

Variables All participants
(n = 1,393)

AIS group (n = 909) Non-AIS group
(n = 484)

p-value

TT (s) 14.1 (13.3, 14.9) 14.1 (13.3, 14.9) 14.3 (13.5, 15.0) 0.063

DD (µg/mL) 0.39 (0.22, 0.72) 0.41 (0.23, 0.78) 0.37 (0.22, 0.63) 0.03

FDP (µg/mL) 1.03 (0.62, 1.83) 1.04 (0.63, 2.00) 1.01 (0.60, 1.72) 0.536

AIS, acute ischemic stroke; HTN, hypertension; AF, atrial fibrillation; CHD, coronary heart disease; DM, diabetes mellitus; HR, heart rate; SaO2 , oxygen saturation in arterial blood; SBP, systolic

blood pressure; DBP, diastolic blood pressures; BMI, body mass index;WBC, white blood cell; NEU, neutrophil; LYM, lymphocyte; MON, monocyte; NLR, neutrophil to lymphocyte ratio; LMR,

lymphocyte tomonocyte ratio;MHR,monocyte to high-density lipoprotein-cholesterol ratio; NHR, neutrophil to high-density lipoprotein-cholesterol ratio; SII, systemic immune-inflammation

index; SIRI, system inflammation response index; MII-1, multi-inflammatory index-1; MII-2, multi-inflammatory index-2; MII-3, multi-inflammatory index-3; RPR, red blood cell distribution

width to platelet ratio; CRP, C-reaction protein; RBC, red blood cell; HGB, hemoglobin; HCT, hematocrit; MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; MCHC,

mean corpuscular hemoglobin concentration; RDWSD, red blood cell distribution width standard deviation; RDWCV, red blood cell distribution width coefficient of variation; TC, total

cholesterol; TG, total triglyceride; HDL-C, high-density lipoprotein-cholesterol; LDL-C, low-density lipoprotein cholesterol; AIP, atherogenic index of plasma; LCI, lipoprotein combine index;

AC, atherogenic coefficient; CRI-I, Castelli’s index-I; CRI-II, Castelli’s index-II; non-HDL, non-high density lipoprotein-cholesterol; GLU, glucose; TyG, triglyceride-glucose; CREA, creatinine;

UCR, urea to creatinine ratio; UA, uric acid; K, potassium; Na, sodium; Cl, chlorine; CO2 , carbon dioxide; Ca, calcium; P, phosphorus; Mg, magnesium; TBIL, total bilirubin; DBIL, direct

bilirubin; IBIL, indirect bilirubin; ALT, alanine transaminase; AST, aspartate aminotransferase; AAR, aspartate aminotransferase to alanine transaminase ratio; GGT, γ glutamyl transpeptadase;

ALP, alkaline phosphatase; CHE, cholinesterase; TP, total protein; ALB, albumin; GLB, globulin; AGR, albumin to globulin ratio; CK, creatine kinase; CK-MB, creatine kinase-MB; LDH, lactic

dehydrogenase; PT, prothrombin time; PTA, prothrombin activity; INR, international normalized ratio; APTT, activated partial thromboplastin time; FIB, fibrinogen; TT, thrombin time; FDP,

fibrin degradation products; DD, D-Dimer.

chord diagram was used to visualize abnormal variables classified

by phenotype.

Before constructing models, we used the least absolute

shrinkage and selection operator (LASSO) algorithm to perform

variable selection for eliminating high multicollinearity variables

(34). Subsequently, we used a random sampling method to divide

patients in a 7:3 ratio into training and testing datasets. Next, a

support vector machines (SVM) classifier was adopted to establish

Clinlabomics predictive models, also regarded as phenotype

classifiers, of AIS novel phenotypes. The SVM algorithm, which

performs perfectly in dealing with both linear and non-linear data,

can project training datasets into a multidimensional space, using

a hyperplane to classify data (35), thus avoiding the overfitting

problem (36). Receiver operating characteristic curves (ROC) were

used to determine the optimal cut-off values of models, and the

predictive performance of models was assessed by area under the

receiver operating characteristic curve (AUC), accuracy, sensitivity,

specificity, positive predictive value (PPV), and negative predictive

value (NPV). All statistical analyses were performed on RStudio

software (R version 4.3.0). A two-tailed p < 0.05 was regarded as

statistical significance.

Results

Baseline characteristics of the study
population

In total, we retrospectively included 909 AIS patients [median

age: 64 (IQR: 17) years, 69% male] and 484 non-AIS subjects

[median age: 66 (IQR: 15) years, 53% male]. In addition, we also

prospectively collected 507 AIS patients [median age 60 (IQR: 18)

years, 70% male] as validation dataset to verify the robustness

of the k-means clustering algorithm. Figure 1 shows the detailed

patient selection process and flow chart of this study. Table 1

summarizes the characteristics of the participants. There were

no significant differences in age, nationality, marriage, history

of atrial fibrillation (AF) and CHD, heart rate (HR), oxygen

saturation in arterial blood (SaO2), body mass index (BMI), mean

corpuscular hemoglobin (MCH), RDWCV, TC, LDL-C, non-HDL-

C, urea, urea to creatinine ratio (UCR), calcium (Ca), total bilirubin

(TBIL), indirect bilirubin (IBIL), aspartate aminotransferase (AST),

albumin (ALB), creatine kinase (CK), international normalized

ratio (INR), thrombin time (TT), and fibrin degradation products

(FDP) between the two groups (all p > 0.05).

K-means clustering

We used the elbow method to determine the optimal k value

of 3 (Figure 2A) and divided 909 AIS patients into three novel

phenotypes (Figure 2B). Figure 3 describes the abnormal variables

of three phenotypes. Patients in phenotype 1 (n = 401) were

relatively young and obese and had significantly elevated levels

of lipids. Phenotype 2 (n = 463) was associated with abnormal

ion levels. Phenotype 3 (n = 45) was characterized by the

highest level of inflammation, accompanied by mild multiple-

organ dysfunction. Table 2 compares the statistical difference

among phenotypes in demographic, clinical characteristics, and

laboratory data.

In phenotype 1, the lipid parameters, including TC, TG,

LDL-C, AIP, LCI, non-HDL-C, AC, CRI-I, and CRI-II, were

significantly higher than the other two phenotypes (all p <

0.05). In phenotype 2, elevated levels of sodium (Na) and

chloride (Cl) ions were found, compared to phenotype 1

and 3 (all p < 0.05). Nevertheless, patients in phenotype

3 had significant inflammation levels. They had abnormally

increasing white blood cell (WBC), NEU, MON, NLR, MHR,

NHR, SII, SIRI, MII-1, MII-2, MII-3, CRP, and lower levels

of LYM and LMR inflammatory indicators, among the three

phenotypes (all p < 0.05). Besides, phenotype 3 also had mild

multiple-organ dysfunction, such as abnormal synthesis, secretion,

coagulation, and excretion function occurring in the liver and

renal, as well as myocardial injury. The basic characteristics

of phenotypes and non-AIS control groups are displayed in

Supplementary Table 1.

In the external validation dataset, 507 AIS patients were also

divided into three clusters by the k-means cluster algorithm
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FIGURE 2

Identification of phenotypes of AIS patients using k-means clustering. (A) The optimal k value was determined using the elbow method; (B) Plotting

of individual observations of each phenotype in discriminant component space; (C) The optimal k value in the validation cohort; (D) Individual

observations of each cluster in discriminant component space in the validation dataset. AIS, acute ischemic stroke.

(Figures 2C, D), including clusters A (n = 251), B (n = 213),

and C (n = 43). We compared the differences between the

three groups in terms of clinical and laboratory data. Cluster

A was characterized by abnormal ions, especially Na and Cl

ions, corresponding to phenotype 2. Cluster B had high levels

of lipid and BMI, which was equal to phenotype 1. Cluster C

had mild organ dysfunction and severe levels of inflammation,

with abnormal elevated and decreased inflammatory indicators,

similar to phenotype 3. Supplementary Table 2 describes the

detailed results.

Clinlabomics models of phenotypes

We used LASSO regression analysis to select 24 variables

for the establishment of Clinlabomics model 1 of phenotype

1, including age, hypertension (HTN), smoking, systolic blood

pressure (SBP), WBC, LYM, SII, MII-2, RPR, CRP, RBC, mean

corpuscular volume (MCV), RDWCV, LDL-C, CRI-II, glucose

(GLU), TyG, Cl, Ca, direct bilirubin (DBIL), alkaline phosphatase

(ALP), cholinesterase (CHE), AGR, and PT (Figure 4A). For

constructing predictive model 2 of phenotype 2 (Figure 4B), 23
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FIGURE 3

Chord diagrams show the relationships between phenotypes and 11 domains. RBC, red blood cell; DM, diabetes mellitus.

variables, namely age, marriage, CHD, AF, drinking, HR, SBP,

weight, LYM, NHR, SII, MII-2, RPR, CRP, TG, LCI, GLU, carbon

dioxide (CO2), magnesium (Mg), ALB, AGR, INR, and TT were

identified using a LASSO method. The predictive performance of

the two phenotype classifiers established by the SVM algorithm

was excellent, achieving high AUC values (ranging from 0.961

to 1.00), as shown in Figure 5 and Table 3. In particular, model

2 yielded higher accuracy (0.991 and 0.952), sensitivity (0.991

and 0.958), specificity (0.992 and 0.945), PPV (0.991 and 0.951),

and NPV (0.992 and 0.952) both in training and testing datasets.

Additionally, we selected a relatively important ranking of the

top ten variables of models (Supplementary Figure 1). Notably, the

inflammatory biomarkers CRP, RPR, and MII-2 were extremely

important variables that ranked in the top three, both in model

1 and model 2. Furthermore, the calibration plots of the models

showed a good agreement between the predicted probability and

observed probability (Figure 6). Decision curve analysis (DCA)

curves of two phenotype classifiers denoted optimal clinical efficacy

(Figure 7).

Discussion

In this retrospective analysis of data from AIS patients, we

classified them into three novel phenotypes with distinct clinical

characteristics and significantly different laboratory data. This

stratification of AIS patients may provide evidence of potential

pathophysiology mechanisms of diseases and can help clinicians

make clinical decisions about the intervention of stroke.

Of the three novel phenotypes, phenotype 3, which had only

∼5% of the overall population sample size, was closely related to the

older adult population and had the highest level of inflammation

and mild multiple-organ dysfunction, containing abnormal liver,

kidney function, and coagulative status. While phenotype 2 was
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TABLE 2 Characteristics of three phenotypes based on the k-means clustering analysis.

Variables Total (n = 909) Phenotypes p

Phenotype-1
(n = 401)

Phenotype-2
(n = 463)

Phenotype-3
(n = 45)

Demographic characteristics

Age 64 (55, 72) 61 (53, 70) 66 (56, 74) 70 (54, 75) <0.001a ; 0.017b ; 0.591

Gender

Female (%) 281 (31) 120 (30) 147 (32) 14 (31) 0.614; 1; 1

Male (%) 628 (69) 281 (70) 316 (68) 31 (69)

Nationality

Han (%) 845 (93) 377 (94) 426 (92) 42 (93) 0.558; 0.746; 1

Minority (%) 64 (7) 24 (6) 37 (8) 3 (7)

Marriage

Married (%) 893 (98) 391 (98) 457 (99) 45 (100) 0.31; 0.608; 1

Other status (%) 16 (2) 10 (2) 6 (1) 0 (0)

Education

High school diploma or

higher (%)

285 (31) 122 (30) 151 (33) 12 (27) 0.537; 0.726; 0.517

Others (%) 624 (69) 279 (70) 312 (67) 33 (73)

Clinical classification and scores

TOAST

LAA (%) 365 (40) 149 (37) 196 (42) 20 (44) 0.105; 0.1; 0.361

SAO (%) 267 (29) 134 (33) 125 (27) 8 (18)

Others (%) 277 (31) 118 (30) 142 (31) 17 (38)

Scales

NIHSS 3 (1, 5) 3 (1, 6) 2 (1, 5) 11 (6, 16) 0.058; <0.001b ; <0.001c

GCS 15 (15, 15) 15 (15, 15) 15 (15, 15) 13 (9, 15) 0.004a ; <0.001b ; <0.001c

mRS

0–2 (%) 515 (57) 234 (58) 275 (59) 6 (13) 0.81; <0.001b ; <0.001c

3–6 (%) 394 (43) 167 (42) 188 (41) 39 (87)

Previous history

HTN

No (%) 398 (44) 162 (40) 213 (46) 23 (51) 0.112; 0.221; 0.618

Yes (%) 511 (56) 239 (60) 250 (54) 22 (49)

AF

No (%) 892 (98) 396 (99) 453 (98) 43 (96) 0.445; 0.151; 0.288

Yes (%) 17 (2) 5 (1) 10 (2) 2 (4)

CHD

No (%) 873 (96) 390 (97) 440 (95) 43 (96) 0.133; 0.63; 1

Yes (%) 36 (4) 11 (3) 23 (5) 2 (4)

DM

No (%) 720 (79) 298 (74) 384 (83) 38 (84) 0.003a ; 0.189; 0.961

Yes (%) 189 (21) 103 (26) 79 (17) 7 (16)

Unhealthy habits

(Continued)
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TABLE 2 (Continued)

Variables Total (n = 909) Phenotypes p

Phenotype-1
(n = 401)

Phenotype-2
(n = 463)

Phenotype-3
(n = 45)

Smoking

No (%) 706 (78) 308 (77) 368 (79) 30 (67) 0.386; 0.186; 0.071

Yes (%) 203 (22) 93 (23) 95 (21) 15 (33)

Drinking

No (%) 832 (92) 365 (91) 430 (93) 37 (82) 0.382; 0.068; 0.02c

Yes (%) 77 (8) 36 (9) 33 (7) 8 (18)

MRI location

Lesions

One site (%) 417 (46) 202 (50) 211 (46) 4 (9) 0.18; <0.001b ; < 0.001c

Multiple sites (%) 492 (54) 199 (50) 252 (54) 41 (91)

Carotid artery ultrasound

IMT: Right

≤1.0mm (%) 705 (78) 319 (80) 349 (75) 37 (82) 0.168; 0.82; 0.399

>1.0mm (%) 204 (22) 82 (20) 114 (25) 8 (18)

IMT: Left

≤1.0mm (%) 643 (71) 281 (70) 325 (70) 37 (82) 1; 0.125; 0.126

>1.0mm (%) 266 (29) 120 (30) 138 (30) 8 (18)

CP

No (%) 248 (27) 100 (25) 138 (30) 10 (22) 0.128; 0.827; 0.37

Yes (%) 661 (73) 301 (75) 325 (70) 35 (78)

VP

None (%) 248 (27) 100 (25) 138 (30) 10 (22) 0.259; 0.386; 0.257

SP (%) 65 (7) 32 (8) 32 (7) 1 (2)

VP (%) 596 (66) 269 (67) 293 (63) 34 (76)

CS

No (%) 798 (88) 351 (88) 411 (89) 36 (80) 0.648; 0.237; 0.137

Yes (%) 111 (12) 50 (12) 52 (11) 9 (20)

Non-invasive physiological indices

HR (bpm) 77 (70, 86) 78 (72, 88) 75 (68, 83) 86 (76, 100) <0.001a ; <0.001b ;

<0.001c

SBP (mmHg) 140 (127, 156) 143 (130, 157) 138 (124, 152) 148 (140, 161) <0.001a ; 0.148; 0.004c

DBP (mmHg) 82 (73, 91) 85 (76, 93) 79 (71, 88) 80 (73, 93) <0.001a ; 0.296; 0.28

SaO2 (%) 96 (94, 96) 96 (94, 96) 96 (94, 96) 96 (94, 98) 0.682; 0.652; 0.785

Individual characteristics

Weight (Kg) 68 (60, 75) 70 (64, 75) 65 (60, 74) 65 (60, 70) <0.001a ; 0.003b ; 0.38

Height (cm) 168 (160, 172) 168 (160, 172) 168 (160, 172) 170 (160, 174) 0.61; 0.513; 0.384

BMI (Kg/m2) 24.34 (22.41, 26.26) 25.06 (23.15, 27.34) 23.88 (22.04, 25.76) 22.86 (20.76, 24.8) <0.001a ; <0.001b ; 0.073

Inflammatory biomarkers

WBC (109/L) 6.54 (5.40, 8.20) 6.94 (5.89, 8.46) 5.92 (4.98, 7.38) 12.00 (9.00, 15.32) <0.001a ; <0.001b ;

<0.001c

(Continued)
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TABLE 2 (Continued)

Variables Total (n = 909) Phenotypes p

Phenotype-1
(n = 401)

Phenotype-2
(n = 463)

Phenotype-3
(n = 45)

NEU (109/L) 4.25 (3.18, 5.56) 4.52 (3.54, 5.73) 3.76 (2.88, 4.95) 10.45 (7.27, 12.99) <0.001a ; <0.001b ;

<0.001c

LYM (109/L) 1.59 (1.25, 2.01) 1.75 (1.42, 2.21) 1.55 (1.17, 1.92) 0.86 (0.61, 1.29) <0.001a ; <0.001b ;

<0.001c

MON (109/L) 0.45 (0.36, 0.58) 0.45 (0.36, 0.59) 0.45 (0.36, 0.56) 0.64 (0.51, 1.04) 0.4; <0.001b ; <0.001c

NLR 2.55 (1.83, 3.77) 2.47 (1.84, 3.57) 2.45 (1.75, 3.5) 9.8 (6.82, 19.98) 0.637; <0.001b ; <0.001c

LMR 3.50 (2.61, 4.67) 3.90 (2.89, 5.07) 3.39 (2.59, 4.42) 1.40 (0.87, 1.74) <0.001a ; <0.001b ;

<0.001c

MHR 0.46 (0.33, 0.61) 0.44 (0.32, 0.61) 0.46 (0.34, 0.59) 0.79 (0.56, 1.08) 0.5; <0.001b ; <0.001c

NHR 4.16 (3.04, 5.98) 4.30 (3.34, 6.10) 3.81 (2.78, 5.30) 10.47 (7.76, 12.75) <0.001a ; <0.001b ;

<0.001c

SII (109/L) 487 (323, 748) 501 (341, 777) 439 (296, 678) 1945 (1222, 3016) <0.001a ; <0.001b ;

<0.001c

SIRI (109/L) 1.16 (0.78, 1.92) 1.12 (0.78, 1.8) 1.13 (0.74, 1.77) 8.57 (3.75, 16.43) 0.556; <0.001b ; <0.001c

MII-1 7.98 (2.61, 16.33) 7.21 (2.73, 14.46) 7.67 (2.14, 14.99) 82.96 (24.98,

303.47)

0.702; <0.001b ; <0.001c

MII-2 341 (115, 721) 325 (120, 679) 321 (98, 695) 1297 (301, 10385) 0.804; <0.001b ; <0.001c

MII-3 1413 (464, 3211) 1509 (534, 2959) 1184 (339, 2906) 13549 (4224, 84269) 0.059; <0.001b ; <0.001c

RPR 0.07 (0.06, 0.09) 0.06 (0.05, 0.07) 0.07 (0.06, 0.09) 0.08 (0.06, 0.11) <0.001a ; <0.001b ; 0.738

CRP (mg/L) 2.84 (0.99, 5.96) 2.67 (1.09, 5.96) 2.79 (0.88, 5.96) 7.85 (2.14, 59.19) 0.568; <0.001b ; <0.001c

Red blood cell-related parameters

RBC (1012/L) 4.78 (4.41, 5.16) 4.96 (4.65, 5.32) 4.64 (4.25, 4.96) 4.33 (3.91, 4.99) <0.001a ; <0.001b ; 0.017c

HGB (g/L) 149 (138, 160) 155 (145, 164) 145 (135, 155) 136 (117, 153) <0.001a ; <0.001b ; 0.006c

HCT 0.44 (0.41, 0.48) 0.46 (0.43, 0.49) 0.43 (0.4, 0.46) 0.40 (0.35, 0.45) <0.001a ; <0.001b ; 0.003c

MCV (fL) 92.9 (89.7, 95.9) 91.9 (89.1, 94.8) 93.6 (90.6, 96.9) 92.8 (89, 96.4) <0.001a ; 0.476; 0.186

MCH (pg) 31.2 (30.1, 32.4) 31.0 (30.0, 32.1) 31.5 (30.3, 32.6) 31.4 (30.1, 32.8) <0.001a ; 0.308; 0.67

MCHC (g/L) 336 (329, 342) 337 (330, 343) 335 (328, 342) 337 (325, 348) 0.012a ; 0.81; 0.493

RDWCV (%) 12.8 (12.3, 13.4) 12.6 (12.0, 13.2) 13.0 (12.4, 13.5) 13.5 (12.7, 14.0) <0.001a ; <0.001b ; 0.003c

Lipid parameters

TC (mmol/L) 3.99 (3.31, 4.7) 4.7 (4.12, 5.33) 3.43 (2.99, 4) 3.59 (2.95, 4.13) <0.001a ; <0.001b ; 0.512

TG (mmol/L) 1.41 (1.04, 1.95) 1.96 (1.55, 2.62) 1.13 (0.88, 1.4) 1.22 (0.8, 1.52) <0.001a ; <0.001b ; 0.617

HDL-C (mmol/L) 1 (0.85, 1.18) 1.03 (0.89, 1.21) 0.98 (0.85, 1.15) 0.98 (0.72, 1.21) 0.011a ; 0.135; 0.456

LDL-C (mmol/L) 2.67 (2.13, 3.2) 3.19 (2.76, 3.69) 2.29 (1.89, 2.67) 2.26 (1.73, 2.82) <0.001a ; <0.001b ; 0.643

AIP 0.14 (0, 0.3) 0.28 (0.14, 0.44) 0.06 (-0.08, 0.17) 0.06 (-0.06, 0.25) <0.001a ; <0.001b ; 0.347

LCI 14.57 (7.99, 27.35) 28.65 (19.13, 44.02) 8.93 (5.76, 13.34) 9.55 (4.96, 19.98) <0.001a ; <0.001b ; 0.412

non-HDL-C (mmol/L) 2.99 (2.37, 3.62) 3.64 (3.12, 4.19) 2.46 (2.04, 2.95) 2.56 (1.95, 3.14) <0.001a ; <0.001b ; 0.181

AC 2.97 (2.27, 3.71) 3.56 (2.96, 4.19) 2.45 (1.96, 3.09) 2.55 (1.97, 3.64) <0.001a ; <0.001b ; 0.227

CRI-I 3.97 (3.27, 4.71) 4.56 (3.96, 5.19) 3.45 (2.96, 4.09) 3.55 (2.97, 4.64) <0.001a ; <0.001b ; 0.227

CRI-II 2.69 (2.08, 3.27) 3.11 (2.65, 3.61) 2.29 (1.82, 2.83) 2.28 (1.84, 3.33) <0.001a ; <0.001b ; 0.327

Diabetes-related biomarkers

GLU (mmol/L) 5.89 (4.93, 7.98) 6.65 (5.35, 9.44) 5.34 (4.66, 6.64) 6.66 (5.09, 10.18) <0.001a ; 0.8; < 0.001c

(Continued)
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TABLE 2 (Continued)

Variables Total (n = 909) Phenotypes p

Phenotype-1
(n = 401)

Phenotype-2
(n = 463)

Phenotype-3
(n = 45)

TyG 8.85 (8.41, 9.35) 9.32 (8.94, 9.75) 8.50 (8.21, 8.84) 8.70 (8.27, 9.22) <0.001a ; <0.001b ; 0.015c

Renal function indicators

Urea (mmol/L) 5.7 (4.5, 6.9) 5.6 (4.6, 6.9) 5.7 (4.5, 6.72) 6.8 (4.7, 9.0) 0.271; 0.007b ; 0.002c

CREA (µmol/L) 63.9 (53.5, 75.3) 65.2 (55.6, 76.2) 62.5 (51.8, 73.6) 66.1 (50.9, 82.7) 0.008a ; 0.892; 0.448

UCR 0.08 (0.07, 0.1) 0.08 (0.07, 0.11) 0.08 (0.07, 0.1) 0.09 (0.08, 0.12) 0.803; 0.028b ; 0.034c

UA (µmol/L) 312.0 (254.0, 379.0) 328.0 (262.0, 406.0) 300.0 (246.5, 357.5) 303.0 (248.6, 393.0) <0.001a ; 0.31; 0.431

Ion

K (mmol/L) 3.79 (3.53, 4.01) 3.79 (3.51, 4.03) 3.80 (3.56, 3.99) 3.72 (3.53, 4.01) 0.724; 0.646; 0.421

NA (mmol/L) 140.0 (138.0, 141.7) 139.7 (138.0, 141.2) 140.4 (138.3, 142.0) 138.0 (135.3, 140.0) <0.001a ; <0.001b ;

<0.001c

Cl (mmol/L) 105.6 (103.0, 107.3) 105.0 (102.0, 106.8) 106.0 (104.0, 108.0) 105.0 (102.0, 107.2) <0.001a ; 0.634; 0.039c

CO2 (mmol/L) 24.3 (22.6, 26) 24.3 (22.5, 26.1) 24.4 (22.8, 26.1) 22.3 (19.5, 24.3) 0.574; <0.001b ; <0.001c

Ca (mmol/L) 2.25 (2.18, 2.32) 2.29 (2.23, 2.37) 2.20 (2.14, 2.28) 2.23 (2.13, 2.29) <0.001a ; <0.001b ; 0.932

P (mmol/L) 1.04 (0.92, 1.18) 1.03 (0.92, 1.17) 1.05 (0.93, 1.18) 1.03 (0.85, 1.15) 0.41; 0.522; 0.704

Mg (mmol/L) 0.85 (0.8, 0.9) 0.86 (0.81, 0.91) 0.84 (0.8, 0.89) 0.83 (0.76, 0.88) <0.001a ; 0.015b ; 0.219

Liver function-related indicators

TBIL (µmol/L) 14.8 (11.0, 19.5) 14.5 (10.9, 18.3) 14.9 (11.0, 20.1) 17.4 (13.4, 23.4) 0.141; 0.008b ; 0.049c

DBIL (µmol/L) 2.8 (2.0, 4.0) 2.5 (1.8, 3.4) 3.0 (2.2, 4.3) 3.5 (2.1, 6.3) <0.001a ; <0.001b ; 0.057

IBIL (µmol/L) 11.7 (8.7, 15.6) 11.6 (9.0, 15.2) 11.6 (8.5, 15.9) 13.0 (9.6, 18.2) 0.968; 0.075; 0.088

ALT (U/L) 18 (12, 26) 19 (13, 27) 17 (11, 25) 17 (13, 26) 0.003a ; 0.696; 0.336

AST (U/L) 22 (18, 27) 21 (19, 27) 21 (17, 25) 26 (22, 40) 0.11; <0.001b ; <0.001c

AAR 1.18 (0.92, 1.60) 1.11 (0.88, 1.54) 1.22 (0.96, 1.58) 1.57 (1.24, 2.17) 0.005a ; <0.001b ; <0.001c

GGT (U/L) 24 (17, 38) 28 (20, 43) 21 (15, 32) 33 (19, 86) <0.001a ; 0.339; <0.001c

ALP (U/L) 87 (72, 105) 92 (76, 109) 83 (69, 98) 97 (67, 120) <0.001a ; 0.899; 0.084

CHE (U/mL) 7.87± 1.61 8.81± 1.36 7.18± 1.31 6.60± 1.98 <0.001a ; <0.001b ; 0.062

TP (g/L) 67.4± 6.5 70.4± 6.3 64.8± 5.6 68.0± 6.7 <0.001a ; 0.027b ; 0.003c

ALB (g/L) 39.8 (37.4, 42.3) 41.5 (39.4, 43.8) 38.8 (36.5, 40.9) 37.7 (34.1, 39.9) <0.001a ; <0.001b ; 0.066

GLB (g/L) 27.3 (24.1, 30.7) 28.5 (25.9, 32.1) 25.7 (23.0, 28.8) 30.2 (27.6, 34.4) <0.001a ; 0.013b ; <0.001c

AGR 1.46 (1.29, 1.66) 1.44 (1.28, 1.63) 1.49 (1.32, 1.71) 1.29 (1.03, 1.39) 0.004a ; <0.001b ; <0.001c

Myocardial injury markers

CK (U/L) 73 (51, 103) 74 (55, 107) 70 (49, 96) 92 (60, 159) 0.023a ; 0.041b ; 0.007c

CK-MB (U/L) 12 (10, 15) 13 (10, 15) 12 (10, 15) 13 (10, 16) 0.065; 0.392; 0.106

LDH (U/L) 193 (166, 223) 196 (171, 223) 187 (164, 220) 229 (189, 285) 0.029a ; <0.001b ; <0.001c

Coagulative markers

PT (s) 11.2 (10.7, 11.8) 10.9 (10.5, 11.5) 11.3 (10.9, 11.9) 12.7 (11.7, 13.6) <0.001a ; <0.001b ;

<0.001c

PTA (%) 97 (90, 105) 101 (93, 108) 95 (88, 101) 80 (72, 92) <0.001a ; <0.001b ;

<0.001c

(Continued)

Frontiers inNeurology 13 frontiersin.org

https://doi.org/10.3389/fneur.2024.1366307
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Jiang et al. 10.3389/fneur.2024.1366307

TABLE 2 (Continued)

Variables Total (n = 909) Phenotypes p

Phenotype-1
(n = 401)

Phenotype-2
(n = 463)

Phenotype-3
(n = 45)

INR 1 (0.96, 1.05) 0.99 (0.93, 1.02) 1.00 (0.99, 1.07) 1.10 (1.01, 1.20) <0.001a ; <0.001b ;

<0.001c

APTT (s) 30.5 (28.5, 33.1) 30.5 (28.7, 33.1) 30.7 (28.5, 33) 29.8 (27.4, 32.3) 0.868; 0.105; 0.11c

FIB (g/L) 3.03 (2.67, 3.48) 3.08 (2.71, 3.51) 2.96 (2.61, 3.37) 3.72 (3.12, 4.95) <0.001a ; < 0.001b ; <

0.001c

TT (s) 14.1 (13.3, 14.9) 13.7 (13.2, 14.6) 14.2 (13.5, 15.1) 14.1 (13.0, 15.2) <0.001a ; 0.231; 0.47

DD (µg/mL) 0.41 (0.23, 0.78) 0.34 (0.20, 0.60) 0.44 (0.25, 0.84) 1.44 (0.82, 3.72) <0.001a ; <0.001b ;

<0.001c

FDP (µg/mL) 1.04 (0.63, 2.00) 0.90 (0.59, 1.44) 1.12 (0.66, 2.16) 2.93 (1.81, 7.65) <0.001a ; <0.001b ;

<0.001c

AIS, acute ischemic stroke; TOAST, Trial of Org 10172 in Acute Stroke Treatment; LAA, large-artery atherosclerosis; SAO, small-artery occlusion; NIHSS, the National Institutes of Health

Stroke Scale; GCS, Glasgow coma scale; mRS, modified Rankin scale; HTN, hypertension; AF, atrial fibrillation; CHD, coronary heart disease; DM, diabetes mellitus; IMT, intima-media

thickness; CP, carotid plaque; VP, vulnerable plaque; SP, stable plaque; CS, carotid stenosis; HR, heart rate; SaO2 , oxygen saturation in arterial blood; SBP, systolic blood pressure; DBP, diastolic

blood pressures; BMI, body mass index; WBC, white blood cell; NEU, neutrophil; LYM, lymphocyte; MON, monocyte; NLR, neutrophil to lymphocyte ratio; LMR, lymphocyte to monocyte

ratio; MHR, monocyte to high-density lipoprotein-cholesterol ratio; NHR, neutrophil to high-density lipoprotein-cholesterol ratio; SII, systemic immune-inflammation index; SIRI, system

inflammation response index; MII-1, multi-inflammatory index-1; MII-2, multi-inflammatory index-2; MII-3, multi-inflammatory index-3; RPR, red blood cell distribution width to platelet

ratio; CRP, C-reaction protein; RBC, red blood cell; HGB, hemoglobin; HCT, hematocrit; MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular

hemoglobin concentration; RDWSD, red blood cell distribution width standard deviation; RDWCV, red blood cell distribution width coefficient of variation; TC, total cholesterol; TG, total

triglyceride; HDL-C, high-density lipoprotein-cholesterol; LDL-C, low-density lipoprotein cholesterol; AIP, atherogenic index of plasma; LCI, lipoprotein combine index; AC, atherogenic

coefficient; CRI-I, Castelli’s index-I; CRI-II, Castelli’s index-II; non-HDL, non-high density lipoprotein-cholesterol; GLU, glucose; TyG, triglyceride-glucose; CREA, creatinine; UCR, urea to

creatinine ratio; UA, uric acid; K, potassium; Na, sodium; Cl, chlorine; CO2 , carbon dioxide; Ca, calcium; P, phosphorus; Mg, magnesium; TBIL, total bilirubin; DBIL, direct bilirubin; IBIL,

indirect bilirubin; ALT, alanine transaminase; AST, aspartate aminotransferase; AAR, aspartate aminotransferase to alanine transaminase ratio; GGT, γ glutamyl transpeptadase; ALP, alkaline

phosphatase; CHE, cholinesterase; TP, total protein; ALB, albumin; GLB, globulin; AGR, albumin to globulin ratio; CK, creatine kinase; CK-MB, creatine kinase-MB; LDH, lactic dehydrogenase;

PT, prothrombin time; PTA, prothrombin activity; INR, international normalized ratio; APTT, activated partial thromboplastin time; FIB, fibrinogen; TT, thrombin time; FDP, fibrin degradation

products; DD, D-Dimer. aComparison between phenotype 1 and phenotype 2 with p< 0.05; bcomparison between phenotype 1 and phenotype 3 with p< 0.05; ccomparison between phenotype

2 and phenotype 3 with p < 0.05.

characterized by a mild increase in inflammatory markers, it

had the lowest lipid levels. Interestingly, the serum ions, such as

potassium (K), NA, Cl, CO2, and phosphorus (P), were observed

to be increased in phenotype 2. In contrast, phenotype 1 had a

relatively young but high BMI population, who had significantly

elevated levels of lipids.

We also compared with other phenotypes of ischemic stroke

(Table 4). For instance, Chen and Chen (8) and Lattanzi et al.

(10) revealed a clinical phenotype with dyslipidemia in embolic

stroke of undetermined source (ESUS) and ischemic stroke with

OSA, respectively. Likewise, Ding et al. (6, 7) also identified the

phenotypes of abnormal inflammation and lipid metabolism of

NCIS patients, which demonstrated that inflammatory and lipid

alterations were closely associated with the occurrence of ischemic

stroke. In our study, we found a distinct phenotype with abnormal

ions for the first time, which may provide new insight into targeted

treatments of AIS patients.

Recent works have shown that inflammation plays a vital

role in the pathogenesis of AIS, which may increase the risk of

stroke and exacerbate ischemic lesions (37–39). When ischemia

occurs in the cerebrum, peripheral circulating leukocytes and their

subsets, including neutrophils, monocytes, and lymphocytes, are

recruited to the cerebral ischemic region. These cells produce,

secrete, and activate inflammatory mediators, such as cytokines,

chemokines, adhesion molecules, etc., and even interact with

inflammatory cells to contribute to the progression and sustenance

of inflammation (40, 41). Inflammatory responses participate in the

process of thrombosis, which, in turn, can generate a thrombotic

inflammatory response via the recruitment of leukocytes, leading

to tissue organ damage and influencing the clinical outcome of

AIS patients (42). One collaborative analysis of 31,245 patients

who received statin therapy revealed that residual inflammatory

risk (RIR), namely LDL-C < 70 mg/dL and high-sensitivity C-

reactive protein (hs-CRP) level ≥ 2 mg/L, can effectively predict

cardiovascular events and death, and all-cause death (43). Similarly,

RIR was strongly associated with the poor functional outcome of

AIS patients and could predict the risk of recurrent stroke for AIS

or TIA patients (44). Therefore, an anti-inflammatory strategy is

recognized as a potential treatment to reduce the recurrence of

stroke and other vascular events after the onset of IS (45, 46).

Furthermore, we found that the levels of traditional lipid

parameters, including TC, TG, HDL-C, and LDL-C, and non-

traditional lipid parameters, such as AIP, LCI, non-HDL-C,

AC, CRI-I, and CRI-II, were significantly increased in the

phenotype 1, which had 46% carotid plaque occurrence rate in

all AIS population. Abnormal lipid metabolism and inflammatory

responses are involved in the pathological progression of

atherosclerosis, which is initiated by oxidation of LDL-C,

activated by endothelium, and mediated by macrophages (47).

Hyperlipidemia can recruit pro-inflammatory monocytes, which

infiltrate into atherosclerotic lesions and ultimately form foam

cells. They also can activate the innate immune response by

triggering the production of many pro-inflammatory cytokines.

Importantly, inflammation and hyperlipidemia had similar future

atherothrombotic risks in the population without receiving statins

(43). Thus, it is important to understand the vital roles of
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FIGURE 4

LASSO regression analysis for variable selection of (A) phenotype 1 and (B) phenotype 2. The LASSO coe�cient profiles (left) and selection of the λ by

10-fold cross-validation in the LASSO analysis (right). LASSO, least absolute shrinkage, and selection operator.

FIGURE 5

ROC curves of Clinlabomics (A) model 1 and (B) model 2. ROC, receiver-operating characteristic; AUC, the area under curve.
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TABLE 3 Evaluation metrics assess the predictive performance of Clinlabomics models.

Evaluation metrics Model 1 (95% CI) Model 2 (95% CI)

Training Testing Training Testing

AUC (95% CI) 0.999 (0.998–1.00) 0.977 (0.961–0.993) 1.00 (0.999–1.00) 0.984 (0.971–0.997)

ACC 0.982 (0.975–0.991) 0.936 (0.922–0.956) 0.991 (0.986- 0.994) 0.952 (0.938–0.972)

Sensitivity 0.993 (0.981–0.996) 0.984 (0.968–0.998) 0.991 (0.985–0.997) 0.958 (0.939–0.984)

Specificity 0.974 (0.961–0.990) 0.892 (0.874–0.926) 0.992 (0.984–0.999) 0.945 (0.923–0.969)

PPV 0.968 (0.953–0.988) 0.892 (0.875–0.923) 0.991 (0.982–0.999) 0.951 (0.935–0.972)

NPV 0.994 (0.985–0.997) 0.984 (0.969–0.998) 0.992 (0.987–0.997) 0.952 (0.932–0.982)

Threshold 0.428 - 0.547 -

Youden 1.967 1.876 1.982 1.903

CI, confidence interval; AUC, the area under curve; ACC, accuracy; PPV, positive predictive value; NPV, negative predictive value; -, not available.

FIGURE 6

Calibration plot of Clinlabomics (A) model 1 and (B) model 2.

FIGURE 7

The DCA plots of Clinlabomics (A) model 1 and (B) model 2. DCA, decision curve analysis.
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TABLE 4 Comparison with other phenotypes of ischemic stroke.

Author Year No.
patients

The source
of patients

Diseases Methods Variables No. of
phenotypes

Traits of phenotypes

Chen and

Chen (8)

2021 232 Chang Gung

Memorial Hospital

Ischemic

stroke with

OSA

LCA 13 variables: sex, age, smoking, daytime

sleepiness, depression, obesity, sedative

use, AF, DM, HTN, dyslipidemia,

recurrent stroke, and dysphagia

Three Cluster 1 (N= 84): older, predominantly female,

the highest hypopnea index and prevalence of AF.

Cluster 2 (N= 80): older, predominantly male,

with the highest depression, the lowest prevalence

of HTN, and normal BMI.

Cluster 3 (N= 68): the youngest, predominantly

male, with the highest BMI, cumulative risk score,

and prevalence of dyslipidemia.

Ding et al. (7) 2023 7695 CNSR-III NCIS Ward’s

hierarchical

agglomerative

clustering

method

63 biomarkers: ANGPTL3, PCSK9,

Lp-PLA2-Activity, LDL, Lp, ADPN,

HDL, LDL-R, TG, ApoE, ApoAI,

ApoAII, ApoB, MCV, B, E, PLT,

RDWCV, MPV, HGB, MCHC, APTT,

INR, PT, FIB, D-D, TT, Cl, Na, K, FPG,

TMAVA, TMAO, TML, Carnitine,

Butyrobetaine, Betaine, Choline, MMA,

HCY, Folic acid, Vitamin B12, MON,

NEU, LYM, IL-6, hs-CRP, IL-1Ra,

YKL-40, MCP-1, IL-6R, ALP, GLB,

GGT, ALT, AST, DBIL, IBIL, ALB, UA,

CysC, CREA, and UMA

30 C1 (N= 53): hs-CRP, history of stroke.

C2 (N= 70): D-dimer.

C3 (N= 194): MON, NEU.

C4 (N= 308): IL-6, age (median 67, IQR: 60−76)

C5 (N= 49): UMA, history of stroke, T2DM

HTN, family history of DM, HTN, and stroke.

C6 (N= 88): TMAO, liver disease.

C7 (N= 153): CysC, CREA, age (median 68, IQR

61 - 76), history of stroke, HTN, CHD.

C8 (N= 81): MMA, family history of HTN.

C9 (N= 183): HCY, smoking.

C10 (N= 211): Folic acid.

C11 (N= 677): APTT, INR, PT.

C12 (N= 991): ADPN, HDL.

C13 (N= 569): ADPN, HDL, YKL-40, BMI

(median 23.67, IQR: 21.78 - 25.53).

C14 (N= 125): TML, carnitine, butyrobetaine,

betaine, choline.

C15 (N= 101): RDWCV, MCV, HGB, MCHC.

C16 (N= 128): ApoAI.

C17 (N= 128): ALT, AST, liver disease.

C18 (N= 158): GGT, smoking, drinking, liver

disease.

C19 (N= 178): LDL-R, Apo-E, TG, hyperlipemia.

C20 (N= 89): MCP-1.

C21 (N= 135): IL-1Ra.

C22 (N= 264): Vitamin B12, PAD.

C23 (N= 359): B, E, smoking.

C24 (N= 827): TMAVA, TML.

C25 (N= 114): Lp (a).

C26 (N= 149): LDL, hyperlipemia.

C27 (N= 144): DBIL, IBIL.

C28 (N= 707): BMI: 25.39 (23.56, 27.60).

C29 (N= 214): FPG, T2DM, family history of DM.

C30 (N= 248): Apo-AII, Apo-B.

(Continued)

F
ro
n
tie

rs
in

N
e
u
ro
lo
g
y

1
7

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/fneur.2024.1366307
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


J
ia
n
g
e
t
a
l.

1
0
.3
3
8
9
/fn

e
u
r.2

0
2
4
.1
3
6
6
3
0
7

TABLE 4 (Continued)

Author Year No.
patients

The source
of patients

Diseases Methods Variables No. of
phenotypes

Traits of phenotypes

Ding et al. (6) 2022 9288 CNSR-III NCIS GMM

clustering

method

30 features: BMI, SBP, DBP, MMA, HCT,

MCV, PLT, RBC, APTT, TT, K, CREA,

UA, MON, NEU, LYM, hs-CRP, FPG,

HDL, TC, LDL, Lp (a), TG, GGT, DBIL,

TP, ALP, ALT, Choline, and infarct

volume.

Four Phenotype 1: abnormal glucose and lipid

metabolism.

Phenotype 2: inflammation and abnormal renal

function.

Phenotype 3: the least laboratory abnormalities

and small infarct lesions.

Phenotype 4: disturbance in homocysteine

metabolism.

Lattanzi et al.

(10)

2021 127 The Marche

Polytechnic

University

ESUS HCA Two variables: age and baseline NIHSS Three Cluster 1: young age, male sex, posterior

circulation infarct, and presence of PFO.

Cluster 2: HTN, DM, severe stroke, involvement

of multiple vascular territories, and left atrial

cardiopathy.

Cluster 3: dyslipidemia, smoking,

infarct of anterior vascular territory, and ipsilateral

non-stenotic vulnerable carotid plaque.

Schütz et al.

(9)

2019 451 Nueces County,

Texas, residents

Ischemic

stroke with

OSA

LCA 15 variables: snoring, tiredness/fatigue,

history of prior stroke/TIA, congestive

heart failure, CAD, DM, HTN, sex,

race/ethnicity, AF, sleep duration, age,

BMI, NIHSS, and REI.

Three Cluster 1: Severe strokes.

Cluster 2: Younger patients with mild strokes and

relatively mild OSA.

Cluster 3: Severe OSA with high prevalence of

co-morbidities.

This study 2024 909 Lanzhou University

Second Hospital

AIS k-means

clustering

method

76 variables: HR, SBP, DBP, SaO2 ,

weight, height, BMI, WBC, NEU, LYM,

MON, NLR, LMR, MHR, NHR, SII,

SIRI, MII-1, MII-2, MII-3, RPR, CRP,

RBC, HGB, HCT, MCV, MCH, MCHC,

RDWCV, TC, TG, HDL-C, LDL-C, AIP,

LCI, non-HDL-C, AC, CRI-I, CRI-II,

GLU, TyG, UREA, CREA, UCR, UA, K,

NA, Cl, CO2 , Ca, P, Mg, TBIL, DBIL,

IBIL, ALT, AST, AAR, GGT, ALP, CHE,

TP, ALB, GLB, AGR, CK, CK-MB, LDH,

PT, PTA, INR, APTT, FIB, TT, DD, and

FDP

Three Phenotype 1: relatively young and obese and

significantly elevated levels of lipids.

Phenotype 2: abnormal ion levels.

Phenotype 3: the highest level of inflammation,

mild multiple-organ dysfunction.

OSA, obstructive sleep apnea; LCA, latent class analysis; AF, atrial fibrillation; DM, diabetes mellitus; HTN, hypertension; BMI, body mass index; CNSR-III, Third China National Stroke Registry; NCIS, Non-cardioembolic ischemic stroke; ANGPTL3, Angiopoietin-

Like 3; PCSK9, proprotein convertase subtilisin/kexin type 9; Lp-PLA2, lipoprotein-associated phospholipase 2; LDL, low-density lipoprotein cholesterol; Lp, lipoprotein; ADPN, adiponectin; HDL, high-density lipoprotein; LDL-R, low-density lipoprotein receptor;

TG, total triglyceride; ApoE, apolipoprotein E; ApoAI, apolipoprotein AI; ApoAII, apolipoprotein AII; ApoB, apolipoprotein B;MCV,mean corpuscular volume; B, Basophil; E, Eosinophil; PLT, platelet; RDWCV, red blood cell distribution width coefficient of variation;

MPV, mean platelet volume; HGB, hemoglobin; MCHC, mean corpuscular hemoglobin concentration; APTT, activated partial thromboplastin time; INR, international normalized ratio; PT, prothrombin time; FIB, fibrinogen; D-D, D-Dimer; TT, thrombin time; Cl,

chlorine; Na, sodium; K, potassium; FPG, fasting plasma glucose; TMAVA, N,N,N-trimethyl-5-aminovaleric acid; TMAO, trimethylamine-N-oxide; TML, trimethyllysine; MMA, methylmalonic aciduria; HCY, homocysteine; MON, monocyte; NEU, neutrophil; LYM,

lymphocyte; IL-6, interleukin- 6; hs-CRP, hypersensitive C-reactive protein; IL-1Ra, Interleukin-1 receptor antagonist; YKL-40, chitinase-3-like protein 1; MCP-1, monocyte chemoattractant protein-1; IL-6R, interleukin-6 receptor; ALP, alkaline phosphatase; GLB,

globulin; GGT, γ glutamyl transpeptadase; ALT, alanine transaminase; AST, aspartate aminotransferase; DBIL, direct bilirubin; IBIL, indirect bilirubin; ALB, albumin; UA, uric acid; CysC, Cystatin C; CREA, creatinine; UMA; renal function index; GMM, Gaussian

mixture model; SBP, systolic blood pressure; DBP, diastolic blood pressures; MMA, methylmalonic aciduria; HCT, hematocrit; RBC, red blood cell; TC, total cholesterol; LDL, low-density lipoprotein; TP, total protein; ESUS, embolic stroke of undetermined source;

HCA, hierarchical cluster analysis; NIHSS, the National Institutes of Health Stroke Scale; TIA, transient ischemic attack; CAD, coronary artery disease; REI, respiratory-event-index; AIS, acute ischemic stroke; HR, heart rate; SaO2 , oxygen saturation in arterial blood;

WBC, white blood cell; NLR, neutrophil to lymphocyte ratio; LMR, lymphocyte to monocyte ratio; MHR, monocyte to high-density lipoprotein-cholesterol ratio; NHR, neutrophil to high-density lipoprotein-cholesterol ratio; SII, systemic immune-inflammation

inde; SIRI, system inflammation response index; MII-1, multi-inflammatory index-1; MII-2, multi-inflammatory index-2; MII-3, multi-inflammatory index-3; RPR, red blood cell distribution width to platelet ratio; CRP, C-reaction protein; MCH, mean corpuscular

hemoglobin; AIP, atherogenic index of plasma; LCI, lipoprotein combine index; AC, atherogenic coefficient; CRI-I, Castelli’s index-I; CRI-II, Castelli’s index-II; non-HDL, non-high density lipoprotein-cholesterol; GLU, glucose; TyG, triglyceride-glucose; UCR, urea

to creatinine ratio; CO2 , carbon dioxide; Ca, calcium; P, phosphorus; Mg, magnesium; TBIL, total bilirubin; AAR, aspartate aminotransferase to alanine transaminase ratio; CHE, cholinesterase; AGR, albumin to globulin ratio; CK, creatine kinase; CK-MB, creatine

kinase-MB; LDH, lactic dehydrogenase; PTA, prothrombin activity; FDP, fibrin degradation products.
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inflammation and lipids in the atherosclerosis process for better

intervention of IS. Currently, statin therapy is recommended to

reduce cardiovascular event risk among people with atherosclerosis

in primary or secondary prevention, based on the randomized trials

that demonstrated the efficacy of statin to decline the occurrence

of cardiovascular events in patients with high levels of LDL-C

(48) and hs-CRP (49). In addition, other lipid-lowering therapies,

including ezetimibe, bempedoic acid, proprotein convertase

subtilisin-kexin type 9 (PCSK9) inhibitors, angiopoietin-like 3

protein (ANGPTL3) inhibitors, and inclisiran were also observed

to reduce cardiovascular event rates (50–52). A parallel-group

trial elucidated that a target LD-L cholesterol <70 mg/dL in IS

or TIA patients with atherosclerosis had lower cardiovascular

risk (53).

Interestingly, both inflammation biomarkers and lipid levels

were found to be the lowest in phenotype 2, but the levels of K, NA,

Cl, and P ions were increased. After the onset of cerebral ischemia,

endogenous Na+/K+-ATPase (NKA) inhibitors that damaged the

innate NKA activity were released to the peripheral circulation

(54), leading to ATP depletion, which in turn exacerbated

anoxic damage (55, 56). Besides, abnormal metabolic changes

occurred in extracellular and intracellular environments, namely,

reductions in ATP and cytosolic K+, as well as increases in ROS

produced by mitochondria and intracellular Ca2+. These changes

activated the nucleotide-binding oligomerization domain (NOD)-

like receptor (NLR) family pyrin domain-containing 3 (NLRP3)

inflammasome and subsequent pro-caspase-1 self-cleaved into

caspase-1, mediating pyroptosis and ultimately causing neuronal

death (57). In addition, the decline of intracellular K+ could

also stimulate the activation of NLRP3 inflammasome and trigger

inflammation cascades (58). Therefore, restoring the activity of

NKAmay reduce inflammasome activation, relieve neuronal death,

and attenuate ischemic injury (59), which may be a distinct

therapeutic target for AIS.

In this study, a total of 24 and 23 variables were selected to

construct Clinlabomics models of phenotype 1 and phenotype 2,

respectively. The SVM generally presented a similar or superior

ability to the logistic regression (LR) method in the classification

of diseases (60). We tried to use the LR algorithm to construct

the Clinlabomics models of phenotypes, but the results were

disappointing with the fitted probabilities numerically 0 or 1.

Thus, we established the phenotype classifiers using the SVM

algorithm, which showed excellent predictive performance for

phenotypes of AIS patients. Both in models 1 and 2, CRP, RPR,

and MII-2 inflammatory biomarkers were the most important

predictors. Kitagawa et al. (61) revealed that a low level of CRP

(<1 mg/L) reduced 32% recurrent stroke and TIA compared to

patients with CRP ≥ 1 mg/L. In addition, elevated CRP was

observed to be strongly correlated to a 3-month worse outcome

of stroke patients without infection (62). The RPR, as a new

inflammatory index, was closely related to the risk of mortality

among AIS patients (63, 64). Furthermore, an increase in RPR

could also predict early neurological deterioration after intravenous

thrombolysis in patients with AIS (65). It remains unclear whether

any relationship exists between the MII-2 indicator and AIS

patients, but a recent study elucidated that the MII-1 and MII-2

inflammatory markers were capable of predicting the occurrence

of acute symptomatic seizures after IS (66). With advances in

algorithms to develop prediction models by combining multiple

variables, we can optimize models to identify the hidden complex

relationships among variables, which may be of great utility in

clinical practice.

However, we should consider limitations on the interpretation

of our findings. First, this is a single-center, small sample-

size study that needs further validation in a large-scale study.

Second, we also need to investigate more advanced ML algorithms

to better predict the phenotypes of AIS patients based on

multicenter and large-scale research. Third, due to the small

population (n = 45), we did not establish the predictive phenotype

classifiers of phenotype 3, which is required to explore the

underlying mechanism of mild organ damage and dysfunction

in the future. Interestingly, although a large quantity of ML-

based models exists to predict AIS, they are not effectively

utilized in clinical practice, which is ascribed to the complicated

data mining algorithms and abstruse formulas. Therefore, it is

imperative to solve this problem to better apply these models

by clinicians.

Conclusion

In conclusion, we identified three novel phenotypes that

connected with different clinical variables using k-means clustering

analysis. We constructed the Clinlabomics models of phenotypes

in AIS patients that are conducive to clinical decision-making and

personalized medicine.
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