To investigate the risk factors of pulmonary infection in patients with severe myelitis and construct a prediction model.
The clinical data of 177 patients with severe myelitis at admission from the First Affiliated Hospital of Zhengzhou University from January 2020 to December 2022 were retrospectively analyzed. The predicting factors associated with pulmonary infection were screened by multivariate logistic regression analysis, and the nomogram model was constructed, and the predictive efficiency of the model was evaluated, which was verified by calibration curve, Hosmer–Lemeshow goodness-of-fit test and decision curve analysis.
Of the 177 patients with severe myelitis, 38 (21.5%) had pulmonary infection. Multivariate logistic regression analysis showed that neutrophil percentage to albumin ratio (NPAR) (
The nomogram model constructed based on NPAR combined with high cervical cord lesion at admission has good clinical application value in predicting pulmonary infection in patients with severe myelitis, which is conducive to clinicians’ evaluation of patients.