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Introduction: In this study, we  investigated the correlation between serum 
albumin levels and cognitive function, and examined the impact of including 
serum albumin values in the input layer on the prediction accuracy when 
forecasting cognitive function using deep learning and other machine learning 
models.

Methods: We analyzed the electronic health record data from Osaka Medical and 
Pharmaceutical University Hospital between 2014 and 2021. The study included 
patients who underwent cognitive function tests during this period; however, 
patients from whom blood test data was not obtained up to 30  days before 
the cognitive function tests and those with values due to measurement error 
in blood test results were excluded. The Mini-Mental State Examination (MMSE) 
was used as the cognitive function test, and albumin levels were examined as 
the explanatory variable. Furthermore, we estimated MMSE scores from blood 
test data using deep learning models (DLM), linear regression models, support 
vector machines (SVM), decision trees, random forests, extreme gradient 
boosting (XGBoost), and light gradient boosting machines (LightGBM).

Results: Out of 5,017 patients who underwent cognitive function tests, 3,663 
patients from whom blood test data had not been obtained recently and two 
patients with values due to measurement error were excluded. The final study 
population included 1,352 patients, with 114 patients (8.4%) aged below 65 and 
1,238 patients (91.6%) aged 65 and above. In patients aged 65 and above, the 
age and male sex showed significant associations with MMSE scores of less than 
24, while albumin and potassium levels showed negative associations with MMSE 
scores of less than 24. Comparing MMSE estimation performance, in those aged 
below 65, the mean squared error (MSE) of DLM was improved with the inclusion 
of albumin. Similarly, the MSE improved when using SVM, random forest and 
XGBoost. In those aged 65 and above, the MSE improved in all models.

Discussion: Our study results indicated a positive correlation between serum 
albumin levels and cognitive function, suggesting a positive correlation 
between nutritional status and cognitive function in the elderly. Serum albumin 
levels were shown to be an important explanatory variable in the estimation of 
cognitive function for individuals aged 65 and above.
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1 Introduction

Dementia stands as a predominant etiology of impairment 
among the elderly, afflicting approximately 50 million individuals 
globally (1). Given the precipitous aging of the world population, this 
figure is anticipated to surge exponentially, exceeding 150 million by 
the year 2050. Consequently, dementia emerges as a paramount 
challenge in 21st-century realms of medical practice, public health, 
and societal care (2). Cholinesterase inhibitors, namely donepezil, 
galantamine, and rivastigmine, along with the N-methyl-D-aspartate 
(NMDA) receptor antagonist memantine, have hitherto served as 
therapeutic agents for dementia. Additionally, monoclonal antibodies 
targeting amyloid-β, such as aducanumab (3) approved by the 
United States Food and Drug Administration (FDA) in June 2021 and 
lecanemab (4) in July 2023 based on the amyloid-β cascade hypothesis 
(5, 6), have entered the treatment landscape. However, these 
interventions are primarily palliative, aiming to retard symptom 
progression, lacking fundamental disease-modifying properties, and 
exhibiting circumscribed clinical efficacy. Currently, as there is no 
fundamental cure for dementia, it is vital to take appropriate 
measures from an early stage to halt its progression.

Mild cognitive impairment (MCI) represents a cohort for 
evaluating early therapeutic interventions in Alzheimer’s disease. This 
is because MCI occupies an intermediate stage between normal 
functioning and Alzheimer’s disease, conferring a higher risk of 
cognitive decline compared to cognitively healthy elderly individuals 
(7, 8). Given the diverse progression rates among MCI patients, and 
considering that not all progress to Alzheimer’s disease, there is a need 
for tools to discern those MCI patients who would derive the utmost 
benefit from intervention (9).

To test for cognitive function, various methods are used, including 
biomarkers (10), and cognitive function measurements such as the 
Mini-Mental State Examination (MMSE) (11) and Hasegawa Dementia 
Scale-Revised (HDS-R) (12). These tests require an interview with a 
physician and are not suitable for mass screening for cognitive 
impairment. They can create a barrier to early detection, especially 
since patients in the early stages — who have few self-recognized 
symptoms — find it tiresome to undergo these tests voluntarily.

Midlife hypertension, obesity, and hypercholesterolemia are 
recognized as risk factors for late-onset dementia, including Alzheimer’s 
disease (13). Given the current absence of efficacious treatments to halt 
the progression of dementia, modifiable factors such as dietary intake 
play an indispensable role in the prevention and understanding of its 
etiology. The results of the Finnish Geriatric Intervention Study to 
Prevent Cognitive Impairment and Disability (FINGER), a double-
blind randomized controlled trial evaluating the preventive effects of 
lifestyle intervention on cognitive decline in elderly Finns, were reported 
in 2015 (14). In the FINGER study, 1,260 individuals aged 60–77 with 
slight cognitive impairment were randomly assigned to an intervention 
group (n = 631) and a control group (n = 629) for a duration of 2 years. 
The intervention group received a multidomain intervention (diet, 

exercise, cognitive training, vascular risk monitoring), while the control 
group received conventional health advice. The results demonstrated 
that improving lifestyle factors effectively suppressed cognitive decline. 
Furthermore, recent reports have highlighted the association between 
poor nutritional status (15), frailty (16), lower albumin level (17–19), 
and cognitive decline, emphasizing these as modifiable elements of 
interest. Considering these challenges, there is ongoing development of 
methods to estimate cognitive decline using more readily 
available indicators.

Recently, with the remarkable progress in machine learning, 
particularly deep learning, there has been a surge in research applying 
these technologies to new disease diagnoses and early detection in 
the medical field. Studies are presently being conducted using deep 
learning to estimate cognitive decline using easily obtainable 
indicators such as facial (20), vocal (21), and blood test data (22). In 
light of the evidence establishing lifestyle-related diseases as risk 
factors for cognitive decline, our previous studies (22) have proposed 
using deep learning to estimate a patient’s MMSE score at the time of 
a blood test, using age, sex, and basic blood test data (24 blood items) 
as explanatory variables. This study demonstrated that by using 
machine learning, it is possible to quantitatively estimate the risk of 
cognitive impairment as MMSE scores, by inputting age, sex, and 
basic blood test data. For practical application in real clinical 
scenarios, it is preferable to have readily accessible patient 
information and construct a more streamlined model with fewer 
inputs. Given that health checkup data including basic blood test data 
already exist for the majority of elderly patients, estimating cognitive 
impairment risk from these data could potentially reduce 
unnecessary costs associated with cognitive function-
related assessments.

Delaying the onset of dementia by 1 year may potentially 
result in an 11% reduction in the prevalence of dementia by 2050, 
and a five-year delay could lead to a halving of the population 
living with dementia by the same year (23). Given the incurable 
nature of dementia, early detection of cognitive impairment is of 
paramount importance. Therefore, the identification of factors 
particularly crucial for prediction becomes imperative. The 
current study centers its focus on serum albumin levels as a 
parameter believed to reflect nutritional status, investigating the 
association between MCI and albumin. Additionally, it explores 
variations in cognitive function estimation performance when 
considering serum albumin levels compared to when they 
we excluded.

2 Methods

2.1 Data source

We used electronic health record (EHR) data spanning an eight-
year period from 2014 to 2021 from Osaka Medical and 
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Pharmaceutical University Hospital. This is a university hospital and 
also provides medical services as a general hospital. It has 903 beds 
and 31 clinical departments and is located in Takatsuki City, Osaka 
Prefecture. The medical area is the Hokusetsu region, which has a 
population of approximately 1.65 million.

2.2 Ethical consideration

This study was conducted in accordance with the Declaration of 
Helsinki and approved by the ethics committee of Osaka Medical and 
Pharmaceutical University (Approval ID: 2022–181). Since this is a 
retrospective observational study without intervention or invasion, 
the requirement for informed consent was waived.

2.3 Construction of the study subject

Patients who underwent cognitive function tests at Osaka Medical 
and Pharmaceutical University Hospital from 2014 to 2021 were 
included. We applied the following exclusion criteria: no blood test 
data within 30 days prior to cognitive function tests and values due to 
measurement error in blood test data.

2.4 Outcome variable

The outcome was the results of cognitive function tests. Cognitive 
tests included HDS-R or MMSE. HDS-R values were converted to 
MMSE values for analysis as outcome measures. The conversion 
model from HDS-R to MMSE values was generated using the light 
gradient boosting machine (LightGBM) method (24), in 139 patients 
who had HDS-R and MMSE measured on the same day. Details of the 
conversion process are described in Section 2.6.

2.5 Explanatory variables

The following blood test data was obtained from EHR data and 
used in the analysis as explanatory variables: age, sex, white blood cell 
(WBC), red blood cell (RBC), hemoglobin, hematocrit, mean 
corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), 
mean corpuscular hemoglobin concentration (MCHC), platelets, total 
protein, albumin, albumin-globulin ratio, aspartate aminotransferase 
(AST), alanine aminotransferase (ALT), γ-glutamyl transpeptidase 
(γ-GTP), total cholesterol, triglyceride, blood urea nitrogen (BUN), 
creatinine, uric acid, blood glucose, sodium, potassium, and chloride. 
With the exception of age and sex, all of these explanatory variables 
used data within 30 days prior to cognitive function measurement.

2.6 Conversion from HDS-R to MMSE

We explored the conversion from HDS-R to MMSE using both 
univariate linear regression and LightGBM to construct conversion 
models. Data from 139 patients revealed that the correspondence 
between HDS-R and MMSE was predominantly linear. Consequently, 
we constructed a univariate linear regression model predicting MMSE 

based solely on HDS-R and employed LightGBM with additional 
input variables of the individual’s blood test information described in 
Section 2.5. The data set of 139 patients was divided into a training set 
(97, 70%) and a test set (42, 30%), upon which the models were 
trained. The training data, test data, and the predicted MMSE-HDS-R 
relationship for each model with respect to the test data are shown in 
Figure  1. Results showed that the linear regression model 
(MMSE = 0.65×HDS-R + 9.32) achieved mean squared error (MSE) of 
5.245 and coefficient of determination (R2) of 0.630, while the 
LightGBM model recorded MSE of 4.555 and R2 of 0.679. Although 
the difference was slight, the superior outcomes demonstrated by 
LightGBM led to its selection for converting HDS-R to MMSE.

2.7 Statistical analysis

For comparison between the two groups, the Wilcoxon rank-sum 
test was applied to the numerical data and Fisher’s exact test to the 
categorical data. The adoption of the Wilcoxon rank-sum test for 
comparing numerical data in this study was due to preliminary analyses 
using the Kolmogorov–Smirnov test and QQ plots indicating that the 
data did not follow a normal distribution. It is believed that 
non-parametric tests offer more reliable results than parametric tests 
when the assumption of normality is not satisfied. The Wilcoxon test, 
which does not depend on the shape of the data distribution and 
compares two independent groups based on differences in medians, was 
deemed appropriate. The MMSE was divided into two categories as the 
objective variable, less than 24 or 24 or greater, and logistic regression 
analysis was used to examine the relationship between cognitive 
function and each test data. An MMSE score of less than 24 was used as 
a criterion for indicating MCI, in alignment with established benchmarks 
in the field of aging research. This threshold is supported by numerous 
studies (11, 25, 26) that validate the MMSE as a reliable tool for 
identifying individuals at an increased risk of dementia. Variables that 
were p < 0.05 by univariate logistic regression analysis were entered into 
the model as explanatory variables in the multivariate logistic regression 
analysis. This was to identify variables that were associated with MCI, as 
this approach has been previously used for similar analyses (27–29). 
Variance inflation factors (VIFs) ≥10 were considered evidence of 

FIGURE 1

Training data, evaluation data, and prediction results plots for 
conversion from HDS-R to MMSE.
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multicollinearity. All p-values were reported using two-tailed tests and 
the significance level was set at 5%. Analyses were performed using R 
version 4.2.2 (R Development Core Team, Vienna, Austria).

2.8 Prediction algorithms for cognitive 
function

To investigate how each blood test item affects the prediction of 
cognitive function based on the above statistical analysis, we constructed 
predictive models to estimate the MMSE score using multiple common 
machine learning models and deep learning models (DLM). Similar to 
the statistical analysis, predictive models were built specifically for 
groups aged below 65 and those aged 65 and above. The explanatory 
variables used were those items that had been identified as having 
significant differences in the univariate logistic regression analysis 
described above. The algorithms used were linear regression model 
(LRM), support vector machine (SVM) (30), decision tree (31), random 
forest (32), extreme gradient boosting (XGBoost) (33), LightGBM (24), 
and DLM. The implementation of basic machine learning models such 
as LRM, SVM, decision tree and random forest was done using the 
scikit-learn library (34) in Python 3.9.13. For the advanced algorithms 
combining decision trees and ensemble learning, XGBoost, LightGBM, 
XGBoost (35) and LightGBM (36) libraries were utilized, respectively.

The construction of the DLM is based on a feedforward neural 
network (37) that consists of multiple fully connected layers, as shown in 
Figure 2. The fundamental architecture incorporates Dense layers (38) 
utilizing the ReLU (39) activation function, in addition to Batch 
normalization (40) and Dropout (41) mechanisms, combined into a unit 
and connected in four layers, with the final output layer splitting into two. 
Batch normalization stabilizes the variation in the distribution of input 

data during training, and Dropout is added to suppress overfitting and 
enhance the model’s robustness. Furthermore, one output layer is trained 
to estimate the MMSE score, while the other uses the Softmax activation 
function to estimate the probability that the input data is either normal 
or MCI. The MMSE score is an indicator for assessing cognitive function, 
where distinguishing between normal and MCI is particularly crucial. 
Thus, in anticipation of improving performance, an output layer for class 
classification has been added to take into account whether the condition 
is normal or MCI when estimating the MMSE score. During training, 
the weight ratio of the MMSE output value to the class classification 
output for the loss function is set as 1:0.001, prioritizing MMSE output, 
and only the MMSE output is used as the output of the DLM. Neural 
network construction was carried out using TensorFlow (42).

2.9 Data learning and evaluation

To predict MMSE using each model, the previously mentioned 
dataset was employed. To evaluate the performance of each model, 
three-fold cross-validation was conducted on the dataset. While five-
fold or ten-fold cross-validation is commonly adopted, three-fold was 
chosen in this study to reduce computational costs due to the subsequent 
parameter optimization and the large number of models involved. The 
dataset was split into three groups, with each group serving as the 
evaluation data and the remaining two as training data. This process was 
conducted in three patterns, and the average of these evaluations was 
taken as the final assessment. Since the performance of each model 
obtained through training varied depending on the model’s 
hyperparameters, parameter optimization was conducted to evaluate 
the model’s performance using the best results obtained. For parameter 
optimization, a library called Optuna (43) was used. MSE was set as the 
evaluation function, and a hyperparameter search was conducted to 
minimize the MSE while varying the hyperparameters of each 
algorithm. This search was performed 100 times for each model, and the 
model that finally yielded the lowest MSE was evaluated. In addition to 
the MSE, we also used mean absolute error (MAE), root mean squared 
error (RMSE) and R2 for the evaluation of each model. In addition, 
we evaluate the performance of distinguishing whether a patient is 
normal or has MCI by calculating the Receiver Operating Characteristic 
and the Area Under the Curve (AUC) using the estimated MMSE scores 
from each model. The correct labels are treated as MCI if the actual 
MMSE score is below 24, and normal if it is 24 or above. The evaluation 
assesses the ability to differentiate based on the predicted MMSE scores.

3 Results

3.1 Study subjects

The flow for selecting participants for the study is shown in 
Figure 3. From the 5,017 patients who underwent cognitive function 
testing at Osaka Medical and Pharmaceutical University Hospital 
from 2014 to 2021, we excluded 3,663 patients who had not had blood 
tests performed within 30 days prior to the date of cognitive function 
testing and two patients whose blood test data showed erroneous 
values, resulting in 1,352 patients for the study. Erroneous values were 
observed in two individuals, with RBC at 0.01 × 106/μL and albumin 
at 0.8 g/dL.

FIGURE 2

Deep learning model structure. It has two output layers, 
simultaneously performing MMSE score estimation and binary 
classification of the MMSE score as either less than 24 or 24 or 
greater. The numbers indicate the nodes of each neural network 
layer.
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3.2 Demographic and clinical 
characteristics of the patients

Table 1 shows the background of the study patients. Of the 1,352 
total, 114 (8.4%) were aged below 65 years and 1,238 (91.6%) were 
aged 65 and above. MMSE was significantly lower in those aged 65 
and above, and the proportion of MMSE<24 with suspected MCI was 
18.4% in those aged below 65 and 51.1% in those aged 65 years and 
above. Values of RBC, hemoglobin, hematocrit, platelets, albumin, 
albumin-globulin ratio, ALT, γ-GTP and triglyceride were significantly 
lower, and values of MCV, MCH, BUN, creatinine, uric acid, glucose, 
and potassium were significantly higher in those aged 65 and above. 
It is widely acknowledged that individuals aged 65 and over are 
classified as elderly according to the definition by the World Health 
Organization (WHO). Indeed, many previous studies focusing on 
dementia have employed 65 years as the cutoff value (15, 17–19). 
Supplementary Table S1 summarizes the background of 3,665 patients 
who were excluded. The distribution of MMSE scores, age, and gender 
was similar to that of the 1,352 subjects included in the study. 
Supplementary Table S2 presents the patient background categorized 
by MMSE scores. Comparing patients with MMSE scores below 24 
and those with scores of 24 or higher, the mean ages were 79 and 
75 years, respectively. The percentage of males was 51.5 and 42.8%. 
Hemoglobin levels were 12.4 g/dL and 12.8 g/dL, albumin levels were 
3.7 g/dL and 4.0 g/dL, and creatinine levels were 0.84 mg/dL and 
0.79 mg/dL, respectively.

3.3 Relationship between cognitive 
function and blood test data

For each blood test data, the association with MMSE<24 was 
examined using logistic regression analysis. Multivariate logistic 
regression analysis was performed using a model that included 
platelets, total protein, albumin, triglyceride, uric acid, and sodium, 
which was p < 0.05 by univariate logistic regression analysis in patients 
aged below 65. The results showed an association between platelets 
and MMSE<24 (Table 2). Conversely, in patients aged 65 and above, 
multivariate logistic regression analysis with WBC, RBC, total protein, 
albumin, BUN, creatinine, and potassium as explanatory variables, 
which were p < 0.05 by univariate logistic regression analysis, showed 
an association between MMSE<24 and age or male, and a negative 
association between MMSE<24 and albumin or potassium. 

Hemoglobin, hematocrit, and albumin-globulin ratio were not 
included as explanatory variables due to multicollinearity (Table 3).

3.4 Evaluation of cognitive function 
prediction model performance

Based on the aforementioned statistical analysis, which indicated 
that the variables with a significant impact differ between the patients 
aged below 65 and the patients aged 65 and above, the dataset was 
divided into two age groups: aged below 65 and aged 65 and above. 
Models for estimating MMSE scores were then constructed and 
evaluated for each age group using three-fold cross-validation. The 
variables listed in Table  4, which showed significant differences 
through statistical analysis for each age group, were adopted as 
explanatory variables. Furthermore, to compare the estimation 
performance when including albumin or not, models were also 
constructed excluding albumin as an explanatory variable. The results 
of the three-fold cross-validation for these models are presented in 
Table  5. Figures  4, 5 show the ROC plots evaluating each model 
constructed for groups aged below 65 and aged 65 and above, 
respectively, as a binary classification problem of normal or MCI. The 
best results for both aged below 65 and aged 65 and above datasets 
were obtained using the DLM and including albumin. For the aged 
below 65 dataset, comparing performance when including albumin or 
not, the DLM showed an improvement from an MSE of 6.325 to 5.357, 
a reduction of −0.968 with the inclusion of albumin. In contrast, no 
improvement was observed with the LRM, decision tree, random 
forest, XGBoost, or LightGBM. In the aged 65 and above group, the 
MSE of the DLM was 6.370 when including albumin and 6.431 when 
not, showing a − 0.061 improvement with the inclusion of albumin. 
When using other typical machine learning models, the MSE 
improved in all models, including LRM, SVM, decision trees, random 
forest, XGBoost, and LightGBM. When comparing the R2, which 
indicates how well the model fits the data, between models with and 
without albumin, for the group aged below 65, the use of albumin in 
SVM models improved from −0.121 to −0.098, a 0.023 improvement, 
and in DLM models from 0.035 to 0.182, a 0.147 improvement. For 
other models, performance worsened. In the group aged 65 and above, 
all models showed improvement when albumin was used, with an 
average improvement of 0.013 ± 0.004. Although the improvement 
margin is small, it confirms that albumin contributes to the estimation 
of MMSE scores in the group aged 65 and over. When comparing the 

FIGURE 3

Screening of the study population. Some patients entered multiple times, so the numbers represent the total number of patients.
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results of the AUC for the group aged below 65, only the model using 
albumin in the random forest showed improvement, from 0.636 to 
0.652, an improvement of 0.015, while other models worsened when 
albumin was used. For the group aged 65 and above, all models 
improved when albumin was used, with an average improvement of 
0.013 ± 0.006. This, similar to the R2 results, confirms that albumin 
contributes to the determination of normal versus MCI status using 
MMSE score estimations. Figures  6, 7 display SHapley Additive 
exPlanations (SHAP) (44) values of the DLM, which exhibited the 
most superior performance in aged below 65 and aged 65 and above 
groups. SHAP values quantify the extent to which each input feature 
contributes to the predicted output. Widespread SHAP values indicate 

a substantial impact on the prediction of cognitive function. In the 
group aged 65 or above, albumin emerged as a crucial variable in the 
cognitive function prediction model, following age.

4 Discussion

We obtained EHR data from blood tests that are easily accessible 
and conducted in the most extensive cohort among various 
examinations, investigating the association between MCI and 
albumin. From the results of the statistical analysis, our study 
indicated a correlation between low serum albumin levels and 

TABLE 1 Background of the patients.

Backgrounds Overall <65  years old ≥65  years old p-value

Patients, n (%) 1,352 (100) 114 (8.4) 1,238 (91.6)

MMSE, median (IQR) 24 (22–27) 28 (26–29) 23 (22–27) <0.001*

MMSE, n (%) <0.001*

<24 653 (48.3) 21 (18.4) 632 (51.1)

≥24 699 (51.7) 93 (81.6) 606 (48.9)

Age, year, median (IQR) 77 (72–82) 56 (49–62) 78 (74–82) <0.001*

Sex, n (%) 0.695

Female 717 (53.0) 58 (50.9) 659 (53.2)

Male 635 (47.0) 56 (49.1) 579 (46.8)

WBC, 103/μL, median (IQR) 5.78 (4.77–7.11) 5.97 (4.62–7.32) 5.77 (4.78–7.09) 0.731

RBC, 106/μL, median (IQR) 4.06 (3.68–4.42) 4.36 (3.86–4.59) 4.04 (3.67–4.39) <0.001*

Hemoglobin, g/dL, median (IQR) 12.7 (11.5–13.7) 13.4 (11.9–14.1) 12.6 (11.4–13.6) 0.002*

Hematocrit, %, median (IQR) 38.2 (34.9–41.2) 40.3 (36.3–42.9) 38.2 (34.7–41.1) 0.002*

MCV, fL, median (IQR) 94.2 (90.8–98.1) 92.4 (88.4–96.7) 94.3 (91.0–98.1) 0.001*

MCH, pg., median (IQR) 31.2 (30.1–32.4) 30.8 (29.6–31.8) 31.2 (30.1–32.5) 0.009*

MCHC, %, median (IQR) 33.0 (32.2–33.7) 33.0 (32.2–33.9) 33.0 (32.3–33.7) 0.986

Platelets, 103/μL, median (IQR) 210 (170–256) 237 (200–297) 208 (168–254) <0.001*

Total protein, g/dL, median (IQR) 6.8 (6.4–7.2) 6.8 (6.4–7.2) 6.8 (6.4–7.2) 0.909

Albumin, g/dL, median (IQR) 3.9 (3.5–4.2) 4.0 (3.5–4.3) 3.9 (3.5–4.1) 0.012*

Albumin-globulin ratio, median (IQR) 1.3 (1.1–1.5) 1.4 (1.1–1.6) 1.3 (1.1–1.5) 0.001*

AST, U/L, median (IQR) 21 (17–26) 21 (16–31) 21 (17–26) 0.950

ALT, U/L, median (IQR) 16 (11–23) 20 (14–30) 15 (11–22) <0.001*

γ-GTP, U/L, median (IQR) 23 (16–39) 29 (18–61) 23 (16–38) 0.001*

Total cholesterol, mg/dL, median (IQR) 188 (162–216) 198 (163–225) 188 (162–216) 0.189

Triglyceride, mg/dL, median (IQR) 105 (76–146) 114 (86–173) 104 (75–143) 0.002*

BUN, mg/dL, median (IQR) 17 (13–21) 14 (10–18) 17 (14–22) <0.001*

Creatinine, mg/dL, median (IQR) 0.81 (0.66–1.01) 0.72 (0.60–0.82) 0.83 (0.67–1.04) <0.001*

Uric acid, mg/dL, median (IQR) 4.9 (4.0–6.0) 4.6 (3.8–5.3) 4.9 (4.0–6.0) 0.004*

Glucose, mg/dL, median (IQR) 109 (94–147) 105 (88–128) 111 (95–148) <0.001*

Sodium, mEq/L, median (IQR) 141 (139–143) 141 (139–143) 141 (139–143) 0.552

Potassium, mEq/L, median (IQR) 4.2 (3.9–4.5) 4.1 (3.8–4.3) 4.2 (3.9–4.5) 0.023*

Chloride, mEq/L, median (IQR) 104 (102–106) 104 (102–106) 104 (102–106) 0.910

ALT: alanine aminotransferase, AST: aspartate aminotransferase, BUN: blood urea nitrogen, γ-GTP: γ-glutamyl transpeptidase, IQR: interquartile range, MCH: mean corpuscular hemoglobin, 
MCHC: mean corpuscular hemoglobin concentration, MCV: mean corpuscular volume, MMSE: Mini Mental State Examination, RBC: red blood cell, WBC: white blood cell.
*p < 0.05.
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decreased cognitive function in the group aged 65 and older. 
We investigated alterations in performance of machine learning-based 
assessment of cognitive impairment when including and excluding 
serum albumin levels, a parameter indicative of nutritional status. The 
inclusion of albumin as an input was observed to improve performance 
in patients aged 65 and above, while in those aged below 65, 
improvement was observed only in some models. According to SHAP 
values, which calculate the importance of each variable on the 
prediction outcomes, albumin was the second most impactful variable 
in the group aged 65 and above. In the aged below 65 group, albumin 
ranked fifth, indicating that it was not as significant in this group. 
These findings align with the results of statistical analysis. It becomes 
evident that albumin is a crucial indicator in evaluating cognitive 
function in individuals aged 65 and above.

In this study, an association between low albumin and MCI was 
observed in the group aged 65 and above. While the fundamental 
mechanism underlying the correlation between serum albumin and 
cognitive function remains unidentified, insights from a limited 
clinical sample suggest a potential association between decreased 

serum albumin concentration and cognitive impairment. Numerous 
reports indicate that low albumin levels are correlated with diminished 
cognitive function. A retrospective cohort study involving a total of 
2,396 Korean military veterans and their families aged 65 and above 
suggested that a sustained decline in serum albumin levels is 
associated with a decrease in MMSE scores (18). Cross-sectional 
studies utilizing clinical samples, including 1,827 community-dwelling 
elderly Japanese individuals (45), 1,511 hospitalized heart failure 
patients (46), 331 rehabilitation patients with hip fractures (47), and 
elderly patients with Alzheimer’s disease (48), demonstrated a 
correlation between decreased serum albumin levels and cognitive 
impairment. A nationally representative population-based study, 
involving 1,752 adults aged 65 and above who participated in the 
Health Survey for England 2000, revealed that low serum albumin 
levels were independently associated with an increased probability of 
cognitive impairment (19). In a study of 2,550 elderly individuals 
residing in Chinese communities, low serum albumin levels were 
independently associated with a decline in cognitive abilities (49). 
Subsequent research confirmed these cross-sectional findings, 

TABLE 2 Relationship between blood test data and MMSE<24 in patients under 65  years of age.

Unadjusted Adjusted

Variables OR (95%CI) p-value OR (95%CI) p-value VIF

Age, years, (per 1 unit) 1.01 (0.96–1.06) 0.832 0.99 (0.94–1.05) 0.830 1.08

Sex, (male) 1.17 (0.46–3.03) 0.741 1.89 (0.60–6.37) 0.283 1.20

WBC, 103/μL, (per 1 unit) 1.20 (0.99–1.46) 0.069

RBC, 106/μL, (per 1 unit) 0.53 (0.25–1.11) 0.089

Hemoglobin, g/dL, (per 1 unit) 0.85 (0.67–1.07) 0.159

Hematocrit, %, (per 1 unit) 0.94 (0.87–1.03) 0.186

MCV, fL, (per 1 unit) 1.06 (0.99–1.12) 0.089

MCH, pg., (per 1 unit) 1.10 (0.91–1.34) 0.311

MCHC, %, (per 1 unit) 0.80 (0.55–1.16) 0.239

Platelets, 103/μL, (per 1 unit) 1.01 (1.00–1.01) 0.003* 1.01 (1.00–1.01) 0.041* 1.45

Total protein, g/dL, (per 1 unit) 0.48 (0.24–0.95) 0.030* 0.49 (0.16–1.39) 0.197 1.70

Albumin, g/dL, (per 1 unit) 0.41 (0.20–0.84) 0.015* 1.38 (0.38–5.30) 0.630 2.30

Albumin-globulin ratio, (per 1 unit) 0.38 (0.10–1.52) 0.171

AST, U/L, (per 1 unit) 1.00 (0.99–1.01) 0.728

ALT, U/L, (per 1 unit) 1.00 (0.99–1.02) 0.717

γ-GTP, U/L, (per 1 unit) 1.01 (1.00–1.02) 0.062

Total cholesterol, mg/dL, (per 1 unit) 0.99 (0.98–1.00) 0.096

Triglyceride, mg/dL, (per 1 unit) 0.99 (0.98–1.00) 0.022* 0.99 (0.98–1.00) 0.216 1.22

BUN, mg/dL, (per 1 unit) 1.00 (0.94–1.07) 0.898

Creatinine, mg/dL, (per 1 unit) 0.38 (0.05–2.79) 0.294

Uric acid, mg/dL, (per 1 unit) 0.59 (0.40–0.85) 0.003* 0.72 (0.45–1.11) 0.153 1.35

Glucose, mg/dL, (per 1 unit) 1.00 (0.99–1.01) 0.430

Sodium, mEq/L, (per 1 unit) 0.87 (0.76–0.99) 0.035* 0.94 (0.79–1.12) 0.510 1.31

Potassium, mEq/L, (per 1 unit) 1.07 (0.33–3.49) 0.911

Chloride, mEq/L, (per 1 unit) 1.01 (0.88–1.16) 0.888

ALT: alanine aminotransferase, AST: aspartate aminotransferase, BUN: blood urea nitrogen, CI: confidence interval, γ-GTP: γ-glutamyl transpeptidase, MCH: mean corpuscular hemoglobin, 
MCHC: mean corpuscular hemoglobin concentration, MCV: mean corpuscular volume, MMSE: Mini Mental State Examination, OR: odds ratio, RBC: red blood cell, VIF: variance inflation 
factor, WBC: white blood cell.
*p < 0.05.
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indicating a more significant cognitive decline over a 2-year follow-up 
period in older individuals with low serum albumin levels (50). In a 
study of 1,744 community-dwelling adults aged 65 and above 
participating in annual health check-ups in Japan, participants with 
the lowest baseline albumin levels (below the first quartile line) 
exhibited a significantly accelerated decline in MMSE scores over a 
13-year period compared to those with the highest levels (above the 
third quartile line) (17). In a study involving 101 Alzheimer’s disease 
(AD) patients and 101 healthy controls, the AD group exhibited 
significant decreases in albumin, bilirubin, and uric acid levels (51). 
Our study’s result, indicating an association between low albumin and 
MCI in patients aged 65 and above, substantiates these previous 
research findings.

There are several reports on the relationship between 
nutritional status and cognitive impairment. Nutrition serves as 
a pivotal indicator for brain health and cognitive function (52). 

Multiple brain processes supporting cognitive function are 
contingent upon nutritional status, wherein nutrition plays a role 
in regulating neurotransmitter pathways, synaptic transmission, 
membrane fluidity, and signal transduction pathways (52). 
Inadequate protein intake, particularly in the elderly, may elevate 
the risk of sarcopenia and frailty, strongly correlating with the 
onset of cognitive impairment (53). Peptides rich in proline 
demonstrate a preventive effect on the progression of dementia 
(54); hence, consideration of protein supplementation is 
imperative for the elderly to delay cognitive decline. Furthermore, 
evidence suggests the involvement of inflammatory mechanisms 
in the pathogenesis of cognitive impairment and dementia (55, 
56). Several epidemiological studies consistently demonstrate a 
significant association between systemic inflammatory markers, 
namely C-reactive protein (CRP) and tumor necrosis factor-α 
(TNF-α), and cognitive impairment or dementia. For instance, 

TABLE 3 Relationship between blood test data and MMSE<24 in patients 65  years and older.

Unadjusted Adjusted

Variables OR (95%CI) p-value OR (95%CI) p-value VIF

Age, years, (per 1 unit) 1.07 (1.05–1.09) <0.001* 1.06 (1.04–1.09) <0.001* 1.06

Sex, (male) 1.47 (1.17–1.84) <0.001* 1.44 (1.13–1.84) 0.003* 1.07

WBC, 103/μL, (per 1 unit) 1.06 (1.01–1.12) 0.011* 1.05 (1.00–1.12) 0.070 1.12

RBC, 106/μL, (per 1 unit) 0.62 (0.50–0.75) <0.001* 0.84 (0.65–1.08) 0.175 1.50

Hemoglobin, g/dL, (per 1 unit) 0.85 (0.80–0.91) <0.001*

Hematocrit, %, (per 1 unit) 0.95 (0.93–0.97) <0.001*

MCV, fL, (per 1 unit) 1.02 (1.00–1.04) 0.075

MCH, pg., (per 1 unit) 1.01 (0.96–1.06) 0.758

MCHC, %, (per 1 unit) 0.88 (0.80–0.97) 0.010*

Platelets, 103/μL, (per 1 unit) 1.00 (1.00–1.00) 0.696

Total protein, g/dL, (per 1 unit) 0.68 (0.57–0.81) <0.001* 1.04 (0.82–1.33) 0.739 1.77

Albumin, g/dL, (per 1 unit) 0.42 (0.34–0.52) <0.001* 0.53 (0.38–0.73) <0.001* 2.05

Albumin-globulin ratio, (per 1 unit) 0.24 (0.16–0.36) <0.001*

AST, U/L, (per 1 unit) 1.00 (1.00–1.01) 0.458

ALT, U/L, (per 1 unit) 1.00 (0.99–1.01) 0.869

γ-GTP, U/L, (per 1 unit) 1.00 (1.00–1.00) 0.116

Total cholesterol, mg/dL, (per 1 unit) 1.00 (1.00–1.00) 0.096

Triglyceride, mg/dL, (per 1 unit) 1.00 (1.00–1.00) 0.607

BUN, mg/dL, (per 1 unit) 1.02 (1.00–1.03) 0.005* 0.99 (0.98–1.01) 0.511 2.01

Creatinine, mg/dL, (per 1 unit) 1.27 (1.11–1.46) <0.001* 1.16 (0.98–1.40) 0.099 1.86

Uric acid, mg/dL, (per 1 unit) 1.02 (0.95–1.09) 0.597

Glucose, mg/dL, (per 1 unit) 1.00 (1.00–1.00) 0.912

Sodium, mEq/L, (per 1 unit) 0.98 (0.95–1.01) 0.227

Potassium, mEq/L, (per 1 unit) 0.77 (0.62–0.97) 0.023* 0.77 (0.59–0.99) 0.040* 1.16

Chloride, mEq/L, (per 1 unit) 1.00 (0.97–1.03) 0.973

ALT: alanine aminotransferase, AST: aspartate aminotransferase, BUN: blood urea nitrogen, CI: confidence interval, γ-GTP: γ-glutamyl transpeptidase, MCH: mean corpuscular hemoglobin, 
MCHC: mean corpuscular hemoglobin concentration, MCV: mean corpuscular volume, MMSE: Mini Mental State Examination, OR: odds ratio, RBC: red blood cell, VIF: variance inflation 
factor, WBC: white blood cell.
*p < 0.05.
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the increase in TNF-α associated with acute and chronic systemic 
inflammation is linked to the enhanced cognitive decline in 
Alzheimer’s disease (57). CRP may serve as a marker for memory 
impairment and visuospatial dysfunction in the elderly (58, 59). 
These findings support the notion that brain atrophy and 
cognitive decline in Alzheimer’s disease may be induced by acute 
and chronic systemic inflammation. Albumin, the most abundant 
circulating protein in plasma, constitutes a major oxygen radical 
scavenger and antioxidant defense against oxidants generated by 
both endogenous and exogenous substances (60, 61). This 
molecule exerts its effects through multiple binding sites and free 
radical scavenging properties (61). Previous studies utilizing free 
radical-induced hemolysis assays have demonstrated that over 
70% of serum free radical scavenging activity is attributed to 
human serum albumin (62). Considering the potential of 
antioxidants to mitigate inflammatory reactions, the beneficial 
effects of albumin on cognitive function are biologically plausible. 
Additionally, given the reported inhibitory effect of albumin on 
the formation of amyloid-β peptide fibrils (63, 64), low albumin 
concentration may increase the risk of Alzheimer’s-type 
dementia. Therefore, from a perspective of Alzheimer’s disease 
prevention, clinicians should exercise greater vigilance to avoid 
a decrease in serum albumin levels, even within clinically normal 
ranges (65).

This study examined the backgrounds of patients with MMSE 
scores below 24, identifying characteristics such as advanced age, male 
sex, low hemoglobin levels, low albumin levels, and elevated serum 
creatinine levels. Evidence indicates that dementia is often 
inadequately diagnosed at the primary care stage. Among 146 patients 
not formally diagnosed with dementia, 72 individuals (49%) received 
a formal diagnosis after screening, with 69% categorized as 
“nonspecific cognitive impairment” (66). MCI is officially determined 
through comprehensive cognitive assessments by healthcare 
specialists, incorporating clinical examinations, medical histories, and 
often input from informants familiar with the patient. However, as this 
is not routinely conducted in primary care, there is a significant 
potential for delayed diagnosis. Cognitive impairment and MCI hold 
significant implications for patients and their families, necessitating 
primary care clinicians to adeptly identify and manage this prevalent 
disorder, especially as the elderly population continues to rise over the 

coming decades (67). MMSE possesses substantial evidence 
supporting its use and adequate testing accuracy, yet its utility is 
constrained by longer administration time (10–15 min). Therefore, 
there is a demand for tools that automatically estimate cognitive 
impairment risks using common information such as health checkup 
data including basic blood test data.

In this study, the correlation coefficient between the MMSE 
scores estimated by DLM based on blood test data obtained from 
EHR and the actual MMSE scores was at most 0.380, indicating 
a poorer predictive performance compared to our previous 
research results (r = 0.66) (22). Further refinement is essential for 
practical application due to the model’s limited accuracy (see the 
comment in the limitations below). Models based solely on EHR 
data may exhibit bias, as they lack crucial information about 
other social determinants of daily function and health (e.g., 
physical function, social connections), potentially restricting 
predictive performance (68). A review of 116 studies revealed 
that most utilized magnetic resonance imaging and positron 
emission tomography data (69). Generally, more complex models 
combining multi-modal and multi-dimensional data 
(neuroimaging, clinical, cognitive, genetic, behavioral), such as 
those based on deep learning, achieved the highest performance 
(69). Successful artificial intelligence systems require machine 
learning components to process structured data (images, 
electrophysiological data, genetic data) and natural language 
processing components to mine unstructured text (70). As 
reported, incorporating multi-modal data as input may further 
enhance predictive performance (71). However, acquiring such 
multi-modal data entails significant trade-offs. Magnetic 
resonance imaging and positron emission tomography involve 
high costs and limited measurement environments, potentially 
limiting widespread application among regionally residing elderly 
individuals. Needle insertion and the use of radioactive 
substances are further drawbacks of positron emission 
tomography (72). Moreover, in regions with limited medical 
resource availability, cognitive impairment screening and 
diagnosis may be delayed or underestimated. Therefore, it may 
not be  suitable for MCI screening in communities or 
underdeveloped regions. In contrast, the approach of this study 
required solely the utilization of basic blood test data collected 
during health examination and routine clinical care. Utilizing 
existing blood test data in EHR for secondary purposes allows for 
the use of low-cost, easily accessible variables as input, enabling 
the DLM to estimate cognitive function in a short time. Once 
blood test results are confirmed in EHR, cognitive function 
prediction can be  instantly calculated, allowing for real-time 
alerts. Thus, our MCI prediction approach using blood test data 
has the potential to be  valuable for primary screening of 
numerous subjects at the community level in a short timeframe. 
However, given the existing limitations in predictive performance, 
further research is needed to enhance its efficacy.

This study has several limitations. Firstly, due to the cross-
sectional study design, causal relationships cannot be inferred. 
While low albumin levels may potentially lead to cognitive 
impairment, a reverse causation is also plausible, where cognitive 
impairment could result in malnutrition and subsequent albumin 

TABLE 4 Explanatory variables for the two age groups.

<65  years old ≥65  years old

Age, years Age, years

Sex, (male) Sex, (male)

Platelets, 103/μL WBC, 103/μL

Total protein, g/dL RBC, 106/μL

Albumin, g/dL Total protein, g/dL

Triglyceride, mg/dL Albumin, g/dL

Uric acid, mg/dL BUN, mg/dL

Sodium, mEq/L Creatinine, mg/dL

Potassium, mEq/L

BUN: blood urea nitrogen, RBC: red blood cell, WBC: white blood cell.
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reduction (73). Establishing causation requires longitudinal 
studies. However, the primary objective of this study is not to 
demonstrate causation but to develop a high-throughput tool for 
primary screening of cognitive impairment in a community 
setting. Secondly, there are challenges in generalizing the results 
of this study. The prevalence of MCI is 10–20% among the elderly 
(7, 8). In contrast, in this study, 51.1% of individuals aged 65 or 
older were considered to have MCI with MMSE<24, which is a 
high proportion. This is influenced by the fact that the subjects 
of this study are patients who underwent MMSE at the hospital, 
i.e., those who experienced episodes where the physician deemed 
cognitive function examination necessary. Therefore, the study 
subjects may not represent a population reflective of the Japanese 
demographic, and the generalizability to a community-based 

elderly population remains uncertain. Thirdly, the low correlation 
coefficient between MMSE scores estimated from blood data and 
the actual MMSE scores. The MMSE scores estimated by DLM 
are based on blood test data reflecting systemic metabolic 
disorders and are not indicative of actual cognitive function 
(MMSE). This suggests that the cases in our study showed 
minimal impact of systemic metabolic disorders on cognitive 
function. For cases with no systemic metabolic issues but only 
brain-related problems (such as post-subarachnoid hemorrhage), 
the actual MMSE scores were lower than the estimated MMSE 
scores (22). Also, when DLM trained with cases of elderly 
patients with severe arteriosclerosis was applied to relatively 
younger patients without advanced arteriosclerosis, the estimated 
MMSE scores were lower than the actual MMSE scores (22). 

TABLE 5 Performance of MMSE regression model.

Used
Model

Used
Albumin

<65  years old ≥65  years old

corr MAE MSE RMSE R2 AUC corr MAE MSE RMSE R2 AUC

LRM No 0.178 2.164 7.031 2.651 −0.085 0.600 0.333 2.263 6.663 2.581 0.101 0.656

(0.102) (0.166) (0.359) (0.067) (0.134) (0.073) (0.032) (0.026) (0.172) (0.033) (0.017) (0.019)

SVM No 0.225 2.042 7.272 2.693 −0.121 0.547 0.329 2.226 7.074 2.659 0.046 0.654

(0.129) (0.117) (0.787) (0.149) (0.164) (0.130) (0.029) (0.031) (0.310) (0.058) (0.024) (0.024)

Decision

tree

No 0.265 1.962 6.362 2.517 0.026 0.643 0.300 2.287 6.875 2.622 0.072 0.633

(0.143) (0.122) (0.864) (0.168) (0.115) (0.107) (12.000) (0.010) (0.222) (0.043) (0.014) (0.015)

Random

forest

No 0.240 1.998 6.207 2.485 0.041 0.636 0.343 2.268 6.619 2.572 0.107 0.655

(0.248) (0.165) (0.834) (0.172) (0.171) (0.102) (0.008) (0.026) (0.169) (0.033) (0.008) (0.021)

XGBoost No 0.338 1.985 5.895 2.428 0.093 0.739 0.355 2.259 6.521 2.553 0.120 0.660

(0.141) (0.044) (0.179) (0.037) (0.080) (0.085) (0.022) (0.028) (0.223) (0.044) (0.014) (0.015)

LightGBM No 0.332 1.986 5.862 2.419 0.099 0.756 0.351 2.260 6.560 2.561 0.115 0.663

(0.150) (0.070) (0.533) (0.110) (0.098) (0.050) (0.017) (0.028) (0.206) (0.040) (0.011) (0.016)

DLM No 0.376 2.123 6.325 2.509 0.035 0.796 0.367 2.215 6.431 2.536 0.132 0.663

(0.098) (0.157) (0.903) (0.178) (0.091) (0.085) (0.011) (0.035) (0.119) (0.023) (0.009) (0.002)

LRM Yes 0.126 2.196 7.655 2.764 −0.177 0.551 0.350 2.245 6.581 2.565 0.112 0.669

(0.071) (0.130) (0.679) (0.123) (0.124) (0.089) (0.035) (0.032) (0.171) (0.033) (0.021) (0.018)

SVM Yes 0.199 1.987 7.146 2.669 −0.098 0.521 0.343 2.216 7.003 2.646 0.055 0.664

(0.102) (0.105) (0.827) (0.155) (0.138) (0.106) (0.024) (0.026) (0.210) (0.040) (0.012) (0.022)

Decision

tree

Yes 0.169 2.002 6.848 2.610 −0.054 0.505 0.323 2.274 6.718 2.592 0.093 0.659

(0.197) (0.140) (0.943) (0.183) (0.164) (0.135) (0.015) (0.030) (0.116) (0.022) (0.005) (0.023)

Random

forest

Yes 0.237 1.983 6.287 2.503 0.031 0.652 0.359 2.251 6.536 2.557 0.118 0.662

(0.221) (0.159) (0.738) (0.150) (0.149) (0.075) (0.004) (0.021) (0.115) (0.023) (0.003) (0.013)

XGBoost Yes 0.334 1.995 5.895 2.428 0.093 0.722 0.378 2.232 6.419 2.533 0.134 0.670

(0.113) (0.058) (0.212) (0.044) (0.080) (0.006) (0.014) (0.048) (0.206) (0.041) (0.012) (0.014)

LightGBM Yes 0.316 2.012 6.149 2.477 0.055 0.707 0.377 2.240 6.435 2.536 0.131 0.679

(0.133) (0.080) (0.552) (0.111) (0.099) (0.039) (0.018) (0.026) (0.160) (0.032) (0.009) (0.011)

DLM Yes 0.471 1.787 5.357 2.303 0.182 0.767 0.380 2.208 6.370 2.524 0.140 0.674

(0.114) (0.111) (1.089) (0.228) (0.140) (0.083) (0.024) (0.034) (0.102) (0.020) (0.014) (0.008)

AUC: Area under the receiver operating characteristic curve, Corr.: Pearson product–moment correlation coefficient, DLM: deep learning model, LRM: linear regression model, MAE: mean 
absolute error, MSE: mean squared error, RMSE: root mean squared error, R2: Coefficient of determination, SVM: support vector machine.
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FIGURE 4

Receiver operating characteristic curve for each MMSE regression model in under 65  years old.
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FIGURE 5

Receiver operating characteristic curve for each MMSE regression model in those aged 65 and above.
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These results suggest the need to combine other machine learning 
methods that directly reflect brain function (such as facial (20), 
vocal (21)) with the current approach. Additionally, they indicate 
the necessity of using multiple DLMs trained with teacher groups 
of patients with various pathologies for evaluation.

5 Conclusion

An analysis of blood test data from 1,352 patients, coupled 
with MMSE, was conducted to examine the relationship between 

albumin and cognitive function. Additionally, a machine learning 
model was constructed for estimating cognitive 
function. Statistical analysis revealed a significant association 
between low albumin levels and impaired cognitive function in 
individuals aged 65 and above. Employing both conventional 
machine learning algorithms and DLM, we  constructed a 
predictive model for MMSE scores, with the DLM demonstrating 
the optimal result. Especially for those aged 65 or above, the 
suggestion was that, in addition to age, albumin 
serves as a significant predictive factor for estimating 
cognitive function.

FIGURE 6

Impact of SHAP value for deep learning model in under 65  years old.

FIGURE 7

Impact of SHAP value for deep learning model in those aged 65 and above.
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