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In subjects with peripheral vestibular disease and controls, we assessed: 1. The 
relationship between spatial anxiety and perceived stress, and 2. The combined 
contribution of spatial anxiety, spatial perspective-taking, and individual 
cofactors to dizziness-related handicap.  309 adults participated in the study 
(153 with and 156 without peripheral vestibular disease), including patients with 
bilateral vestibular deficiency, unilateral deficiency (evolution <3 or ≥3  months), 
Meniere’s disease, and Benign Paroxysmal Positional Vertigo. Assessments 
included: general health, personal habits, spatial anxiety (3-domains), perceived 
stress, spatial perspective-taking, dizziness-related handicap (3-domains), 
unsteadiness, sleep quality, motion sickness susceptibility, trait anxiety/
depression, state anxiety, depersonalization/derealization. After bivariate 
analyses, analysis of covariance was performed (p  ≤  0.05). Spatial anxiety was 
related to unsteadiness and perceived stress, with an inverse relationship with 
trait anxiety (ANCoVA, adjusted R2  =  0.27–0.30, F  =  17.945–20.086, p  <  0.00001). 
Variability on perspective-taking was related to vestibular disease, trait and state 
anxiety, motion sickness susceptibility, and age (ANCoVA, adjusted R2  =  0.18, 
F  =  5.834, p  <  0.00001). All domains of spatial anxiety contributed to the Physical 
domain of dizziness-related handicap, while the Navigation domain contributed 
to the Functional domain of handicap. Handicap variability was also related 
to unsteadiness, spatial perspective-taking, quality of sleep, and trait anxiety/
depression (ANCoVA, adjusted R2  =  0.66, F  =  39.07, p  <  0.00001). Spatial anxiety 
is related to perceived stress in adults both with and without vestibular disease, 
subjects with trait anxiety rated lower on spatial anxiety. State anxiety and 
acute stress could be  helpful for recovery after peripheral vestibular lesion. 
Spatial anxiety and perspective-taking contribute to the Physical and Functional 
domains of dizziness-related handicap, possibly because it discourages behavior 
beneficial to adaptation.
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1 Introduction

Spatial reasoning is an essential function for activities of daily life, 
which requires a variety of innate aptitudes, supplemented by learned 
(malleable) skills (1, 2). Spatial abilities include visualizing, mentally 
rotating, and transforming spatial information (3). Among these, the 
ability to imagine viewing a scene from another perspective 
(perspective-taking) can be  impaired by aberrant vestibular 
stimulation (4); while uncompromised vestibular resources are needed 
for self-rotation estimates (5), mental body transformation (6), spatial 
awareness for location, directional heading, and movement through 
the environment (7). Consistently, vestibular dysfunction is related to 
impairments in spatial memory (8), visuospatial working memory (9), 
path integration (10), updating orientation (11), and spatial navigation 
(12). However, spatial abilities may vary according to multiple factors 
(13), including anxiety (14). Anxiety may also be  provoked by 
vestibular dysfunction (15–18), as well as motion sickness 
susceptibility (19), and discordant visuo-vestibular interactions and 
postural instability may elicit fears associated to specific 
environments (20).

Anxiety implies responses to increase arousal modulate attentional 
processes and behavioral inhibition (21). It is related to a variety of 
factors, such as age (22), sex (23), and quality of sleep (24). Trait 
anxiety is a predisposition to express constant anxiety (25) and 
promotes the processing of environmental information preparing the 
organism for response (26). State anxiety refers to hypervigilance in 
anticipation of a threat; it can be triggered by acute stress and has a 
function on overcoming environmental challenges and facilitating 
memory consolidation (27). In potentially dangerous situations, trait 
anxiety increases the probability of state anxiety (25).

Spatial anxiety is the domain-specific anxiety that is related to 
spatial reasoning (28). It denotes the fear and apprehension felt when 
conducting spatial tasks (29), with negative effects on performance 
(29, 30). Although, spatial anxiety is related to both experience and 
performance (31), individual differences are partially explained by 
genetic and environmental factors, including education (32). In 
patients with bilateral vestibular hypofunction, spatial anxiety is 
related to impaired spatial memory and navigation performance (12).

Both vestibular dysfunction and anxiety are related to stress (33, 
34). The hypothalamus-pituitary–adrenal axis, the cortico-limbic and 
the sympathetic systems interact with each other to coordinate the 
stress response (35). In animal models, unilateral vestibular 
deafferentation activates the stress axis (36), whereas cortisol 
administration may improve vestibular compensation (37, 38). In 
healthy human beings, vestibular caloric stimulation increases cortisol 
levels (39). Nonetheless, to adapt to challenging situations, stress 
responses include emotional arousal and altered perceptions (40, 41). 
Acute stress is a trigger of state anxiety, improving the chance to 
overcome challenges, facilitating memory of relevant information 
(27), and inducing focused attention (42). Contrariwise, dysregulation 
of the stress axis can underlie distorted perceptions, including primary 
dissociative conditions (43); while symptomatic vestibular disease 
may provoke dissociative misperceptions (44, 45).

Physiological impairment, anxiety, spatial anxiety, stress could all 
contribute to dizziness-related handicap. However, studies on their 
combined contribution to the handicap reported by patients with 
peripheral vestibular disease are scarce. The twofold purposes of this 
study were: to assess the relationship between spatial anxiety and 

perceived stress in adults seeking medical care due to peripheral 
vestibular disease, and to explore the combined contribution of spatial 
anxiety, perspective-taking, and individual cofactors to the variability 
of their dizziness-related handicap. Accordingly, we  conducted a 
correlational study assessing spatial anxiety, perceived stress, 
perspective-taking, and handicap-related to dizziness in adults with/
without peripheral vestibular disease, with the following cofactors: 
demographics, individual habits (alcohol, tobacco, and sleep), 
symptoms of unsteadiness, motion sickness susceptibility, and 
symptoms of common mental disorders (anxiety/depression and 
depersonalization/derealization).

2 Materials and methods

2.1 Participants

After approval by the institutional Research and Ethics 
Committees (IMSS R 2021-3601-219), in a specialized healthcare 
institutional system (Instituto Mexicano del Seguro Social, Mexico), 
309 consecutive participants fulfilling the selection criteria gave their 
informed consent to participate in the study. They were 153 patients 
with diagnosed peripheral vestibular disease (18 to 87 years old, 109 
women and 44 men) who were referred for specialized evaluation 
(Figure 1), and 156 volunteers with no history or clinical evidence of 
vestibular disease (18 to 85 years old, 97 women and 59 men), relatives 
or companions of patients attending the outpatient clinics. The 
selection of participants was performed according to the following 
criteria: no history or medical record of middle ear, retinal, 
neurological (including migraine), autoimmune or autonomic 
disorders, or hearing loss >40 dB nHL, or submission to psychiatric 
care or psychopharmacological treatment and to have completed at 
least nine years of formal school (secondary school). Three more 
patients fulfilling the criteria were excluded from the study due to 
symptoms of acute upper airways disease, at the time of evaluation. 
The sample size was calculated to assess a correlation value of at least 
ρ = 0.3, with type I error of 0.01 and type II error of 0.1.

166 patients

156 invited

3 comorbidities

3 upper-airways 
disease

7 hearing loss

153 participants

FIGURE 1

Selection of patients with peripheral vestibular disease.
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The vestibular disease was confirmed at the neuro-otology clinic 
after at least: clinical assessment (including positional maneuvers), 
vestibular testing (caloric and/or rotatory tests), and audiological 
evaluation (middle ear impedance/audiometry/speech audiometry). 
The general characteristics of the participants are described in Table 1, 
according to the following groups: participants without history of 
vestibular disease and participants with diagnosed vestibular disease. 
Those with vestibular disease were classified by their clinical diagnoses 
in the following subgroups: bilateral vestibular deficiency, unilateral 
deficiency with <3 months of clinical evolution, unilateral deficiency 
with ≥3 months of clinical evolution, Meniere’s disease, and active 
Benign Paroxysmal Positional Vertigo (BPPV) (before treatment). The 
frequency of comorbidities in the two groups (without/with vestibular 
disease) is described in Table 2; compared to participants without 
vestibular disease, the frequency of corrected refraction errors was less 
than half in participants with vestibular disease, and no other 
differences were observed between the groups.

2.2 Procedures

After all the participants reported their general health and 
personal habits (including alcohol and tobacco use) using an in-house 
questionnaire, the following instruments were administered for 
self-report:

2.2.1 Pittsburgh sleep quality index
Pittsburgh Sleep Quality Index (46) to assess sleep quality and 

sleep disturbances. The scale comprises 19 items to generate seven 
sub-scores on: subjective sleep quality, sleep latency, sleep duration, 
habitual sleep efficiency, sleep disturbances, use of sleeping 
medication, and daytime dysfunction. A total score is calculated by 

the sum of all sub-scores; an overall score of >5 indicates “poor” 
quality of sleep. The index has shown Cronbach’s alpha coefficient 
from 0.70 to 0.83 (47).

2.2.2 Motion sickness susceptibility questionnaire
Motion Sickness Susceptibility Questionnaire (short form) (48) to 

assess individual differences in motion sickness caused by a variety of 
stimuli (e.g., cars, boats, planes, trains, funfair rides). It contains 
18-items, divided into two parts: part A to assess motion sickness 
during childhood, and part B to assess motion sickness during 
adulthood. Each sub-score ranges from 0 (no susceptibility) to 27 
(maximum susceptibility), and a total score range from 0 to 54, higher 
scores indicate more susceptibility, with a Cronbach’s alpha coefficient 
of 0.87 (49).

2.2.3 Unsteadiness rating
Unsteadiness rating. A standardized questionnaire of symptoms 

related to unsteadiness (50) that includes nine items with no/yes 
responses. A “no” response is scored 0 points and a “yes” response is 
scored 1 point, except for vertigo that is scored 2 points. Frequent falls 
are considered only when ≥1 per month and frequent stumbles are 
considered only when ≥1 per week. A total score is obtained by 
summing the ratings for all the items (range 0 to 10). A score ≥4 
points has been related to balance disorders (50).

2.2.4 Hospital anxiety and depression scale
Hospital Anxiety and Depression Scale (HADS) (51), which 

comprises 14 items, 7 for anxiety and 7 for depression, which are rated 
on a 4-point scale (0 to 3), each score ranges from 0 to 21, and a total 
score is obtained by summing the ratings for all the items. Cut-off 
scores of ≥8 (sub-scores) and ≥11 (total score) have shown sensitivities 
and specificities in the range of 0.70 to 0.90 for anxiety/ depression 
(51, 52), and Cronbach’s alpha coefficient from 0.67 to 0.93 (52).

TABLE 1 General characteristics of 156 participants without and 153 with peripheral vestibular disease (by general diagnosis).

No 
vestibular 

disease

Vestibular 
disease

Unilateral 
<3  months

Unilateral 
≥3  months

Bilateral Meniere’s BPPV

Number of 

participants 156 153 16 42 19 26 49

Men/Women 

ratio 59/97 44/111 4/12 12/30 4/15 10/16 14/35

Years of age 

(mean ± S.D.) 54.3 ± 16.4 56.6 ± 15.1 46.7 ± 13.5 53.5 ± 16.3 58.5 ± 12.4 54.9 ± 12.9 63.2 ± 14.3

Body mass index 

(mean ± S.D.) 27.6 ± 4.3 27.5 ± 4.4 26.4 ± 4.1 27.3 ± 4.1 27.1 ± 3.9 27.8 ± 4.6 28.1 ± 4.8

Years at school 

(mean ± S.D.) 11.2 ± 2.6 11.3 ± 2.6 11.8 ± 1.6 11.9 ± 2.8 10.5 ± 2.3 11.7 ± 2.9 10.8 ± 2.5

Tobacco smokers 

(N, %) 15 (9%) 8 (5%) 2 (13%) 2 (5%) 2 (10%) 0 (0%) 2 (4%)

Alcohol use 

(N, %) 28 (18%) 7 (4%) 2 (13%) 2 (5%) 2 (10%) 0 (0%) 2 (1%)

Poor quality of 

sleep (N, %) 76 (49%) 65 (42%) 6 (38%) 17 (40%) 10 (52%) 7 (27%) 24 (49%)

BPPV, Benign Paroxysmal Positional Vertigo; N, Number; S.D., Standard Deviation.
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2.2.5 State-trait anxiety inventory
The short version of the State-Trait Anxiety Inventory (53) to 

assess state anxiety, which comprises 6 items coded on a 4-point scale 
(from 0 to 3). A total score is calculated by the sum of the ratings for 
all the items (range from 0 to 18), higher scores are related to more 
anxiety (54).

2.2.6 Depersonalization/Derealization inventory
Depersonalization/Derealization Inventory (55), which comprises 

28 items coded on a 5-point scale (from 0 to 4). A total score is 
obtained by the sum of the individual scores (range from 0 to 112), 
higher scores are related to more frequency/severity of 
depersonalization/derealization symptoms, with an internal 
consistency coefficient of 0.95 (55).

2.2.7 Perceived stress scale-10
Perceived Stress Scale-10 (56), which is a measure of global 

perceived stress. It contains 10 items that are coded on a 5-point scale 
(from 0 to 4). A total score ranging from 0 to 40 is computed by 
reverse scoring the four positively worded items and then summing 
the ratings for all the items, higher scores are related to more perceived 
stress, with a Cronbach’s alpha coefficient of 0.78 (57).

2.2.8 Spatial anxiety scale
Spatial Anxiety Scale (31), which includes three subscales 

assessing anxiety on spatial mental manipulation (8 items), spatial 
navigation (8 items), and spatial imagery (8 items). It comprises a total 
of 24 items that are scored on a 4-point scale (from 0 to 4). A total 
score is obtained by summing the ratings for all the items, higher 
scores are related to more spatial anxiety, with Cronbach’s alpha 
coefficient >0.8 (31).

2.2.9 Object perspective test
Object Perspective Test (58) in which participants rely on an 

egocentric frame of reference and form egocentric representations to 
solve the task. It is a pencil-and-paper test that comprises 12 items 
showing an array of objects and an “arrow circle”; participants are 
asked to imagine themselves facing a particular direction within the 
array, and then they are questioned about the direction between some 
of the objects. Absolute errors are calculated by the difference in 
degrees between the correct answer and what they draw in the “arrow 
circle.” Then a total score is obtained by the average for all the 
responses, higher scores indicate larger errors, with a total accuracy 
score of r = 0.77 (59).

2.2.10 Dizziness handicap inventory
Dizziness Handicap Inventory (60) to evaluate the self-perceived 

handicapping effects by dizziness and unsteadiness. It comprises 25 
items that are scored on a 4-point scale (from 0 to 4). A total score is 
obtained by summing the ratings for all the items that were originally 
sub-grouped into three content domains, representing physical (7 
items), emotional (9 items), and functional (9 items) aspects of 
handicap (60). Though, recent evidence suggests the need to reassess 
the factorial structure of the inventory (61, 62).

2.3 Experimental design and statistical 
analyses

A cross-sectional correlational study was designed. Assessment of 
data distribution was performed using the Kolmogorov Smirnov test. 
Accordingly, the bivariate analysis was performed using either: Mann 
Whitney U test or t-test (for means or for proportions); Spearman 
correlation or Pearson’s correlation coefficients; Kruskal Wallis 
analysis or analysis of variance (ANOVA) with Tukey honest 
significance test (HSD) for unequal N (Spjotvoll/Stoline test). The 
multivariate analysis was performed using analysis of covariance 
(ANCoVA), which was designed to compare participants with 
bilateral vestibular deficiency versus each of the other subgroups of 
participants. All the tests were performed using a two tailed 
significance level of 0.05.

3 Results

3.1 Bivariate analysis

3.1.1 Analysis by the general characteristics of the 
participants

Participants with/without vestibular disease had similar age and 
body mass index (p > 0.05) (Table 1). However, within the group of 
participants with vestibular disease, those with unilateral deficiency 
(either <3 months or ≥3 months of clinical evolution) were the 
youngest, while those with BPPV were the eldest (ANOVA, F = 5.397, 
p = 0.0004; Tukey HSD test for unequal N, p = 0.02). Linear correlation 
was observed between the age and the scores on: motion sickness 
susceptibility, perceived stress, quality of sleep and the anxiety 
sub-score of the HADS (Pearson r values from −0.12 to 0.20, p < 0.03).

The proportion of women was similar in the two main groups 
(with/without vestibular disease) and the mean years at formal school 

TABLE 2 Frequency of comorbidities in the 153 participants with and the 
156 participants without peripheral vestibular disease.

Comorbidities No 
vestibular 
disease N 

(%)

Vestibular 
disease N 

(%)

p-value

Corrected refraction 

errors 53 (44%) 28 (18%)

<0.00001

Diabetes 10 (6%) 16 (10%) –

High Blood Pressure 29 (18%) 38 (24%) –

Diabetes & High Blood 

Pressure 10 (6%) 9 (5%)

–

Thyroid disease 6 (3%) 2 (1%) –

Thyroid disease & 

diabetes 1 (1%) 0 (0%)

–

Thyroid disease & High 

Blood Pressure 0 (0%) 8 (5%)

–

Thyroid disease & 

diabetes & High Blood 

Pressure 0 (0%) 1 (1%)

–

Other 14 (8%) 22 (14%) –

Comparisons were performed using “t” test for proportions.
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was the same for all subgroups (p > 0.05). Comparisons by sex on the 
instrument scores showed that, compared to men, women had higher 
scores on the symptoms related to unsteadiness (Mann Whitney U 
test, Z = −2.916, p = 0.003), the Navigation domain of spatial anxiety 
(Mann Whitney U test, Z − 2.315, p = 0.02), the three domains of the 
dizziness-related handicap instrument (Mann Whitney U test, Z from 
1.963 to 2.099, p < 0.05), the sleep quality index (Mann Whitney U 
test, Z − 3.161, p = 0.001), and the sub-scores and total score of the 
HADS (Mann Whitney U test, Z from 1.963 to 2.577, p < 0.05). 
However, when a similar analysis by sex was performed just in the 
group of participants with vestibular disease, only the increased score 
on the sleep quality index in women (compared to men) persisted 
(Mann Whitney U test, Z − 2.749, p = 0.006), with a borderline result 
on the HADS depression sub-score (Mann Whitney U test, Z − 1.955, 
p = 0.0506).

For participants, the report of tobacco or alcohol use was low, 
particularly among those with vestibular disease (Table 1); while one 
third to half of the participants of any group or subgroup reported bad 
quality of sleep (Sleep Quality Index >5) (Table 1).

3.1.2 Analysis by groups and subgroups
On the questionnaire of symptoms related to unsteadiness, 

participants without vestibular disease reported almost no symptoms 
(Table 3) and among the subgroups of participants with vestibular 
disease the total score was similar (p > 0.05) (Table  3). The most 
frequent symptom was vertigo, except for the group of patients with 
bilateral vestibular disease, which reported vertigo with half the 
frequency than the other four subgroups of patients; in contrast, less 
than one fifth of the patients with vestibular disease of any subgroup 
reported frequent stumbles or frequent falls (Figure 2). Contrariwise, 
more than two thirds of the patients with vestibular disease, of any 
subgroup, reported instability when moving the head rapidly, or when 
changing posture rapidly (Figure 2).

Comparisons between the two groups (with/without vestibular 
disease) on the scores on symptoms of common mental disorders 
showed that the group with vestibular disease had higher scores on: 
state anxiety (Mann Whitney U test, adjusted Z = 7.514, p < 0.00001) 
and depression (HADS sub-score) (Mann Whitney U test, adjusted 
Z = 1.979, p = 0.04) (Table 3); with no differences among the subgroups 
of participants with vestibular disease (p > 0.05). For depersonalization/
derealization, the score was similar among the groups and subgroups, 
but it was related to the scores on: anxiety/depression (HADS) 
(Spearman r values from 0.36 to 0.46, p < 0.00001), symptoms related 
to unsteadiness (Spearman r = 0.31, p < 0.00001), perceived stress 
(Spearman r = 0.31, p < 0.00001), motion sickness susceptibility 
(Spearman r values from 0.23 to 0.32, p < 0.00001), spatial anxiety 
(Spearman r values from 0.16 to 0.20, p < 0.05), and dizziness handicap 
(Spearman r values from 0.15 to 0.26, p < 0.01).

On the Motion Sickness Susceptibility Questionnaire, the 
participants with vestibular disease had lower scores than the 
participants without vestibular disease (Mann Whitney U test, 
adjusted Z = 2.041, p = 0.04). This score was related to the scores on: 
deviation of orientation on the object perspective test (Spearman 
r = −0.25, p < 0.00001), perceived stress (Spearman r = 0.24, 
p < 0.00001), and anxiety/depression (HADS) (Spearman r values 
from 0.17 to 0.34, p < 0.005).

On the Object Perspective Test, the participants without vestibular 
disease showed less total orientation deviation than the participants 

with vestibular disease (“t” test, t = 4.364, p = 0.0001). This difference 
was related to larger deviations in patients with either Meniere’s 
disease, and those with BPPV compared to participants without 
vestibular disease (ANOVA, F = 6.130, p < 0.0001; Tukey HSD test for 
unequal N, p < 0.05) (Figure 3). Among the participants with vestibular 
disease, patients with unilateral deficiency ≥3 months showed less 
deviation than those with BPPV (ANOVA, F = 3.872, p = 0.005; Tukey 
HSD test for unequal N, p = 0.01), with a borderline result when 
compared to patients with Meniere’s disease (Tukey HSD test for 
unequal N, p = 0.057). The deviation of orientation was related to the 
scores on: motion sickness susceptibility (Spearman r values from 
−0.25 to −0.22, p < 0.00002), dizziness handicap (Spearman r values 
from 0.19 to 0.23, p < 0.0005), state anxiety (Spearman r = 0.20, 
p < 0.0005), perceived stress (Spearman r = −0.11, p < 0.05), and spatial 
anxiety total score and the three sub-scores (Spearman r values from 
0.11 to 0.15, p < 0.02).

On the Spatial Anxiety Scale, the three sub-scores and the total 
score were consistently higher in participants with vestibular disease 
compared to participants without vestibular disease (Table 3) (Mann 
Whitney U test, adjusted Z > 8.390, p < 0.00001). However, no 
significant difference was evident among the subgroups of participants 
with vestibular disease (p > 0.05) (Figure 4). Correlation between the 
scores (partial and total) on the Spatial Anxiety Scale and each of the 
other instrument scores is described in Table 4. Consistent correlations 
across the sub-scores and total score on spatial anxiety were observed 
on the scores on: symptoms related to unsteadiness (Spearman r 
values from 0.45 to 0.50; p < 0.00001), state anxiety (Spearman r values 
from 0.29 to 0.33, p < 0.00001), perceived stress (Spearman r values 
from 0.20 to 0.29, p > 0.0005), and the deviation of orientation on the 
object perspective test (Spearman r values from 0.11 to 0.15, p < 0.05).

On the Dizziness Handicap Inventory, among the subgroups of 
participants with vestibular disease, a difference was observed on the 
emotional domain, in which patients with unilateral deficiency 
<3 months showed the highest score among all subgroups (Kruskal 
Wallis, H = 11.115, p = 0.02) (Table 3). Correlation between the scores 
(partial and total) on the handicap related to dizziness and each of the 
other instrument scores is described in Table 5. Consistent correlations 
of the sub-scores and total score on handicap related to dizziness were 
observed with the scores on: symptoms related to unsteadiness 
(Spearman r values from 0.66 to 0.79; p < 0.00001), spatial anxiety 
(Spearman r values from 0.47 to 0.50, p < 0.0002), state anxiety 
(Spearman r values from 0.36 to 0.38, p < 0.00001), anxiety/depression 
(HADS) (Spearman r values from 0.14 to 0.30, p < 0.05), 
depersonalization/derealization (Spearman r values from 0.15 to 0.27, 
p < 0.005), and deviation of orientation on the object perspective test 
(Spearman r from 0.19 to 0.22, p < 0.005).

3.2 Covariance analysis including cofactors

3.2.1 Analysis on spatial anxiety score
The covariance analysis including individual cofactors showed 

that the variables consistently contributing to the variance across 
the total score and sub-scores on spatial anxiety were (ANCoVA, 
adjusted multiple R2 from 0.27 to 0.30, F values from 17.945 to 
20.086, p < 0.00001) (beta values by domain are described in 
Table 6): symptoms related to unsteadiness, perceived stress, and 
HADS score ≥11 points, besides the contrast between participants 
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with bilateral vestibular deficiency versus those without vestibular 
disease. Participants with vestibular disease with a HADS total 
score ≥11 points showed lower spatial anxiety sub-scores and total 
score than those with a HADS total score <11 points, after 
controlling for covariates (ANCoVA, F = 5.854, p = 0.016) 
(Figure  5). Further exploratory analysis showed that this 
difference was evident in all the subgroups of patients and the 
result was reproducible on the HADS anxiety sub-score (≥8) 
(ANCoVA, F = 5.282, p = 0.02), but not on the depression 
sub-score (≥8) (p > 0.05).

3.2.2 Analysis on the orientation deviation score
The covariance analysis including individual cofactors showed that 

the variables consistently contributing to the variance on the orientation 
deviation were (ANCoVA, adjusted multiple R2 = 0.18, F = 5.834, 
p < 0.00001): vestibular disease (beta −0.23, 95% C.I. −0.40–0.05), HADS 
anxiety sub-score (≥8) (beta 0.22, 95% C.I. 0.09–0.34) (Figure 6), state 
anxiety (beta 0.20, 95% C.I. 0.08–0.31), motion sickness susceptibility 
(beta −0.15, 95% C.I. −0.25–0.04), and age (beta 0.11, 95% C.I. 0.001–
0.21); however no interaction between the vestibular diagnose and 
HADS anxiety sub-score (≥8) was observed.

TABLE 3 Median and Quartiles 1 and 3 (Q1–Q3) of the scores on the instruments administered to 156 participants without and 153 with peripheral 
vestibular disease (by general diagnosis).

Subgroups No 
vestibular

Vestibular Unilateral 
<3  months

Unilateral 
≥3  months

Bilateral Meniere’s BPPV

(N  =  156) (N  =  153) (N  =  16) (N  =  42) (N  =  19) (N  =  26) (N  =  49)

Instruments Median 
(Q1–3)

Median 
(Q1–3)

Median 
(Q1–3)

Median  
(Q1–3)

Median 
(Q1–3)

Median 
(Q1–3)

Median 
(Q1–3)

Symptoms related to 

unsteadiness 0 (0–1) 5 (3–6)** 4.5 (2–6) 5 (3–6) 4 (2–4) 5 (4–6) 5 (4–6)

Pittsburgh Sleep 

Quality Index 5.5 (3–8) 5 (3–7) 4 (2–6) 5 (3–7) 4.5 (3–7) 5 (3–7) 5 (3–11)

Anxiety and Depression

Anxiety sub-score 2 (0–5) 2 (0–4) 3.5 (1–5) 3 (1–6) 2 (0–4) 1 (0–4) 1 (0–2)

Depression sub-score 0 (0–2) 1 (0–3)* 1 (0–2.5) 1 (0–3) 1 (0–3) 1 (0–4) 1 (0–2)

Total score 3.5 (0–6) 3 (1–7) 4 (1–6.5) 5 (2–8) 3 (0–8) 2 (1–7) 2 (0–4)

State-Trait Anxiety 

(short version) 3 (2–6) 6 (5–9)** 7.5 (4.5–9.5) 6 (5–8) 6 (3–9) 7 (6–9) 6 (4–8)

Depersonalization/

derealization 0 (0–4.5) 2 (0–3) 2 (1–3.5) 2 (1–4) 2 (0–2) 1 (0–2) 1 (0–2)

Perceived Stress 10 (4–15) 10 (6–17) 9 (6–20) 13 (8–19) 7 (2–16) 9.5 (4–13) 9 (4–16)

Motion sickness

Motion sickness before 

age 12 1 (0–3)* 0 (0–2) 0 (0–2) 0 (0–3) 0 (0–2) 0 (0–3) 0 (0–2)

Motion sickness last 

10 years 0 (0–2) 0 (0–1) 0 (0–0) 0 (0–2) 0 (0–0) 0 (0–0) 0 (0–1)

Motion sickness Total 

score 1 (0–6)* 0 (0–3) 0 (0–2) 2 (0–4) 0 (0–2) 0 (0–6) 0 (0–2)

Spatial anxiety

Spatial anxiety 

Navigation 6 (2–11.5) 16 (8–22)** 17.5 (7.5–23) 18 (10–22) 14 (7–20) 13 (7–21) 15 (10–21)

Spatial anxiety 

M-manipulation 5 (2–11.5) 15 (9–21)** 18 (9.5–23) 16.5 (10–21) 14 (6–21) 13 (9–22) 14 (7–21)

Spatial anxiety 

Imagery 5 (2–10) 14 (8–21)** 16 (6–21) 16.5 (9–21) 12 (7–19) 13 (7–20) 15 (8–22)

Spatial Anxiety Total 15.5 (9–31) 46 (24–64)** 51 (20.5–67.5) 50.5 (28–65) 40 (20–60) 37.5 (24–62) 41 (26–63)

Dizziness-related handicap

Physical Handicap 0 (0–0) 12 (8–16)** 15 (6–23) 10 (6–18) 12 (6–14) 12 (8–14) 14 (8–18)

Functional Handicap 0 (0–0) 8 (4–16)** 18 (9–25) 8 (4–14) 12 (4–18) 4 (2–12) 6 (2–10)

Emotional Handicap 0 (0–0) 10 (6–18)** 17 (7–27) 10 (6–20) 10 (4–16) 8 (4–14) 8 (6–16)

Total Handicap 0 (0–0) 28 (20–48)** 50 (25–74) 28 (18–50) 32 (20–42) 27 (20–36) 26 (20–38)

Higher scores by group comparison are marked with asterisks (*= p<.05, and ** p<.005), according to Mann Whitney U test. (BPPV= Benign Paroxysmal Positional Vertigo; N= Number;  
S.D. = Standard Deviation).
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3.2.3 Analysis on the dizziness handicap 
inventory score and subscores

The covariance analysis including individual cofactors showed 
that the variables consistently contributing to the variance on the total 
Dizziness Handicap Inventory score were (ANCoVA, adjusted 

multiple R2 = 0.66, F = 39.07, p < 0.00001) (beta values are described in 
Table 7): symptoms related to unsteadiness; orientation deviation; 
quality of sleep score; HADS score ≥11 points, with higher handicap 
score in those with HADS score ≥11 points and either unilateral 
deficiency <3 months or BPPV; and the contrast between participants 

FIGURE 2

Frequency of symptoms related to unsteadiness of 153 patients by general diagnosis. (BPPV, Benign Paroxysmal Positional Vertigo).

FIGURE 3

Mean and 95% Confidence Interval of the mean of the deviation on the Object Perspective Test of 153 patients (by general diagnosis) and 156 
participants with no vestibular disease. (BPPV, Benign Paroxysmal Positional Vertigo).
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with bilateral vestibular deficiency versus those without vestibular 
disease, those with unilateral deficiency <3 months, and those 
with BPPV.

The covariance analysis on each domain of the Dizziness 
Handicap Inventory showed that the variables that consistently 
contributed to the variance on the Physical domain score were 
(ANCoVA, adjusted multiple R2 = 0.69, F = 44.77, p < 0.00001) 
(Table 7): symptoms related to unsteadiness, the orientation deviation, 
spatial anxiety (total score and sub-scores), quality of sleep, HADS 
score ≥11 points, and the contrast between participants with bilateral 
vestibular deficiency versus those without vestibular disease, those 

with unilateral deficiency <3 months, and those with BPPV. The 
variables that consistently contributed to the variance on the 
Emotional domain were (ANCoVA, adjusted multiple R2 = 0.52, 
F = 21.32, p < 0.00001) (Table 7): symptoms related to unsteadiness, 
quality of sleep, HADS score ≥11 points, and the contrast between 
participants with bilateral vestibular deficiency versus those without 
vestibular disease, and those with unilateral deficiency <3 months. The 
variables that consistently contributed to the variance on the 
Functional domain were (ANCoVA, adjusted multiple R2 = 0.60, 
F = 29.53, p < 0.00001) (Table 7): symptoms related to unsteadiness, 
orientation deviation, quality of sleep score, HADS score ≥11 points, 

FIGURE 4

Median of the sub-scores and total score on the spatial anxiety of 153 patients by general diagnosis. (BPPV, Benign Paroxysmal Positional Vertigo).

TABLE 4 Spearman rank correlation between the Spatial Anxiety Questionnaire sub-scores and total score, and the scores on the instruments to 
evaluate the study variables, of 309 participants (153 with and 156 without peripheral vestibular disorder).

Domain Instruments Navigation Mental Manipulation Imaginery Total score

Questionnaire of symptoms 0.50** 0.48** 0.45** 0.50**

Anxiety sub-score ns ns ns ns

Depression sub-score 0.14* ns ns ns

Total anxiety/depression score 0.12* ns ns ns

State-Trait Anxiety (short version) 0.32** 0.29** 0.33** 0.33**

Perceived Stress 0.29** 0.20** 0.25** 0.26**

Depersonalization/derealization 0.20** 0.16** 0.11* 0.16**

Motion sickness total score ns ns −0.12* ns

Object Perspective Test 0.11* 0.15* 0.13* 0.13*

Coefficients are marked with asterisks according to statistical significance (ns, not significant, *p < 0.05 and **p < 0.005).
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and the contrast between participants with bilateral vestibular 
deficiency versus those without vestibular disease, and those with 
unilateral deficiency <3 months; however when the interaction 
between HADS ≥11 points and the vestibular diagnoses was 
considered, a significant result was also observed for the subgroup 
with BPPV. Additionally, the Navigation domain of the spatial anxiety 
questionnaire also contributed to the variance on the Functional 
domain of dizziness-related handicap (ANCoVA, F = 4.940, p = 0.027).

4 Discussion

In this study, spatial anxiety was related to the report of both 
symptoms of unsteadiness and perceived stress, but it was less in those 
with HADS anxiety sub-score ≥ 8 (Figure 5). The total score and the 
sub-scores on spatial anxiety contributed to the variability on the score 
of the Physical domain of the Dizziness Handicap Inventory, while just 
the score of the Navigation domain contributed to the functional 

TABLE 5 Spearman rank correlation between the Dizziness Handicap Inventory (sub-scores and total score) and the evaluation instruments of 309 
participants (153 with and 156 without peripheral vestibular disease).

Domain Instruments Physical Emotional Functional Total

Questionnaire of symptoms 0.79** 0.66** 0.75** 0.78**

Anxiety HADS sub-score ns 0.15* 0.15* 0.28**

Depression HADS sub-score 0.18** 0.26** 0.24** 0.27**

Total HADS score 0.14* 0.21** 0.21** 0.30**

State–Trait Anxiety (short version) 0.36** 0.37** 0.38** 0.38**

Perceived Stress ns ns ns ns

Depersonalization/derealization 0.23** 0.15* 0.27** 0.48**

Motion sickness Total score ns ns ns ns

Spatial anxiety Navigation 0.47** 0.34** 0.39** 0.43**

Spatial anxiety Mental Manipulation 0.50** 0.37** 0.42** 0.46**

Spatial anxiety Imagery 0.49** 0.36** 0.40** 0.44**

Spatial Anxiety Total 0.51** 0.37** 0.42** 0.46**

Object Perspective Test 0.22** 0.19** 0.22** 0.23**

Coefficients are marked with asterisks according to statistical significance (*p < 0.05 and **p < 0.005). HADS, Hospital Anxiety and Depression Scale.

TABLE 6 Beta values and 95% Confidence Interval (C.I.) of the beta values of the variables included in the general linear model on the Spatial Anxiety 
score and subscores.

Domain Navigation Mental manipulation Imagery Total

Factors Beta (ß) 95% C.I. Beta (ß) 95% C.I. Beta (ß) 95% C.I. Beta (ß) 95% C.I.

Questionnaire of 

symptoms 0.27 0.12–0.42 0.18 0.03–0.33 0.05 −0.10–0.20 0.18 0.03–0.32

Perceived Stress 0.28 0.17–0.38 0.21 0.11–0.32 0.26 0.15–0.36 0.26 0.15–0.36

HADS ≥8points 0.19 0.06–0.32 0.25 0.12–0.38 0.24 0.10–0.37 0.23 0.10–0.36

Bilateral deficiency versus:

No vestibular disease −0.18 −0.34--0.02 −0.30 −0.45–0.14 −0.38 −0.54–0.22 −0.30 −0.45–0.14

Meniere’s disease −0.05 −0.18–0.08 0.04 −0.10–0.17 0.01 −0.12–0.15 0.00 −0.13–0.13

Benign Paroxysmal 

Positional Vertigo 0.00 −0.13–0.14 0.00 −0.13–0.13 0.05 −0.09–0.18 0.02 −0.11–0.15

Unilateral <3 months 0.00 −0.16–0.15 0.05 −0.10–0.20 0.02 −0.13–0.18 0.02 −0.13–0.18

Unilateral >3 months 0.08 −0.05–0.20 0.04 −0.08–0.16 0.06 −0.06–0.18 0.06 −0.06–0.18

HADS ≥8points * Bilateral deficiency versus:

No vestibular disease −0.13 −0.27–0.02 −0.14 −0.28–0.00 −0.15 −0.29–0.01 −0.15 −0.29–0.01

Meniere’s disease 0.03 −0.10–0.16 0.01 −0.12–0.14 0.07 −0.06–0.20 0.04 −0.09–0.17

Benign Paroxysmal 

Positional Vertigo 0.07 −0.06–0.20 0.06 −0.07–0.20 0.06 −0.07–0.20 0.07 −0.06–0.20

Unilateral <3 months 0.05 −0.11–0.20 0.03 −0.12–0.18 0.00 −0.15–0.16 0.03 −0.12–0.18

Unilateral >3 months 0.04 −0.08–0.16 0.09 −0.03–0.21 0.08 −0.04–0.20 0.07 −0.05–0.19

HADS, Hospital Anxiety and Depression Scale.
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domain of the handicap instrument. Other variables contributing to 
the variability on dizziness-related handicap were the report of 
symptoms of unsteadiness, the orientation deviation on the object 
perspective test, the quality of sleep, and anxiety/depression 
symptoms. Additionally, the orientation deviation was related to 

vestibular disease, the score on anxiety (both state anxiety and trait 
anxiety), the motion sickness susceptibility, and age (Figure 6).

The simultaneous relationship of spatial anxiety with symptoms 
of unsteadiness and perceived stress could be considered within the 
response to vestibular damage. Stress is a physiological reaction to a 

FIGURE 5

Least square means and standard error of the mean of the total score on the Spatial Anxiety Scale, corrected by the mean scores on symptoms of 
unsteadiness and perceived stress, of 156 participants without and 153 participants with vestibular disease. (HADS, Hospital Anxiety and Depression 
Scale).

FIGURE 6

Least square means and standard error of the mean of the deviation of orientation on the Objective Perspective Test, according to the evidence of trait 
anxiety, corrected by the mean age, motion sickness susceptibility score and state anxiety score of 156 participants without and 153 participants with 
vestibular disease, by subgroup of diagnoses.
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stimulus, improving the opportunity to overcome a stressor, which 
varies according to the stressor and the individual characteristics. 
Image studies support that down-regulation of the fear network may 
contribute to reduce distress during unpleasant body accelerations 
(63); while in patients with acute vestibular damage, acute stress 
facilitates vestibular compensation (33). However, repetitive exposure 
to stressors may induce adaptive changes in the brain circuits 
regulating the stress response (64), while removing the emotional 
arousal of novelty may abolish facilitation (65).

Chronic stress provokes circumscribed neurochemical changes in 
sub-regions of the hippocampus and the entorhinal and frontal 
cortices (66). In animal models, chronic stress is a cause of neuron 
atrophy in both the hippocampus and the prefrontal cortex, which are 
involved in memory, selective attention, and executive function, with 
hypertrophy of neurons in the amygdala that is involved in fear and 
anxiety, as well as aggression (67), and it also disturbs neurogenesis 
and survival of newly born neurons in the hippocampus (68); 
consequently, chronic stress alters the acute stress response on 
functions such as spatial memory (69). Consistently, patients with 
chronic bilateral vestibular deficits may report spatial anxiety (12), and 
display deficits on spatial abilities (12, 70, 71).

In this study, participants with peripheral vestibular disease and 
HADS anxiety sub-score ≥ 8 (symptoms of trait anxiety) showed lower 

spatial anxiety, compared to those with HADS anxiety sub-score < 8 
(less symptoms of trait anxiety) (Figure 5), while participants with 
trait anxiety showed less orientation deviation on the object 
perspective test. These findings are consistent with studies in healthy 
adults within a threatening context, in which high levels of trait 
anxiety may improve the ability to retrace a route, whereas low levels 
of trait anxiety may be associated with worse performance under 
threat, supporting that the predisposition for emotional reaction could 
be helpful to overcome the apprehension provoked by the spatial task 
(26). Additionally, the interrelated neural circuits controlling stress 
and anxiety substantiate a bidirectional relationship (34); in subjects 
without psychiatric diagnosis, anxiety and depression have been 
associated with blunted or exaggerated cortisol responses to and 
recovery from stress (72).

It is frequently assumed that vestibular symptoms are provoked/
heightened by anxiety and stress, but the results of this study support 
that state anxiety and the stress response could be helpful for recovery, 
whereas spatial anxiety can be detrimental. The results support that, in 
patients with peripheral vestibular disease, spatial anxiety may 
contribute to dizziness-related handicap. This contribution was evident 
particularly on the Physical domain of the handicap instrument, 
besides the distinct contribution of the Navigation domain of spatial 
anxiety to the Functional domain of the handicap inventory. These 

TABLE 7 Beta values and 95% Confidence Interval (C.I.) of the beta values of the variables included in the general linear model on the Dizziness 
Handicap Inventory score and sub-scores.

Domain Physical Emotional Functional Total

Factors Beta (ß) 95% C.I. Beta (ß) 95% C.I. Beta (ß) 95% C.I. Beta (ß) 95% C.I.

Questionnaire of 

symptoms

0.35 0.24–0.46 0.16 0.03–0.29 0.36 0.24–0.49 0.31 0.20–0.43

Spatial Anxiety total 

score

0.09 0.02–0.17 −0.06 −0.16–0.03 −0.09 −0.17–0.00 −0.02 −0.10–0.06

Orientation deviation 

(Object Perspective 

Test)

0.07 0.00–0.13 0.08 0.00–0.17 0.09 0.01–0.17 0.08 0.01–0.16

Sleep Quality Index 

score

0.07 −0.01–0.13 0.10 0.01–0.19 0.08 0.00–0.16 0.09 0.02–0.16

HADS ≥11points −0.09 −0.16–0.01 −0.15 −0.25–0.05 −0.17 −0.26–0.08 −0.15 −0.23 –0.07

Bilateral deficiency versus:

No vestibular disease −0.55 −0.67–0.42 −0.69 −0.85–0.54 −0.58 −0.72–0.44 −0.65 −0.78–0.52

Meniere’s disease −0.05 −0.16–0.05 −0.08 −0.21–0.05 −0.09 −0.21–0.03 −0.08 −0.19–0.03

Benign Paroxysmal 

Positional Vertigo

0.20 0.09–0.32 0.18 0.03–0.32 0.18 0.05–0.31 0.20 0.08–0.32

Unilateral <3 months 0.27 0.16–0.37 0.36 0.23–0.50 0.38 0.26–0.51 0.36 0.25–0.48

Unilateral >3 months 0.04 −0.05–0.11 −0.06 −0.18–0.07 0.09 −0.02–0.20 0.03 −0.07–0.13

HADS ≥11 points * Bilateral deficiency versus:

No vestibular disease 0.15 0.04–0.25 0.15 0.02–0.29 0.20 0.08–0.33 0.18 0.07–0.29

Meniere’s disease 0.09 0.01–0.20 0.03 −0.10–0.16 0.04 −0.08–0.16 0.06 −0.05–0.17

Benign Paroxysmal 

Positional Vertigo

−0.12 −0.23–0.01 −0.30 −0.44–0.16 −0.21 −0.33–0.08 −0.23 −0.34–0.11

Unilateral <3 months −0.18 −0.29–0.07 −0.14 −0.28–0.00 −0.23 −0.36–0.11 −0.20 −0.31–0.09

Unilateral >3 months −0.01 −0.11–0.09 0.12 0.00–0.25 0.00 −0.11–0.11 0.04 −0.06–0.14

HADS, Hospital Anxiety and Depression Scale.
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results are congruent with the design of the instruments administered 
for evaluation of these two variables. The Spatial Anxiety Questionnaire 
refers “to situations and experiences that may cause tension, 
apprehension, or anxiety” (31). In this study, the participants with 
peripheral vestibular disease consistently reported spatial anxiety 
related to performance of physical activities, including activities that 
may provoke dizziness/unsteadiness, which are evaluated by the 
Physical domain of the Dizziness Handicap Inventory (60); while 
anxiety related to navigation was deleterious for their daily life 
functioning, according to the limiting consequences of the symptoms 
reported by the Functional domain of the handicap inventory. These 
concepts are also classified in the International Classification of 
Functioning, Disability and Health (73) and described as: “activity 
limitations are difficulties an individual may have in executing 
activities,” and “participation restrictions are problems an individual 
may experience in involvement in life situations.” Yet, variability of 
limitations and restrictions related to health conditions may 
be influenced by contextual factors, including personal factors such as 
“fitness, lifestyle, habits, upbringing, coping styles, social background, 
education, profession, past and current experience (past life events and 
concurrent events), overall behavior pattern and character style, 
individual psychological assets and other characteristics” (73).

The contribution of the report of unsteadiness and symptoms of 
anxiety/depression (HADS) to the dizziness-related handicap is 
consistent with evidence towards worse scores on self-reported 
measurements on functioning increasing the severity of dizziness-
related handicap (74), and the correlation between the report of 
symptoms of depression with both vestibular symptoms and the sense 
of disability (75). Consistently, after acute vestibular lesion, depression 
symptoms may persist while updating spatial orientation improves 
(45); whereas symptomatic peripheral vestibular disease has been 
related to increased risk for attempted suicide over a follow-up of 
1 year, after adjusting for demographic related comorbidities (76). 
Although, adaptive changes may occur that could explain the 
differences among the subgroups of patients with variable clinical 
evolution. Additionally, the report of depersonalization/derealization 
symptoms was linearly related to multiple variables, including 
unsteadiness, perceived stress, and anxiety/depression, yet the 
multivariate analysis did not show an independent contribution to the 
variability of dizziness-related handicap.

The contribution of the orientation deviation to handicap, 
particularly in patients with episodic vertigo, can be explained by the 
relevance of the vestibular reference for egocentric mental 
transformations (77); though perspective-taking tests can be solved 
by both mentally reorienting oneself and mentally rotating the stimuli 
(78). Additionally, the orientation deviation had a negative relationship 
with the score on motion sickness susceptibility, which was less in 
patients with bilateral vestibular deficit. This result is consistent with 
the requirement of intact vestibular function for the provocation of 
motion sickness and to the association of motion sickness with 
mechanisms involved in adapting the spatial orientation system to 
strange environments (79).

The contribution of the quality of sleep to dizziness-related 
handicap corresponds to the evidence on the interaction of sleep with 
vestibular function and balance (80–82). Sleep and wakefulness are 
regulated by the aminergic, cholinergic brainstem and hypothalamic 
systems with involvement of immune homeostatic regulating 
mechanisms (83). In rats, vestibular damage can affect the sleep-
wakefulness cycle with up-regulation of the level of autophagy in 

hypothalamic tissue (84). In humans, epidemiologic evidence 
supports that adults with vertigo have a higher risk for abnormal sleep 
duration (85); conversely, in patients with sleep complains, sleep 
architecture variation has been associated with vestibular symptoms 
(86). Additionally, clinical studies have shown that persistent sleep 
disturbance after vestibular rehabilitation is related to handicap 
severity (87), while rehabilitation for unilateral vestibular disease is 
associated to improvement of the quality of sleep (88). However, these 
variables interact with stress, with a bidirectional relation between 
stress and sleep quantity, in which worse sleep quantity and continuity 
may predict higher next-day stress (89).

The findings of this study may support future studies, including 
the design of clinical studies on spatial anxiety and chronic stress in 
adults with peripheral vestibular disease, to assess their spatial 
abilities, according to their clinical characteristics. Of relevance to 
rehabilitation, it is possible that spatial anxiety, specifically 
apprehension about moving in situations which would provoke 
unpleasant, vestibular symptoms, could prevent a patient from actively 
engaging with challenging circumstances to encourage adaptation.

The results of this study should be interpreted in the context of its 
limitations. The cross-sectional design prevents discussion of any 
causal relationship. The sample size was calculated to assess moderate 
to strong correlations; thus, we cannot deny weaker relationships. The 
study was limited to the most obvious factors influencing the results. 
Enrolment was limited to patients receiving specialized medical care 
without comorbidities that could interfere with the assessed 
relationships, so the results may be different in other clinical settings. 
However, the strengths of the study include the prospective collection 
of the data by trained health professionals, the variety of cofactors that 
were evaluated, and the consistency of the results.

5 Conclusion

In adults both with and without vestibular disease, spatial anxiety 
can be related to both unsteadiness and perceived stress and may 
be  less in those with symptoms of trait anxiety (HADS anxiety 
sub-score ≥ 8). Spatial anxiety and impairment of perspective-taking, 
along with poor quality of sleep and trait anxiety may contribute to 
the Physical and Functional domains of dizziness-related handicap. 
Whereas follow-up studies are required to assess if a degree of anxiety 
and stress could be beneficial to encourage rehabilitation, specific 
spatial anxiety can be detrimental, possibly because it limits behavior 
beneficial to adaptation.
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