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Increased functional connectivity 
between default mode network 
and visual network potentially 
correlates with duration of 
residual dizziness in patients with 
benign paroxysmal positional 
vertigo
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Objective: To assess changes in static and dynamic functional network 
connectivity (sFNC and dFNC) and explore their correlations with clinical 
features in benign paroxysmal positional vertigo (BPPV) patients with residual 
dizziness (RD) after successful canalith repositioning maneuvers (CRM) using 
resting-state fMRI.

Methods: We studied resting-state fMRI data from 39 BPPV patients with RD 
compared to 38 BPPV patients without RD after successful CRM. Independent 
component analysis and methods of sliding window and k-means clustering 
were adopted to investigate the changes in dFNC and sFNC between the 
two groups. Additionally, temporal features and meta-states were compared 
between the two groups. Furthermore, the associations between fMRI results 
and clinical characteristics were analyzed using Pearson’s partial correlation 
analysis.

Results: Compared with BPPV patients without RD, patients with RD had longer 
duration of BPPV and higher scores of dizziness handicap inventory (DHI) before 
successful CRM. BPPV patients with RD displayed no obvious abnormal sFNC 
compared to patients without RD. In the dFNC analysis, patients with RD showed 
increased FNC between default mode network (DMN) and visual network (VN) 
in state 4, the FNC between DMN and VN was positively correlated with the 
duration of RD. Furthermore, we found increased mean dwell time (MDT) and 
fractional windows (FW) in state 1 but decreased MDT and FW in state 3 in BPPV 
patients with RD. The FW of state 1 was positively correlated with DHI score 
before CRM, the MDT and FW of state 3 were negatively correlated with the 
duration of BPPV before CRM in patients with RD. Additionally, compared with 
patients without RD, patients with RD showed decreased number of states and 
state span.

Conclusion: The occurrence of RD might be  associated with increased FNC 
between DMN and VN, and the increased FNC between DMN and VN might 
potentially correlate with the duration of RD symptoms. In addition, we found 
BPPV patients with RD showed altered global meta-states and temporal features. 
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These findings are helpful for us to better understand the underlying neural 
mechanisms of RD and potentially contribute to intervention development for 
BPPV patients with RD.
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benign paroxysmal positional vertigo, residual dizziness, resting-state fMRI, static 
functional network connectivity, dynamic functional network connectivity, 
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Introduction

Benign paroxysmal positional vertigo (BPPV), also known as 
canalithiasis, is characterized by transient vertigo and nystagmus 
induced by positional change, accompanied by nausea and vomiting 
in severe cases (1, 2). BPPV is the most common vertigo disease in 
clinical practice, accounting for 17–42% of all vertigo diseases (3). 
Canalith repositioning maneuvers (CRM) are the most effective 
treatment for BPPV (4, 5). However, after successful CRM, 31–60% of 
BPPV patients still report dizziness and discomfort (6), manifested as 
non-rotating dizziness, walking instability, disorientation, floating 
sensation, fogginess, or drowsiness without positional vertigo and 
nystagmus, these symptoms are called residual dizziness (RD) (7, 8).

So far, despite the neural mechanisms of RD are still not clear, 
recent studies have provided some promising insights with the 
application of resting-state functional magnetic resonance imaging 
(rs-fMRI). In a recent rs-fMRI study, methods of fractional amplitude 
of low-frequency fluctuations (fALFF) and regional homogeneity 
(ReHo) were used to compare the differences in brain function 
between patients with BPPV and healthy volunteers. The authors 
reported increased functional activities in bilateral pons and left 
posterior cerebellar regions in BPPV patients, these results indicated 
that the functional changes in pons might be related to RD after CRM 
(9). In another rs-fMRI study, Fu et  al. applied fALFF analysis to 
observe the differences in brain functional activity between RD 
patients and non-RD patients after CRM, the authors found decreased 
functional activity in bilateral precuneus in patients with RD 
compared to patients without RD (10). The above two studies 
preliminarily suggested that the occurrence of RD symptoms in BPPV 
patients might be related to central integration and compensation. 
However, they only focused on local brain regions of cerebellum, 
brainstem and precuneus. In fact, the human brain is actually a 
complex system carried out by networks which are composed of 
multiple brain regions, and the functional connectivity among these 
networks changes dynamically with time-varying effects during fMRI 
scanning (11–13). Therefore, it is more valuable to further investigate 
brain functional network connectivity (FNC) patterns and dynamic 
characteristics in BPPV patients with RD after CRM.

In the present study, images of rs-fMRI, as well as demographic, 
clinical characteristics and behavioral scales of BPPV patients with 
and without RD symptoms were collected. Static FNC (sFNC) and 
dynamic FNC (dFNC) methods were adopted. We aimed to explore 
the differences in sFNC and dFNC between BPPV patients with and 
without RD symptoms after successful CRM, and to investigate the 
associations between neuroimaging results and clinical manifestations 
in patients with RD. The full recovery of vestibular symptoms requires 

adequate vestibular compensation (14–16). We speculate that RD is 
associated with inadequate vestibular compensation of the central 
nervous system, abnormal functional reorganization of relevant brain 
networks may occur. Furthermore, we expect the altered sFNC or 
dFNC may correlate with the duration of RD symptoms in patients 
with BPPV.

Materials and methods

Participants

BPPV was diagnosed based on the diagnostic criteria established 
by Bárány Society in 2015 (17). In this study, only patients with 
unilateral posterior semicircular canal BPPV were included (identified 
by Dix–Hallpike test) (18). All BPPV patients were right-handed, 
without other neurological, psychiatric, or systemic diseases. Patients 
with alcohol or drug abuse were excluded. Patients with secondary 
BPPV caused by vestibular migraine (VM), vestibular neuritis (VN), 
Meniere’s disease (MD) or other vestibular disorders were excluded. 
Patients with MRI contraindications or the presence of irremovable 
metallic substances affecting the quality of fMRI images were 
excluded. All patients underwent routine MRI (T1WI + T2WI +  
DWI + FLAIR) scans to rule out occult central nervous system 
diseases. In addition, patients with moderate–severe white matter 
hyperintensity on FLAIR images were excluded.

All BPPV patients were treated with CRM (Epley or Semont) after 
a definite diagnosis (19, 20). We repeated the Dix–Hallpike test 60 min 
after CRM to ensure a successful CRM (patients reported no positional 
vertigo and no positional nystagmus were observed). Demographic 
and clinical characteristics were collected, including age, gender, years 
of education, affected side, duration of vertigo before successful CRM, 
and scores of vertigo visual analog scale (VVAS) and dizziness 
handicap inventory (DHI) before successful CRM. All patients were 
followed up on the seventh day after successful CRM by a face to face 
interview. Patients again received diagnostic positional tests. All 
patients received tests of Montreal Cognitive Assessment (MoCA), 
Hamilton Anxiety Scale (HAMA) and Hamilton Depression Scale 
(HAMD) during the follow-up. Patients with scores of MoCA<26, 
HAMA>14 or HAMD>17 were excluded. For patients with negative 
diagnostic positional tests, if a patient reported RD symptoms lasting 
more than 5 days on the day of the follow-up visit, he or she would 
be assigned to the RD group. On the other hand, if a patient reported 
no RD symptoms from successful CRM to the day of the follow-up 
visit, he or she would be assigned to the non-RD group. All patients 
in the RD and non-RD group would be scanned by rs-fMRI within 
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the next 2 days. In addition, patients in the RD group received tests of 
dizziness visual analog scale (DVAS) and DHI after successful 
CRM. Furthermore, the duration of RD symptoms was recorded by 
follow-up (the follow-up period was 90 days).

Totally, 43 BPPV patients with RD and 45 patients without RD 
were recruited from the Department of Neurology of the Second 
Affiliated Hospital of Xuzhou Medical University between September 
2020 and February 2023.

MRI data acquisition

All patients were scanned using a 3.0 T MRI system (GE 
DISCOVERY 3.0 T magnetic resonance instrument with the 
8-channel cranial coil, United States). Patients were required to 
keep their eyes closed, keep their heads still, and to stay relaxed 
and not to fall asleep. Images of rs-fMRI were collected using an 
echo-planar imaging sequence and each functional data contained 
210 volumes (time points). The parameters were as follows: 
repetition time (TR) = 2000 ms, echo time (TE) = 30 ms, flip angle 
(FA) = 90°, field of view (FOV) = 200 × 200 mm, matrix = 64 × 64, 
thickness = 3.6 mm, gap =0 mm. We  adopted a 3D-BRAVO 
sequence to collect 3-dimensional high-resolution T1-weighted 
images (TR = 2,500 ms, TE = 3.5 ms, FA = 8°, matrix = 256 × 256, 
thickness = 1 mm, number of slices = 156).

MRI data preprocessing

Based on MATLAB 2016a (Mathworks, Natick, MA, 
United  States), GRETNA (v2.0.0)1 and Statistical Parametric 
Mapping 12 (SPM12)2 were used to preprocess rs-fMRI data. The 
DICOM format images were first converted to NIFTI format. 
Then the first 10 time points were removed to reduce initial 
unstable blood oxygen level-dependent (BOLD) signal. For the 
remaining 200 time points, slice timing and head motion 
correction were performed to guarantee that all voxels within one 
time point had been acquired at the same time and to lessen the 
influence of head motion on fMRI images. In the present study, 
functional data with head motion exceeded 2 mm [displacement 
distance (x, y, z)] or 2° [rotation angle (x, y, z)] were removed. 
Then, T1-weighted images were converted to NIFTI format, and 
subsequently were segmented into white matter, gray matter and 
cerebral spinal fluid. The segmented T1 images were normalized 
to Montreal Neurological Institute (MNI) and resampled at a 
resolution of 3 mm × 3 mm × 3 mm. The normalized data were 
smoothed with a Gaussian kernel of 6 mm full-width at half 
maximum. Four patients in RD group and seven patients in 
non-RD group were excluded due to the criterion of head motion 
correction. Finally, the remaining 39 patients in RD group and 38 
patients in non-RD group were included in the following analysis.

1 http://www.nitrc.org/projects/gretna

2 http://www.fl.ion.ucl.ac.uk/spm/software/spm12

Group independent component analysis

To create resting state networks (RSNs), GICA was performed 
using GIFT toolbox (GIFTv3.0b).3 The preprocessed functional data 
were dimension-reduced using principal components analysis (PCA) 
at the subject level to decrease computational complexity, followed by 
decomposition of the concatenated subject-reduced functional data 
in the group level including all patients. Minimum description length 
(MDL) criterion was adopted to compute the number of independent 
components (ICs) to be  25 (21). To guarantee the stability and 
reproducibility of ICs, we repeated the Infomax algorithm 100 times 
in ICASSO (22, 23).4 Eventually, GICA was carried out to back-
reconstruct the subject-specific spatial maps and time courses of each 
IC (24).

Identification of resting-state networks

ICs were identified as significant RSNs based on previous studies 
(25, 26) and the follow criterions: (1) we manually observed whether 
the peak activations of an IC were located primarily in grey matter; If 
that is the case, the peak activations should not show spatial overlap 
with vascular, ventricular or susceptibility artifacts. (2) The time 
courses of an IC should show low-frequency fluctuations (the ratio of 
power below 0.10 Hz, or the ratio of power between 0.15 Hz and 
0.25 Hz). (3) PowerLF/PowerHF (low frequency to high frequency 
power ratio) ≥ 3. Among 25 ICs, we identified 13 meaningful ICs. 
These 13 ICs were then classified into 8 RSNs based on the spatial 
correlation values between ICs and the RSNs templates and by 
visual observation.

Static functional network connectivity

After GICA and the identification of RSNs, the Mancovan toolbox 
(v1.0) in GIFT software was adopted to compute the correlations 
between any two RSNs for each patient. Before calculating sFNC, 
we applied additional post-processing steps on time courses to remove 
the noise and artifacts, mainly including (1) detrending of linear, 
quadratic, and cubic trends; (2) despite time courses; (3) analyzing the 
6 realignment parameters and their derivatives by multiple regression 
(27); and (4) low-pass filtering with a cutoff frequency of 0.15 Hz was 
applied, which was performed on the TC of ICs. Afterwards, 
we calculated the Pearson correlation coefficient (r) between each 
summary time course and other summary time courses and converted 
r value into z value by Fisher-Z transformation. Finally, a 13 × 13 FNC 
matrix for each patient was generated.

Dynamic functional network connectivity

The temporal dFNC, a module of GIFT software (dFNC v1.0a), 
was applied to compute Pearson’s correlations between time courses 

3 http://mialab.mrn.org/software/gift

4 http://research.ics.tkk.f/ica/icasso
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of ICs in dynamic states. Before calculating dFNC, we applied the 
same post-processing steps as described in sFNC section. Then, 
we used a sliding time window approach with a window size set to 30 
TRs and a Gaussian (σ = 3 TRs) to divide the time courses of all ICs, 
and sliding 1TR at each step (28, 29). After that, the k-means clustering 
method (distance method of square Euclidean, 500 iterations and 150 
repeats) was employed to assign the windowed FNCs of all patients 
into a set of states (30, 31). Based on an elbow criterion (31), the 
number of optimal clusters was set to 5. Three temporal properties 
(fractional windows, mean dwell time and number of transitions) and 
four meta-states (number of states, change between states, state span 
and total distance) of dFNC for BPPV patients with and without RD 
were also calculated. Fractional windows refer to the time spent in 
each state as a percentage of the total time. Mean dwell time means the 
average time the participants spent in a certain state. Number of 
transitions represents the number of times a subject switched between 
different states. Number of states refers to the number of distinct 
meta-states subjects occupy during the scan length. Change between 
states means the number of times that participants switch from one 
meta-state to another. State span represents the range of meta-states 
subjects occupy. Total distance refers to the overall distance traveled 
by each subject through the state space.

Statistical analysis

Analysis of demography and clinical 
characteristics

The IBM SPSS 22.0 software package was applied to compare the 
differences in demography and clinical characteristics of BPPV patients 
with and without RD. The two-sample t-tests were used for parametric 
continuous variables (age, years of education, scores of MoCA, HAMA, 
HAMD, VVAS and DHI, and duration of vertigo before successful 
CRM) and chi-square tests were used for categorical variables (gender 
and affected side). A p < 0.05 was considered significant.

Differences between groups in sFNC

The two-sample t-tests implanted in the Mancovan toolbox was 
performed to analyze group differences in sFNC with a significance 
threshold of p < 0.05 [false discovery rate (FDR) corrected], controlling 
for age, years of education, scores of MoCA, HAMA, HAMD, VVAS 
and DHI, and duration of vertigo before successful CRM.

Differences between groups in dFNC

To investigate group differences in FNC in each state, the two-sample 
t-tests included in temporal dFNC sub-package was carried out. Age, 
years of education, scores of MoCA, HAMA, HAMD, VVAS and DHI, 
and duration of vertigo before successful CRM were included as 
covariates. The results were corrected for multiple comparisons using 
FDR (p < 0.05). In addition, to compare the three temporal properties 
and four meta-states of dFNC between BPPV patients with and without 
RD, the two-sample t-tests were employed. Age, years of education, 
scores of MoCA, HAMA, HAMD, VVAS and DHI, and duration of 

vertigo before successful CRM were included as covariates. A p < 0.05 
(FDR corrected) was considered significantly different.

Brain-behavioral correlation analysis

For sFNC and dFNC showing significant between-group 
differences (two-sample t-test, p < 0.05, FDR corrected), we performed 
Pearson’s partial correlation analysis between altered rs-fMRI 
(including z-values of the altered sFNC, z-values of the altered dFNC 
in each state, three temporal properties and four meta-states) and 
clinical characteristics (duration of vertigo, scores of VVAS and DHI 
before successful CRM, and duration of RD, scores of DVAS and DHI 
after successful CRM) in BPPV patients with RD, controlling for age, 
gender, educational years, MoCA, HAMA, HAMD and the affected 
side (p < 0.05, FDR correction).

Results

Demographic and clinical characteristics

The demographic and clinical characteristics of BPPV patients with 
and without RD were summarized in Table 1. There was no obvious 

TABLE 1 Demographic and clinical characteristics of patients with and 
without RD.

Without RD 
(n  =  38; 

Mean  ±  SD)

RD (n  =  39; 
Mean  ±  SD)

Value of 
p

Age (years) 51.71 ± 8.44 55.00 ± 8.53 0.093

Gender 

(female/male)

27/11 34/5 0.081

Education 

(years)

11.18 ± 3.20 10.00 ± 3.42 0.121

MoCA 28.05 ± 1.37 27.79 ± 1.22 0.386

HAMA 7.39 ± 2.11 8.36 ± 2.43 0.068

HAMD 8.08 ± 2.27 9.10 ± 3.07 0.101

Affected side 

(left/right)

22/16 18/21 0.303

Before successful CRM

Duration of 

vertigo (days)

2.86 ± 2.36 4.63 ± 3.11 0.006

VVAS 5.76 ± 2.06 6.59 ± 2.19 0.092

DHI 38.08 ± 11.60 46.64 ± 15.74 0.008

After successful CRM

Duration of 

dizziness 

(days)

/ 22.41 ± 15.14 /

DVAS / 2.95 ± 1.02 /

DHI / 25.08 ± 10.33 /

RD, Residual dizziness; MoCA, Montreal cognitive assessment scale; HAMA, Hamilton 
anxiety scale; HAMD, Hamilton depression scale; CRM, Canalith repositioning maneuvers; 
VVAS, Vertigo visual analog scale; DHI, Dizziness handicap inventory; DVAS, Dizziness 
visual analog scale.
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difference between the two groups in age, gender, educational years, 
affected side, scores of MoCA, HAMA, HAMD and VVAS before 
successful CRM (all p > 0.05). Despite this, we found longer duration of 
vertigo (p = 0.006) and higher scores of DHI (p = 0.008) before successful 
CRM in patients with RD by contrast with patients without RD.

Results of resting-state networks

Spatial maps of all 13 ICs were shown in Figure 1. These 13 ICs 
were grouped into 8 RSNs, namely, default mode network (DMN; IC 
1, IC 20, IC 23 and IC 24), left frontoparietal network (lFPN; IC 11), 
right frontoparietal network (rFPN; IC 6), salience network (SN; IC 4), 
attention network (AN; IC 3 and IC 9), visual network (VN; IC 7 and 
IC 21), sensorimotor network (SMN; IC 16) and auditory network 
(AuN; IC 17). The detailed information of ICs was displayed in Table 2.

Static functional network connectivity 
results

The averaged sFNC matrices of all subjects were presented in 
Figure 2 (one sample t-test, p < 0.05, FDR corrected). Compared to 
BPPV patients without RD, BPPV patients with RD displayed no 
obvious abnormal sFNC (two sample t-test, p > 0.05, FDR correction).

Dynamic functional network connectivity 
results

Cluster centroid of the five states and their respective occurrence 
frequency and percentage were displayed in Figure  3. It is worth 
noting that not all subjects have all five states. State 1 accounted for 
17% of all windows and it contained 19 RD and 10 non-RD patients. 

FIGURE 1

Spatial maps of the 13 independent components (ICs) identified as resting state networks (RSNs) from the 25 ICs. DMN, default mode network; lFPN, 
left frontoparietal network; rFPN, right frontoparietal network; SN, salience network; AN, attention network; VN, visual network; SMN, sensorimotor 
network; AuN, auditory network.
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State 1 was generally characterized by the existence of relatively strong 
positive between-network connectivity in DMN (IC 1)-VN (IC21) 
and within-network connectivity in VN (IC 7-IC 21). State 2, which 
accounted for 12% of all windows (13 RD and 13 non-RD patients), 
was featured by relatively strong positive between-network 
connectivity in SMN (IC 16)-VN (IC21) and within-network 
connectivity in VN (IC 7-IC 21). State 3 accounted for 46% (the largest 
occurrence frequency) and it contained 28 RD and 34 non-RD 
patients. State 3 was characterized by sparse and weak between-
network and within-network connections. State 4 accounted for 21% 
and it was made up of 26 RD and 22 non-RD patients. State 4 was 
featured by relatively strong positive within-network connections in 
VN (IC 7-IC 21), and in DMN (IC 1-IC 23; IC 23-IC 24). State 5 

accounted for 4% (the smallest occurrence frequency) and it was 
composed of 4 non-RD patients only. State 5 was distinguished by 
significant strong positive and negative between-network and within-
network connections broadly.

For each state, the FNC between patients with and without RD were 
compared. Significant differences were found in FNC between patients 
with and without RD in state 4. As displayed in Figure 4, compared with 
patients without RD, patients with RD showed increased FNC between 
DMN (IC 1) and VN (IC 7) in state 4 (p < 0.05, FDR corrected).

The differences of three temporal properties and four meta-states 
of dynamic FNC between the two groups were exhibited in Table 3 
and Figure  5. Compared with patients without RD, we  found 
significantly increased mean dwell time and fractional windows in 
state 1 but decreased mean dwell time and fractional windows in state 
3 in BPPV patients with RD (p < 0.05, FDR corrected). No significant 
group difference was found in transition number. In addition, 
compared with patients without RD, patients with RD showed 
decreased number of states and state span (p < 0.05, FDR corrected). 
No significant group effect was found in change between states and 
total distance.

Relationship between dFNC and clinical 
characteristics

As shown in Figure 6, in state 4, the FNC (z-value) between DMN 
(IC 1) and VN (IC 7) was positively correlated with the duration of 
RD in patients with RD (p = 0.007, r = 0.649, FDR corrected). The 
fractional windows of state 1 was positively correlated with the DHI 
score before CRM in patients with RD (p = 0.021, r = 0.369, FDR 
corrected). The mean dwell time of state 3 was negatively correlated 
with the duration of vertigo before CRM in patients with RD 
(p = 0.044, r = −0.370, FDR corrected). The fractional windows of state 
3 was negatively correlated with the duration of vertigo before CRM 
in patients with RD (p = 0.026, r = −0.405, FDR corrected).

Discussion

To the best of our knowledge, the current study is the first one 
which adopted methods of data-driven ICA, sliding-time windows 
and k-means clustering to explore the changes in sFNC and dFNC in 
BPPV patients with RD after successful CRM. Compared with patients 
without RD, our results demonstrated that patients with RD showed 
altered dFNC. Specifically, RD patients showed increased FNC 
between DMN and VN in state 4, longer fractional windows and 
mean dwell time in state 1 and shorter fractional windows and mean 
dwell time in state 3, as well as decreased number of states and state 
span. In addition, we found that the altered dFNC were associated 
with certain clinical characteristics of patients with RD. These results 
indicated that alterations in dFNC were related to the presence of RD 
in BPPV patients after CRM. Our findings provided new insights into 
understanding the neural mechanism in BPPV patients with RD.

Previous studies have reported that a longer duration of BPPV 
and higher DHI score before successful treatment were related to the 
occurrence of RD and were considered as risk factors for RD (7, 32). 
In our study, patients with RD showed longer duration of BPPV and 
higher DHI score before successful CRM compare to patients without 

TABLE 2 Peak activation information of the 13 independent components 
(ICs).

IC regions
Peak MNI coordinate

BA
X Y Z

Default mode network

IC 1 L precuneus −6.5 −57.5 8.5 23

IC 20 R precuneus 2.5 −54.5 71.5 7

IC 23 L posterior 

cingulate cortex

0.5 −74.5 36.5 7

IC 24 L medial 

prefrontal cortex

−0.5 59.5 18.5 10

Left frontoparietal network

IC 11 L posterior 

parietal cortex

−33.5 −69.5 53.5 7

Right frontoparietal network

IC 6 R posterior 

parietal cortex

50.5 −56.5 48.5 39

Salience network

IC 4 L temporal 

pole

−53.5 15.5 −2.5 45

Attention network

IC 3 R superior 

parietal lobule

20.5 −77.5 51.5 7

IC 9 R inferior 

parietal lobule

62.5 −41.5 33.5 40

Visual network

IC 7 R Lingual 

gyrus

12.5 −98.5 −8.5 17

IC 21 L cuneus 0.5 −86.5 29.5 19

Sensorimotor network

IC 16 R paracentral 

lobule

2.5 −33.5 63.5 4

Auditory network

IC 17 L superior 

temporal lobe

42.5 −3.5 −12.5 22

IC, Independent component; BA, Brodmann area; L, left; R, right; MNI, Montreal 
Neurological Institute.
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FIGURE 2

Results of static functional network connectivity (sFNC; one sample t-test, p  < 0.05, FDR corrected). (A) The mean sFNC matrices of all subjects in the 
13 independent components. (B) The averaged sFNC matrices of all subjects in eight networks. DMN, default mode network; lFPN, left frontoparietal 
network; rFPN, right frontoparietal network; SN, salience network; AN, attention network; VN, visual network; SMN, sensorimotor network; AuN, 
auditory network.

FIGURE 3

Results of the clustering analysis for each state. Percentage corresponds to the time that all subjects dwell in a certain state, and the order of the state 
corresponds to the order of the introduction of k-means algorithm. DMN, default mode network; lFPN, left frontoparietal network; rFPN, right 
frontoparietal network; SN, salience network; AN, attention network; VN, visual network; SMN, sensorimotor network; AuN, auditory network.
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RD, these results were consistent with previous studies. Our results 
also demonstrated that patients with RD still suffered from RD 
symptoms lasting an average of 22 days. Therefore, it is import to 
explore the neural mechanism of RD for patients with BPPV.

Altered dFNC between DMN and VN in 
patients with RD

In this study, no obvious alteration of sFNC was found between 
the two groups. However, in dFNC analysis, compared with non-RD 
patients, RD patients showed increased FNC between DMN (IC 1) 
and VN (IC 7) in state 4. These results indicated that dFNC was an 
extension of sFNC and could provide additional valuable information 
that might be missed in sFNC analysis (25).

The DMN is a “task-negative” network which can be divided into 
anterior DMN (aDMN) and posterior DMN (33, 34). The aDMN was 

reported to be mainly composed of medial prefrontal cortex (mPFC) 
and anterior cingulate cortex (ACC). The pDMN was constituted by 
precuneu (PCU) and posterior cingulate cortex (PCC) (33). Thus, the 
IC 24 (mPFC) that we identified in this study belonged to aDMN and 
the IC 1 (PCU), IC 20 (PCU) and IC 23 (PCC) were part of pDMN. It 
was considered that the aDMN was engaged in planning, integration 
and control while the pDMN was responsible for attention monitoring 
and self-centered cognition (33, 34). Functional changes in DMN have 
been reported in vestibular disorders of VM (35), VN (36) and 
persistent postural perceptual dizziness (PPPD) (37), indicating that 
DMN might be  involved in vestibular information processing. In 
BPPV patients with RD, altered functional activities in PCU were 
observed by a previous resting-state fMRI study, which was consistent 
with the functional change of IC 1 (PCU) found in this study (10). The 
PCU, a key region of pDMN, was reported to be significantly activated 
during optokinetic stimulation (38) and visuo-spatial imagery (39). It 
was also reported that electrical stimulation of the PCU might evoke 

FIGURE 4

Differences in dynamic functional network connectivity (dFNC) between patients with and without residual dizziness (RD; p  <  0.05, FDR corrected). 
(A,B) represent median FNC matrices, in RD and non-RD, respectively. The number of participants displayed in median FNC matrices were subjects 
who showed correlation for at least 10 windows and were included in the data to determine group differences. (C) represents difference between A 
and B. Red means RD  >  non-RD, blue indicates RD  <  non-RD. (D) shows difference in z value of DMN (IC 1)-VN (IC 7) between RD and non-RD patients 
in state 4. DMN, default mode network; lFPN, left frontoparietal network; rFPN, right frontoparietal network; SN, salience network; AN, attention 
network; VN, visual network; SMN, sensorimotor network; AuN, auditory network.
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symptom of vertigo (40, 41). Thus, the pDMN might be involved in 
the integration of visual information and might play an important role 
in spatial positioning and perception.

The VN was reported to be grouped into primary VN (pVN) and 
secondary VN (sVN) (42, 43). The pVN is located in the medial cortex 
close to middle line, mainly including cuneus and lingual gyrus (42, 
43). The sVN is mainly distributed in the extrastriate occipital cortex 
(42, 43). Thus, the IC 7 (lingual gyrus) and IC 21 (cuneus) that 
we identified in current study belonged to pVN. Previous rs-fMRI 
studies have reported the functional alterations of VN in patients with 

vertigo or dizziness symptoms, including PPPD (44), chronic 
unilateral vestibulopathy (CUVP) (45) and VM (35).

Our study revealed increased FNC between DMN and VN in 
BPPV patients with RD who experienced dizziness and imbalance 
after CRM. It was believed that visual and vestibular sensations, as well 
as proprioception are the three main elements of the human body to 
maintain balance (46, 47). In addition, it was reported that the 
impaired balance function during the onset of BPPV was mainly 
related to abnormal vestibular input (48). The complete recovery of 
vestibular symptoms requires adequate vestibular compensation in the 
central nervous system (14–16, 49). Sensory substitution is one of the 
strategies of central vestibular compensation. Visual sensation and 
proprioception are often the main sources of sensory substitution (15, 
50, 51). Thus, we speculated that the increased FNC between DMN 
and VN might be associated with visual substitution, reflecting an 
enhanced perception, integration and processing of visual and spatial 
location information.

We also found that the FNC (z-score) between DMN and VN was 
positively correlated with the duration of RD in patients with RD. This 
result suggested that the increased FNC between DMN and VN was 
related to the delayed recovery of RD symptoms, indicating more time 
needed for visual substitution. In addition, since all rs-fMRI scans 
were performed on the 8th to 9th day of the onset of RD symptoms in 
patients with RD, and the duration of RD symptoms was obtained by 
follow-up after rs-fMRI scans, we suggested that the increased FNC 
(z-score) might potentially predict the duration of RD symptoms, but 
this suggestion should be further verified by a prediction analysis.

A recent MRI study discovered structural and functional changes 
in the cerebellum and pons in patients with BPPV, the authors 
indicated that the changes in pons function might be closely related 
to RD after CRM (9). In the present study, during the identification of 

TABLE 3 Differences in the three temporal properties between patients 
with and without residual dizziness (RD).

Properties State Without 
RD (n  =  38) 
Mean  ±  SD

RD (n  =  39) 
Mean  ±  SD

Value 
of p

Mean dwell time 

(windows)

1 12.87 ± 39.19 33.38 ± 49.28 0.047

2 15.70 ± 41.18 12.32 ± 25.73 0.667

3 61.27 ± 60.43 30.20 ± 35.51 0.007

4 18.77 ± 20.92 25.50 ± 40.11 0.360

5 0 ± 0 10.56 ± 39.60 0.105

Fractional 

windows

1 8.8 ± 23.1% 26.0 ± 35.9% 0.015

2 12.7 ± 290% 10.8 ± 20.4% 0.743

3 56.5 ± 33.9% 35.3 ± 34.3% 0.008

4 22.0 ± 26.1% 20.4 ± 26.7% 0.796

5 0 ± 0% 7.5 ± 25.8% 0.077

Number of 

transitions

3.1 ± 2.3 3.1 ± 2.2 0.962

FIGURE 5

Temporal properties and meta-states of dynamic functional network connectivity for patients with and without residual dizziness (RD). (A) Percentage 
of total time patients spent in each state; (B) Mean dwell time; (C) Number of transitions between states; (D) Number of states; (E) Change between 
states; (F) State span; (G) Total distance. Red five-pointed star represents significant difference between two groups (p  <  0.05, FDR corrected).
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RSNs, the IC 5 seemed to be the cerebellar network and the IC 12 
seemed to belong to the brainstem network. But these two ICs failed 
to meet the criteria established in this study to identify a significant 
RSN. We recognized IC 5 and IC 12 as artifacts, not meaningful RNSs. 
Thus, the cerebellar and brainstem networks were not included in this 
study to analyze the functional changes in BPPV patients with RD. For 
all this, when focused on cortical networks, our study provided the 
direct evidence that the functional changes of DMN and VN were 
closely related to RD.

Altered temporal properties of dFNC in 
patients with RD

The three temporal properties of dFNC were also analyzed. 
Although there was no significant diffidence between the two groups 
in transition numbers, compared with non-RD group, the RD group 
showed increased fractional windows and mean dwell time in state 1. 

The state 1 was characterized by relatively strong positive inter-
network connectivity between DMN and VN, and relatively strong 
positive intra-network connectivity within VN. This result indicated 
that patients with RD were inclined to spend more time in a state in 
which more visual information was processed and integrated. In 
addition, we  found that the fractional windows of state 1 were 
positively correlated with DHI score before CRM in patients with 
RD. That is to say, the more severe the vestibular symptoms of BPPV 
patients before successful CRM, the more likely they are to develop 
RD symptoms, and the longer they may stay in state 1 in which more 
visual information was processed and integrated. These results further 
confirmed that DMN and VN were closely related to the 
occurrence of RD.

State 3 was a sparse and weak connectivity state. Compared with 
modular connectivity state, regional connectivity state and strong 
connectivity state, it was reported that a dFNC state with sparse and 
weak connectivity was characterized by inefficient functional 
integration and less flexible interaction (52). Another result worth 

FIGURE 6

Results of the correlations between dFNC and clinical characteristics in patients with RD (all p  <  0.05, FDR corrected). RD, residual dizziness; DMN, 
default mode network; VN, visual network; IC, independent component; DHI, dizziness handicap inventory; CRM, canalith repositioning maneuvers. 
(A) The z-value between DMN (IC 1) and VN (IC 7) was positively correlated with the duration of RD (p  =  0.007, r  =  0.649, FDR corrected); (B) The 
fractional windows of state 1 was positively correlated with the DHI score before CRM (p  =  0.021, r  =  0.369, FDR corrected); (C) The mean dwell time of 
state 3 was negatively correlated with the duration of vertigo before CRM (p  =  0.044, r  =  −0.370, FDR corrected); (D) The fractional windows of state 3 
was negatively correlated with the duration of vertigo before CRM (p  =  0.026, r  =  −0.405, FDR corrected).
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watching in this study was that patients with RD showed decreased 
fractional windows and mean dwell time in state 3. In addition, 
we found that the mean dwell time and fractional windows of state 3 
were negatively correlated with the duration of vertigo before CRM in 
patients with RD. These results suggested that patients with RD were 
more likely to dwell in a state with more efficient functional integration 
and flexible interaction, and might reflect the functional plasticity and 
compensatory of these cortical networks after longer time repeated 
attacks of episodic vertigo.

Altered meta-states of dFNC in patients 
with RD

We also calculated the four meta-states of dFNC, these meta-
states were first reported by Miller. et al. (53). Compared with non-RD 
group, patients with RD exhibited decreased dynamic fluidity and 
dynamic range. In the aspect of dynamic fluidity, patients with RD 
entered fewer meta-states than patients without RD, as measured by 
number of states. In terms of dynamic range, patients with RD traveled 
through less state space than patients without RD, as measured by 
state span. The global meta-states have been proved to provide unique 
information in schizophrenia and fetal alcohol spectrum disorders 
(53–56). In this study, we first found that the global meta-states of 
dFNC could provide unique information for BPPV patients with 
RD. Unfortunately, we  failed to find any significant relationship 
between the disrupted global meta-states and clinical features of RD 
patients. For all this, we believed that the decreased dynamic fluidity 
and dynamic range might be closely related to the occurrence of RD 
in patients with BPPV after successful CRM.

Limitations

This study has certain limitations and shortcomings in some 
aspects. First, although the sample size met the requirements of 
statistics, we  only included 39 patients with RD and 38 patients 
without RD. Subsequent studies with larger sample size and healthy 
control group are urgently needed. Second, brainstem and cerebellum 
networks were not included to analyze the functional changes in 
BPPV patients with RD, they might also play an important role in the 
development of RD. Finally, our study only adopted ICA method, 
future studies should combine ICA with other methods, for example, 
seed-based functional connectivity, graph theory analysis, etc.

Conclusion

In summary, the present study revealed increased FNC between 
DMN and VN in BPPV patients with RD, the increased FNC (z-score) 
between DMN and VN might potentially correlate with the duration 
of RD symptoms. In addition, the current study discovered that BPPV 
patients with RD showed decreased dynamic fluidity and dynamic 
range. Furthermore, BPPV patients with RD spent more time in a state 
typified by strong positive inter-network connectivity between DMN 
and VN, and strong positive intra-network connectivity within 
VN. Additionally, BPPV patients with RD dwelled longer in a state 
with more efficient functional integration and flexible interaction. 
These findings are helpful for us to better understand the underlying 

neural mechanisms of RD and potentially contribute to intervention 
development for BPPV patients with RD.
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