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Introduction: To investigate cortical network changes using 
Magnetoencephalography (MEG) signals in Parkinson’s disease (PD) patients 
undergoing Magnetic Resonance-guided Focused Ultrasound (MRgFUS) 
thalamotomy.

Methods: We evaluated the MEG signals in 16 PD patients with drug-refractory 
tremor before and after 12-month from MRgFUS unilateral lesion of the ventralis 
intermediate nucleus (Vim) of the thalamus contralateral to the most affected 
body side. We recorded patients 24  h before (T0) and 24  h after MRgFUS (T1). 
We analyzed signal epochs recorded at rest and during the isometric extension 
of the hand contralateral to thalamotomy. We  evaluated cortico-muscular 
coherence (CMC), the out-strength index from non-primary motor areas to 
the pre-central area and connectivity indexes, using generalized partial directed 
coherence. Statistical analysis was performed using RMANOVA and post hoc 
t-tests.

Results: Most changes found at T1 compared to T0 occurred in the beta band 
and included: (1) a re-adjustment of CMC distribution; (2) a reduced out-
strength from non-primary motor areas toward the precentral area; (3) strongly 
reduced clustering coefficient values. These differences mainly occurred during 
motor activation and with few statistically significant changes at rest. Correlation 
analysis showed significant relationships between changes of out-strength and 
clustering coefficient in non-primary motor areas and the changes in clinical 
scores.

Discussion: One day after MRgFUS thalamotomy, PD patients showed a 
topographically reordered CMC and decreased cortico-cortical flow, together 
with a reduced local connection between different nodes. These findings 
suggest that the reordered cortico-muscular and cortical-networks in the beta 
band may represent an early physiological readjustment related to MRgFUS Vim 
lesion.
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1 Introduction

In Parkinson’s disease (PD), resting tremor is a cardinal feature 
that primarily supports the early diagnosis (1). In addition, postural 
and kinetic tremors are also common manifestations. In several 
patients, tremor occurs unilaterally, namely in the relatively early 
disease stages (2). Tremors can occur in the earliest disease stages, and 
studies using magnetoencephalography (MEG) have shown that 
oscillatory activity in the motor cortex, cerebellum, and diencephalic 
area are tremor-related (3). Cerebello-thalamocortical circuit, the 
basal ganglia, and the interaction between these two circuits are 
primarily implicated in the generation of all symptoms (4).

Cortical structures are certainly strongly involved in the disorder, 
including the motor cortex. Substantia nigra dopaminergic neurons 
influence the firing rate and synchronization of motor cortical neurons 
through direct projections and indirect pathways involving the basal 
ganglia and motor thalamus. Moreover, in PD pathophysiology, the 
motor cortex is responsible for transferring abnormal activity 
occurring in the basal ganglia to muscles (5), and is the basis of a 
positive effect of transcranial magnetic stimulation in PD (6). 
Moreover, long-range input to the motor cortex originating from 
other cortical areas may play a role in various movement disorders, 
including PD (7). These include the primary somatosensory cortex, 
the contralateral motor cortex, secondary motor cortices [premotor 
cortex and supplementary motor cortex demonstrated in primates (8, 
9)] and other frontal regions (10). These inputs are also probably 
involved in the side effects of levodopa in PD patients (11).

Among different treatments, surgical options, such as deep brain 
stimulation and magnetic resonance-guided focused ultrasound 
(MRgFUS) thalamotomy (12, 13), are a part of the therapeutic 
opportunities in selected patients, presenting with prominent tremors, 
as well as in other pathological conditions with tremors, such as 
essential tremor (14).

We analyzed MEG signals that non-invasively and directly 
measures the magnetic fields generated by neuronal activity of the 
cerebral cortex with high spatial and temporal resolution. MEG 
signals are not distorted by the skull, scalp, and require a simpler head 
model to apply for source localization. This feature makes MEG a 
valuable tool that can be  used to investigate and disentangle the 
complex interactions of neural populations, or to localize the 
physiological and pathological activities.

We are reporting here information concerning the neocortical 
reorganization involving the motor cortex and non-primary motor 
cortical areas detected on neurophysiological (MEG) signals in 
patients with prominently unilateral tremors treated with unilateral 
VIM thalamotomy using MRgFUS in the absence of other 
severe symptoms.

2 Materials and methods

2.1 Subjects

We included 16 patients (Table  1) diagnosed with clinically 
probable PD (1) and tremor-dominant motor phenotype, who showed 
a clearly prominent tremor on an upper arm and who were followed 
up for more than 1 year.

The majority of patients were male (13), but there were no obvious 
differences in both demographic data (age: males = 66.8 ± 2.3 years; 
females = 68.7 ± 1.7 years; onset age: males = 59.9 ± 1.9 years, 

TABLE 1 Demographics, clinical scores and adverse events at baseline 
and 12-months follow-up.

Demographic characteristics

Sex (M/F) 13/3

Age (years) 67.1 ± 8.4

Age at onset (years) 60.5 ± 6.9

Disease duration (years) 6.7 ± 3.8

Treated side (left/right thalamus) 8/8

Baseline MDS-UPDRS-I, median [IQR]

Total score 2.5 [1.75; 5.3]

Item 1.1 Cognitive impairment 0 [0; 1]

Item 1.2 Hallucinations and psychosis 0 [0; 0]

Item 1.3 Depressed mood 0 [0; 1]

Item 1.4 Anxious mood 0 [0; 1]

Item 1.5 Apathy 0 [0; 0]

Item 1.6 Features of dopamine 

dysregulation syndrome

0 [0; 0]

Motor Outcome (MDS-UPDRS-III ON medication)

Baseline 12 months

Total score 27.6 ± 9.7** 20.3 ± 9.6**

Tremor scorea 6.1 ± 1.9*** 1.6 ± 1.8***

Bradykinesia scoreb 5.1 ± 2.7 4.4 ± 3.1

Rigidity scorec 2.3 ± 1.0*** 0.8 ± 1.1***

Axial scored 4.3 ± 2.0* 5.4 ± 2.9*

H&Y, median (IQR) [min-max] 2 (2; 2) [1–2] 2 (2; 2) [2–2]

Pharmacological therapy

LEDDe (mg), mean ± SD (min-max)
570 ± 329 (0–

1,350)

572 ± 244 (150–

1,000)

Anticholinergic, n (%) 3 (19%) 2 (13%)

Beta-blocker, n (%) 1 (6%) 1 (6%)

Thalamotomy related adverse events

Patients with 1 or more AE (n) 11 2

Type of AE

  Gait imbalance (n) 8 0

  Perioral/hand paresthesia (n) 6 2

  Dysarthria (n) 4 0

  Inferior limb weakness (n) 2 0

  Facial asymmetry (n) 1 0

Data expressed as mean ± SD unless otherwise specified. AE, Adverse Event; H&Y, Hoehn 
and Yahr stage; IQR, Interquartile range; LEDD, Levodopa Equivalent Daily Dose, MDS-
UPDRS-I Movement Disorder’s Society Unified Parkinson’s Disease Rating Scale Part I, 
Non-Motor Aspects of Experiences of Daily Living; MDS-UPDRS-III, Movement Disorder’s 
Society Unified Parkinson’s Disease Rating Scale Part III, Motor score. *p < 0.05; **p < 0.010; 
***p < 0.001. aSum of items 3.15, 3.16, 3.17 relative to the treated side; bSum of items 3.4–3.8 
relative to the treated side; cSum of items 3.3 of upper and lower limbs relative to the treated 
side; dSum of items 3.1, 3.2, 3.9–3.13; eLEDD calculated as previously described (15, 16); 
LEDD of safinamide was calculated as described in Cilia et al. (17).
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females = 63.0 ± 1.5 years) and data obtained from both clinical and 
neurophysiological measures.

MDS-UPDRS scores were assessed 24 h before MRgFUS (T0), 
24 h after the procedure (T1) and at 12-months follow-up. Detailed 
pharmacological therapy has been recorded; Levodopa-Equivalent 
Daily Dose (LEDD), was calculated as previously reported (15, 16), 
LEDD of safinamide was calculated as recently reported (17) (Table 1). 
The tremor was scored using the different components of the 
International Parkinson and Movement Disorders Society version of 
the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) (18, 19). 
MDS-UPDRS scores were assessed 24 h before MRgFUS (T0), 24 h 
after the procedure (T1) and at 12-months follow-up.

We considered eligible for MRgFUS treatment patients with 
tremor refractory to drug therapy; other significant pathologies or 
medical risk factors were considered as exclusion criteria, including 
the presence of cognitive decline and significant psychiatric 
comorbidities. Detailed MRgFUS eligibility criteria have been 
previously reported (20). Eight patients underwent MRgFUS 
treatment on the left thalamus and eight on the right thalamus.

At the time of our evaluation, all patients were on their current 
home medication regimen and in the “medication-on” condition.

MDS-UPDRS-I and MDS-UPDRS-III were evaluated at T0 and 
after 1 year of follow-up. The sub scores for tremor (items 3.15, 3.16, 
3.17) rigidity (sum of items 3.3 of upper and lower limbs) and 
bradykinesia (items 3.4–3.8) relative to the treated side and axial score 
(items 3.1, 3.2, 3.9–3.13) were computed. Only the MDS-UPDRS-III 
tremor score was evaluated at T1.

We chose the medication-on condition as this was more similar 
to the daily condition of the patients and avoided an uncomfortable 
situation during the tests carried out during the MEG recording.

At T1, 11 patient presented symptoms referable to minimal 
adverse events in the immediate post-treatment, which completely 
recovered in nine and mitigated in in two (Table 1).

The study was approved by the Ethics Committee of the 
Fondazione IRCCS Istituto Neurologico C. Besta and was carried out 
according to the Declaration of Helsinki, and its amendments. All 
subjects provided their written informed consent before being 
included in the study.

2.2 MEG signals acquisition and analysis

MEG signals were recorded with a whole-head system (Neuromag 
Triux, MEGIN; Finland) and pre-processed according to our 
laboratory procedures [see (21), for details]. For the analyses, 
we  selected an epoch of 60 s at rest and epochs of the MEG and 
concomitant EMG signals during repeated isometric extensions of the 
hand contralateral to the ViM target. To limit the presence of tremor 
that usually appears in the stationary phase of isometric contraction, 
we selected multiple epochs at the start of each extension (reaching an 
analysis time of 60 s). Source time series were extracted with a linearly 
constraint minimum variance beamforming approach using a head 
model based on individual MRI. Data were normalized to the MNI 
template to extract the source time series on different cortical areas 
according to the Automated Anatomical Labeling atlas. The included 
regions of interest (ROIs) were: Precentral (PreC), Postcentral (PostC), 
Supplementary Motor (SupM), Parietal (P, including inferior and 
superior parietal areas), and Frontal (F, including superior and middle 

gyri) ROI of contralateral (Co) hemisphere with respect to the 
activated hand. The mean of the values measured on the same ROIs 
in the ipsilateral hemisphere were grouped into an ROI called Ipsi. 
We  analyzed the MEG signals in different frequency bands: delta 
(0–4 Hz), theta (>4–8 Hz) alpha (>8–13 Hz), beta (>13–30 Hz), 
low-gamma (>30–45 Hz).

Cortico-muscular coherence (CMC) between cortical ROIs and 
muscular activity during isometric contraction was estimated at T0 
and T1 using a block-wise bivariate autoregressive parametric model. 
The CMC values were normalized (nCMC) to the maximum value 
obtained at different times to better highlighting the coherence 
reorganization in the different cortical ROIs. To investigate cortical 
connectivity, generalized partial directed coherence [gPDC, (22)] was 
applied to the same epochs selected to estimate the nCMC and in the 
epoch at rest. For CMC and gPDC methods see our previous studies 
in patients with cortical myoclonus (23–26) and in a population of 
patients with essential tremor treated with MRgFUS (27). To 
investigate the regional properties of the network and the 
unidirectional coupling between ROIs, we calculated the out-degrees 
(number of edges going out of a node, considering each ROI as a 
node) and the out-strength index (edges values), respectively. 
Moreover, we calculated the betweenness centrality, measuring the 
centrality in a graph of a specific region based on shortest paths, and 
the clustering coefficient, measuring the degree to which a network 
organizes into a region. Data analysis was performed using custom-
made Matlab (MATLAB 2016a, Mathworks, Inc., Natick, MA, 
United States) scripts based on the Fieldtrip toolbox (28).

2.3 Statistical analysis

nCMC, out-strength measures, and connectivity indexes obtained 
in selected cortical ROIs were compared using repeated measures 
ANOVA (RM ANOVA) at a significance level of p < 0.05, using ROIs 
and Time (T0, T1) as the within-group factor. The sphericity 
assumption was evaluated using Mauchley’s test, and the Greenhouse–
Geisser degree of freedom correction was applied when appropriate. 
Where the RM ANOVA indicates a significant factor or interaction, 
post-hoc tests using independent and paired samples were performed. 
Values are expressed as mean ± standard error of the mean.

To test the relationship between clinical scores evaluated at 
12-months follow-up and neurophysiological measures linear 
regression was applied.

3 Results

3.1 Cortico-muscular coherence

At T0, CMC showed a peak in the alpha band in 12 out of 16 
patients with a frequency ranging from 10.4 and 11.2 Hz, in the 
different ROIs. The same occurred at T1, even if in eight patients only. 
In the delta and theta bands, no patient had detectable CMC peaks at 
both T0 and T1, while in the low-gamma (30–50 Hz) bands small 
peaks had variable CMC values and did not show significant 
differences between T0 and T1.

At T0, in the beta band, six patients showed a CMC peak in one 
or more of the selected ROIs contralateral with respect to the activated 
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hand, while at T1 all patients but one showed a CMC peak in one or 
more Co-ROIs (mean frequency at T0: 23.7 ± 0.4 Hz; at T1: 
21.1 ± 1.4 Hz). The frequency did not differ between T0 and T1.

Since CMC, normalized to its main peak (nCMC), was almost 
exclusively found in the ROIs directly involved motor function, and 
very rarely in other ROIs, including those of the hemisphere ipsilateral 
with respect the MRgFUS treatment, the RMANOVA was performed 
on the beta nCMC values including Co-PreC, Co-PostC, and 
Co-SupM ROIs. There were significant within-subjects effects for 
ROIs [F(3,42) = 7.8, p = 0.001], Time [F(3,42) = 8.8, p = 0.005] and 
interaction ROI x Time [F(3,42) = 9.3, p = 0.001; Figure 1].

Post hoc analyses revealed that, comparing the values recorded at 
T1 with those recorded at T0, a significant increase in nCMC value 
occurred in Co-PostC [t(15) = 3.6, p  = 0.002] and Co-PreC ROIs 
[t(15) = 3.8, p = 0.002].

3.2 Cortico-cortical out-strength

With the aim of further exploring changes occurring at T1 with 
respect to T0  in the primary motor cortex, we  analyzed the 
out-strength from Co and Ipsi ROIs toward the Co-PreC ROIs.

During isometric hand extension (action), RMANOVA showed 
significant within-subjects effects of ROIs but not for Time in theta, 
alpha, beta, and low-gamma bands. Only in the beta band, 
RMANOVA revealed a significant within-subjects effect of ROIs 
[F(2.23, 33.5) = 19.37, p < 0.001], Time [F(1, 15) = 29.63, p < 0.001] and 
ROIs × time F(4,60) = 4.29, p = 0.004.

Comparing T1 and T0, a reduced out-strength toward Co-PreC 
ROI occurred from Co-F [t = 2.9(15), p = 0.011], Co-P [t(15) = 3.7, 
p = 0.002], Co-PostC [t(15) = 3.1, p = 0.007], and Ipsi ROIs [t(15) = 2.8, 
p = 0.012; Figure 2A].

Moreover, the out-strength from the hemisphere ipsilateral with 
respect the MRgFUS treatment was obviously decreased on the ROIs 
more involved in motor function [t(15) = 2.9, p = 0.011], while was at 
the significance limits from the analyzed F and P ROIs [t(15) = 2.1, 
p = 0.047].

When analyzing the epochs at rest, in the beta band, RMANOVA 
also found a significant within-subjects effect of ROIs, but without the 
effect of the Time (Figure 2B).

3.3 Connectivity indexes

For the out-degrees, during hand extension, RMANOVA 
showed significant within-subjects effects of ROIs in the alpha 
[F(2.53,38.03) = 5.72, p  = 0.004], beta [F(1.65,24.73) = 225.141, 
p < 0.001], and low-gamma bands [F(2.14,32.17) = 23.42, p < 0.001], 
but no effects of Time. No effects were found for in-degrees, while 
betweenness centrality showed a within-subject effect of ROIs in the 
beta band only [F(3.36, 50.47) = 3.45, p  = 0.020], but no effects 
of Time.

For clustering coefficient, during hand extension, in the beta and 
low-gamma bands RMANOVA showed a significant within-subjects 
effect of ROIs [beta: F(5,75) = 7.14, p  < 0.001; low-gamma: 
F(2.84,42.64) = 5.17, p  = 0.004] and Time [beta: F(1,15) = 26.26, 
p < 0.001]; low-gamma: [F(1,15) = 6.97, p = 0.019]. When examining 
the clustering coefficient in resting condition, RMANOVA did not 
show significant differences except for the effect of ROIs in low-gamma 
band [F(5,75) = 10.41, p = 0.001].

Comparing T1 and T0 during isometric hand extension, the 
clustering coefficient decreased in all ROIs including the group of 
ipsilateral ROIs (with t value ranging from 2.7 to 6.7 and p values 
ranging from 0.037 to <0.001; Figure 3A).

When grouped together, in the Co ROIs more involved in the 
motor function, the clustering coefficient decreased in the beta band 
[t(15) = 4.8, p < 0.001], as well it decreased in symmetric ipsilateral 
ROIs [t(15) = 3.6, p  = 0.001]. A similar decrease was found in Co 
[t(15) = 2.8, p = 0.008] and ipsilateral (2.7, p = 0.011) F ROIs and in Co 
[t(15) = 1.6, p = 0.011; t(15) = 2.6, p = 0.012] and ipsilateral [t(15) = 2.9, 
p = 0.006] P ROIs.

In the low-gamma band, the clustering coefficient decreased in Co 
ROIs more involved in the motor function [t(15) = 4.3, p < 0.001] and 
in the same ipsilateral ROIs [t(15) = 2.7, p = 0.009]; it also decreased in 
Co [t(15) = 2.9, p = 0.006] and Ipsilateral [t(15) = 2.7, p = 0.006] F ROIs, 
but not significantly in parietal ROIs.

At rest, there was a trend toward reduced value measured a T1, 
but no difference reached a statistical significance (Figure 3B).

3.4 Correlations between clinical scores 
and neurophysiological measures

Thirteen patients had a reduction of the total score higher than 
30%, while three had a lower reduction.

Linear regression analysis showed a significant relationship 
between out-strength from the Co-SupM toward Co-PreC ROI 
[F(15) = 13.5, p = 0.002] as well as between the collective out-strength 
from all Co-ROIs and the percentage reduction of the tremors score 
during hand movement [F(15) = 9.7, p = 0.008, Figures 4A,B].

A significant relationship was also found between the clustering 
coefficient and the percentage reduction of the values of the mean 
score of tremor measured at rest and during motor activation in 
Co-SupM ROI [F(15) = 8.3, p  = 0.012] and in the Co-PostC ROI 
[F(15) = 6.0, p = 0.028; Figures 4C,D].

FIGURE 1

Normalized cortico-muscular coherence (nCMC) in the beta band, 
evaluated during isometric contraction, in different ROIs 
contralateral (Co) to activated hand (Co-PreC, precentral; Co-PostC, 
postcentral; Co-SupM, supplementary motor; Co-P, parietal; Co-F, 
frontal) and in the ipsilateral ROI. Asterisks indicate significant 
differences between the values assessed at T1 and T0.
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4 Discussion

Dysfunction of the cerebellum-thalamocortical network and 
connections to other brain areas is pivotal to many types of tremors. 
We  are reporting here information concerning the cortical 
reorganization detected on neurophysiological (MEG) signals after 
unilateral MRgFUS in patients with contralateral tremor in the 
absence of other severe or prominent symptom in PD patients with a 
1 year of post-intervention follow-up.

In the included patients, tremor was the prominent and most 
disabling symptom and the VIM was selected as target. VIM is a key 
hub in the cerebello-thalamo-cortical circuit, which has been shown 
to be impaired in tremor dominant PD (29). This target is the most 
frequently studied in both functional neurosurgery and lesional 
approaches in order to treat drug-resistant tremor (30, 31). However, 
pathophysiology of tremor in PD is complex and involves structures 
of the basal ganglia-cortical loop (29). In patients with tremor 
accompanied by other disabling motor symptoms, other targets have 
been explored and demonstrated efficacy in improving not only 
tremor but also rigidity, bradykinesia and axial features (32).

Our main evidence concerns the readjustment of a basic 
mechanism (expressed through cortico-muscular coherence) 
connecting cortical function with the activated hand, the 
rearrangement of the cortico-cortical flow toward the precentral area 
contralateral to lateralized tremor, and the reduction affecting indexes 
of local cortical trafficking, expressed by clustering coefficient.

The detected changes and the resulting differences were observed 
the day after the MRgFUS treatment, when the tremor was absent, 
suggesting that the reordering of cortico-muscular coherence and 
cortical network in the beta band may represent a very early 
physiological readjustment of cortico-muscular and cortical 
relationships. This mainly occurred in the beta band, representing the 
frequency commonly associated with motor activity (33). The 
maintenance, in most patients, of the tremor relief 1 year after the 
MRgFUS treatment and the positive relationship found between 
changes in tremor scores and neurophysiological parameter assessed 
at T1 suggest that the early network reordering may also serve as 
predictors of late outcome.

CMC in the beta band gives information about functional 
coupling between muscles and the cortex (33). Beta-band CMC 
became evident when healthy subjects perform isometric contraction 
and it has been already found reduced in PD patients as a revealing 
factor of their motor impairment (34). Conversely, it increases after 
motor improvement in the presence of deep brain stimulation (35) as 
well as a consequence of effective levodopa treatment (36). 
We previously found a similar increase at T1 of beta-CMC in patients 
with essential tremor submitted to MRgFUS treatment, suggesting an 
immediate reorganization of the cortico-muscular relationship after 
the tremor relief involving the cortical areas primarily related to the 
hand movement (27).

Measuring the out-strength from different frontoparietal areas 
directed toward the precentral area of the hemisphere receiving the 
Vim thalamotomy, we  observed a significant decrease of cortico-
cortical flow at T1, suggesting a reordering of cortico-cortical 
interactions and a reacquired “leadership” of the primary motor cortex 
recovering at T1, in coincidence with the tremor relief. The same is 
suggested by the significantly reduced out-strength deriving from the 
hemisphere ipsilateral with respect the MRgFUS target.

FIGURE 2

Beta band out-strength toward precentral ROI (Co-PreC) from other 
ROIs (Co-PreC, precentral; Co-PostC, postcentral; Co-SupM, 
supplementary motor; P, Co-parietal; F, Co frontal) and in the 
ipsilateral (Ipsi) ROI evaluated during isometric hand extension 
(A) and at rest (B). Asterisks indicate significant differences between 
T1 and T0.

FIGURE 3

Beta band clustering coefficient in different ROIs contralateral to 
activated hand (Co-PreC, precentral; Co-PostC, postcentral; Co-
SupM, supplementary motor; Co-P, parietal; Co-F, frontal) and in the 
ipsilateral (Ipsi) ROI evaluated during isometric extension of the hand 
contralateral to treated ViM (A) and at rest (B). Asterisks indicate 
significant differences between T1 and T0.
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Changes found in cortico-cortical strength between areas not 
primarily involved in motor activity appear to be a further indicator 
of cortical reorganization. Changes in cortico-cortical and cortico-
thalamic coupling in the beta band were already reported as excessive 
in Parkinson’s disease patients (37, 38), and suggested as a reliable 
measure of disease severity.

The reorganization of corticomuscular and cortico-cortical flow 
appears to a main factor resulting from thalamotomy. Interestingly it 
appears to be a “precondition” for the following outcome, even if all 
patients were substantially tremor-free at T1, suggesting that the 
achievement of a physiological reorganization is important for 
late prognosis.

The observation of high values of the clustering coefficient was 
rather noticeable and suggested an augmented tendency of different 
regions to express a pathological, not efficient, increase of connection 
between different nodes. This occurred in beta band, but also in 
low-gamma band. Using EEG signals, an increased local clustering 
coefficient was already noted in PD patients compared with healthy 
subjects (39), or the same patients in off with respect to on conditions 
(40). Similar evidence was obtained comparing PD with healthy 
subjects using MRI signals (41). This may suggest an increased cortical 
“pathological trafficking,” not limited to the involved motor areas, that 
is associated with the defective motor activity specific for PD patients 
and increases during motor activity. The values of the clustering 
coefficient decreased significantly at T1 both on the hemisphere Co to 
activated hand on the ipsilateral one. This finding also support the 
hypothesis that a pathological hyper-connectivity involving beta and 
low-gamma activity may thus act as a condition rather specific for PD, 
significantly attenuated after ViM lesion and predicting a better late 
outcome. In agreement, we did not find a similar connectivity pattern 
in patients with ET that we examined after MRgFUS in a similar way. 
We did not investigate frequencies higher than those included in the 

low gamma, so the involvement of these frequencies may just 
represent an “extension” of the results obtained in beta frequencies. In 
fact, the beta-low-gamma frequency range can be generated by the 
same neuronal systems (42).

Most of our results, including CMC, the out-strength from 
different cortical areas toward the motor area of the hemisphere with 
treated Vim (and contralateral to activated hand) mainly involved the 
beta band frequencies suggesting that the disordered network 
connecting different ROIs or local hyper-connectivity derive from the 
pathological organization of these frequencies. Actually, beta 
frequencies are typically involved in motor function both in healthy 
and pathological conditions, including PD patients (37, 43).

At rest, a condition in which the tremor had its maximum 
expression at T0, we did not identify significant relationships with the 
various indices relating to MEG frequencies, this could suggest that 
the theta rhythmicity of the tremor mainly involves the basal nuclei 
and reflects little on the cortical areas.

Regression analysis showed a significant relationship between the 
reduction of tremor-related scores evaluated at 1-year follow-up 
during motor activation and the reduction of out-strength from 
non-primary motor areas and precentral area ipsilateral to treated 
ViM observed at T1, the same was found between the reduced values 
of the clustering coefficient values measured in Co-SupM and 
Co-PostC ROI. This can suggest that excessive cortico-cortical flow is 
mainly disturbing motor activity, while increased clustering coefficient 
may influence the movement disorder both a rest and during action. 
The relationship between the Co-SupM and PostC areas with the 
primary motor area in PD is variably reported in the literature [see 
(44) for a review, (45)]. Even if our observation cannot resolve every 
single interpretation, it may however suggest that interactions and 
local organization of these areas play a significant role in motor 
impairment and possibly be “relieved” by ViM lesions.

This study had some limitations deriving from the small sample 
size and a higher number of patients who maintained a positive 
outcome 1 year after MRgFUS treatment, while only a few patients 
had a relevant recurrence of Parkinson’s symptoms. The slight number 
of unsuccessful MRgFUS treatments can be considered as positive 
result, but did not allow comparisons between groups with different 
prognosis. However, correlation analyses indicate a positive 
relationship between the evaluated network measure and the 
improvement maintained after 1 year of follow-up. This may suggest 
that the effort of identifying network changes may propose to verify 
in a more extensive case series of significant outcome-
predicting factors.

Our results we obtained were rather clear, but obviously limited 
to not severe patients with prominently lateralized signs and dominant 
tremor. The validation of the parameters applied in a more complex 
series of patients with PD therefore requires further evaluations in 
order above all to confirm the possible predictive value of the 
effectiveness of the treatment.

5 Conclusion

Our data suggest that the higher cortico-cortical flow and 
pathological increased local connection between different nodes, 
revealed by the values of clustering coefficient, together with 
topographically disordered cortico-cortical flow and CMC may reveal 

FIGURE 4

Linear regression performed between mean values action tremor 
sub-scores items and the values of out-strength from 
(A) contralateral supplementary motor ROI (Co-SupM), and (B) the 
sum of the out-strength values from all ROIs toward precentral area 
contralateral to evaluated hand. Linear regression between mean 
values of resting and action tremor sub-scores items and (C) the 
values of cluster coefficient on contralateral supplementary motor 
(Co-SupM) and (D) on postcentral (Co-PostC) ROIs.
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an extensive and disarranged cortical defect occurring during 
motor activity.

The observation that most of the changes in the evaluated 
measures correlate with the changes in the clinical score related to the 
active movement may also suggest that MRgFUS Vim thalamotomy 
may act outside the resting tremor on the more complex motor 
impairment occurring in PD patients.
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