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Introduction: In patients with idiopathic normal pressure hydrocephalus (iNPH), 
the characteristics of balance disturbance are not as well understood as those 
related to gait. This study examined changes in postural stability in quiet standing 
after the cerebrospinal fluid tap test (CSFTT) in these patients. Furthermore, the 
study explored the relationship between the amount of spontaneous body sway 
and both gait and executive function.

Materials and methods: All patients diagnosed with iNPH underwent CSFTT. 
We  evaluated their center of pressure (COP) measurements on a force 
plate during quiet standing, both pre- and post-CSFTT. Following the COP 
measurements, we  calculated COP parameters using time and frequency 
domain analysis and assessed changes in these parameters after CSFTT. At pre-
CSFTT, we assessed the Timed Up and Go (TUG) and the Frontal Assessment 
Battery (FAB). We  investigated the relationship between COP parameters and 
the TUG and FAB scores at pre-CSFTT.

Results: A total of 72 patients with iNPH were initially enrolled, and 56 patients 
who responded positively to CSFTT were finally included. Post-CSFTT, significant 
improvements were observed in COP parameters through time domain 
analysis. These included the velocity of COP (vCOP), root-mean-square of COP 
(rmsCOP), turn index, torque, and base of support (BOS), compared to the pre-
CSFTT values (p  <  0.05). In the frequency domain analysis of COP parameters 
post-CSFTT, there was a decrease in both the peak and average of power 
spectral density (PSD) values in both the anteroposterior (AP) and mediolateral 
(ML) directions below 0.5  Hz (p  <  0.05). In addition, the TUG scores showed a 
positive correlation with vCOP, rmsCOP, turn index, torque, BOS, and both the 
peak and average PSD values in the AP and ML directions below 0.5  Hz (p  <  0.05). 
The FAB scores demonstrated a negative correlation with vCOP, rmsCOP, turns 
index, BOS, and both peak and average PSD values in the AP direction below 
0.5  Hz (p  <  0.05).

Conclusion: In patients with iNPH who responded to CSFTT, there was an 
improvement in spontaneous body sway during quiet standing after CSFTT. 
Increased spontaneous sway is associated with impaired gait and frontal lobe 
function. This may be linked to impaired cortico-cortical and cortico-subcortical 
circuits in patients with iNPH.
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1 Introduction

Idiopathic normal pressure hydrocephalus (iNPH), with enlarged 
brain ventricle and normal cerebrospinal fluid (CSF) pressure, is 
characterized by gait and balance disturbance, cognitive impairment, 
and urinary incontinence. Gait and balance disturbances are often the 
most prominent clinical features and the first to become apparent (1, 
2). Compared with healthy individuals, the gait of patients with iNPH 
is characterized by a broad base, short stride length, low speed, and 
increased variability in stride time and length (3). The CSF tap test 
(CSFTT) is a widely used diagnostic and therapeutic tool for 
improving gait disturbance (3–6). In accordance with the Japanese 
guideline, clinical improvement after the CSFTT increases diagnostic 
certainty of iNPH from possible to probable (4). In patients with 
iNPH, these gait characteristics are relatively better known than 
balance characteristics (7).

Postural stability, also referred to as balance, is the ability of the 
body to maintain the center of gravity (COG) within the base of 
support (BOS), which is the area of contact with the support surface 
(8, 9). Force platforms have been used to quantify the characteristics 
of postural stability and calculate indirect changes in spontaneous 
body sway, i.e., the center of pressure (COP) calculated from ground 
reaction force (10, 11). The COP indicates the weighted average of all 
forces created from the BOS and reflects the trajectory of the 
COG. When the limit of stability of BOS is exceeded, an individual 
must take a step to reestablish the BOS below the COG to prevent a 
fall (12). Consequently, measuring the magnitude of COP 
displacement over time is related to the spontaneous joint movement 
needed to maintain the body against gravity (13). Additionally, the 
power spectral density (PSD) of COP, calculated via frequency domain 
analysis using Fourier transformation, provided insights into the 
structure of COP time series. The PSD approximates the underlying 
oscillations in the COP and their respective amplitude (14, 15). It is a 
helpful tool for evaluating the effects of small and rapid movements 
on spontaneous body sway during quiet standing in older adults (16), 
patients with Parkinson’s disease (15, 17), and patients with multiple 
sclerosis (18).

Balance function is clinically classified into static steady-state 
balance, which is the ability to maintain a steady position, such as 
standing, and dynamic steady-state balance, which is the ability to 
maintain a static position with a shift in the COG, such as walking (8, 
19). Healthy individuals with a good static steady-state balance are 
expected to perform well in dynamic steady-state balance (19, 20). 
Moreover, recent studies reported the relationship between dynamic 
steady-state balance and cognitive function, especially executive 
function. Poor executive function was associated with falls and a 
decline in gait speed in older adults (21), patients with Parkinson’s 
disease (22–24), and patients with traumatic brain injury (25). 
Additionally, Ko et al. (26) reported that impaired executive function 
was associated with impaired gait function and poor responsiveness 
of CSFTT in patients with iNPH. However, the characteristics of static 

steady-state balance and the relationship between static steady-state 
balance and both dynamic steady-state balance and executive function 
in patients with iNPH have yet to be elucidated.

This study aimed to quantitatively measure the changes in 
postural stability, focusing specifically on spontaneous body sway 
during quiet standing, following the CSFTT in patients with 
iNPH. We  measured the COP and examined changes in COP 
parameters using time and frequency domain analyses before and 
after the CSFTT. Furthermore, we  investigated the potential 
correlation between static steady-state balance function and both 
dynamic steady-state balance function and executive function in 
iNPH patients. We  hypothesized that COP parameters would 
improve after CSFTT compared to before the test. In addition, 
we proposed that increasing spontaneous body sway, indicative of 
postural instability, may be  associated with impaired gait and 
executive function, which in turn can affect postural control.

2 Materials and methods

2.1 Participants

This study included patients diagnosed with iNPH, using the 
following criteria proposed by previous diagnostic guidelines: (1) aged 
>40 years, (2) symptoms that have progressed insidiously over 
6 months (i.e., gait disturbance with at least cognitive impairment), (3) 
presented with normal CSF opening pressure, (4) showed enlarged 
ventricles (Evans’ ratio of >0.3) and no macroscopic obstruction of 
CSF flow on brain magnetic resonance imaging, and (5) positive 
responsiveness after CSFTT (4, 27). A lumbar tap removed 30–50 mL 
of CSF on each INPH patient. After the CSFTT, patients were 
re-evaluated with the Korean-Mini Mental State Examination 
(K-MMSE), the iNPH Grading Scale (iNPHGS), and the Timed Up 
and Go Test (TUG). Gait changes were evaluated multiple times over 
7 days following the tap, and changes in cognition and urination were 
assessed at 1 week. CSFTT response was defined using these 3 major 
scales (28). INPH patients who had a positive response to the CSFTT 
according to the Japanese guidelines for iNPH were enrolled (28). The 
exclusion criteria were as follows: (1) history of stroke; (2) history of 
heavy alcohol use; (3) history of hospitalization due to a major 
psychiatric disorder; (4) history of other neurologic, metabolic, 
neoplastic, or musculoskeletal disorder; and (5) evidence of secondary 
hydrocephalus after traumatic brain injury, intracerebral hemorrhage, 
or meningitis.

This prospective study included patients admitted to the 
Department of Neurology at Kyungpook National University Chilgok 
Hospital between September 2021 and November 2022. Written 
informed consent was obtained from all participants. The Institutional 
Review Board of Kyungpook National University Chilgok Hospital 
provided ethical approval (No. 2021-07-023). All experiments were 
performed in accordance with relevant guidelines and regulations.
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2.2 Assessments of gait function and 
frontal lobe function

We evaluated a dynamic steady-state balance function as the 
Timed Up and Go (TUG) test at pre-CSFTT. The TUG test measures 
the time it takes for a participant to stand up from a seated position in 
a chair, walk forward 3 meters, turn, and then return to a seated 
position (29).

Furthermore, we  evaluated executive function as a Frontal 
Assessment Battery (FAB) at pre-CSFTT. The score of FAB is a short 
cognitive and behavioral test to assess frontal lobe functions. It 
consists of 6 subtests: Similarities, Verbal fluency, Motor series, 
Conflicting instruction, Go-no-go, and Prehension behavior. Each 
subtest is scored from 0 (error) to 3 (correct), with a higher score 
indicating better executive function associated with the frontal lobe 
function (30).

2.3 COP measurement

We assessed all participants for measuring COP at pre-CSFTT 
and the day after the CSFTT. We  measured COP using a force-
measuring plate sampled at 60 Hz (Zebris FDM-S®, Germany) during 
quiet standing with eyes opened. We instructed the participants to try 
to stand with their bare feet as close together as possible. For 30 s, they 
stood quietly on the force plate, arms held comfortably on their sides. 
We assessed COP twice before CSFTT (pre-CSFTT) and after CSFTT 
within 24–48 h (post-CSFTT).

2.4 Data analysis

We conducted time and frequency domain analysis of COP using 
Python 3.7.151 and Python signal processing package SciPy 1.9.12 and 
calculated the COP parameters using analytical methods proposed by 
Palmieri et al. (11) and Kotolova et al. (31).

2.4.1 COP parameters using time domain analysis
We calculated the velocity of COP (vCOP) by dividing the 

displacement of the COP trajectory by the recording time, t. The 
anteroposterior (AP) and mediolateral (ML) directions represent the 
AP and ML positions, respectively.
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We calculated the root mean square COP (rmsCOP) as the 
distance between the displacement of COP and mean COP position 
m mAP ML,( ) . Then, we  calculated the sum of the distances and 

divided it by the number of frames N during the recording time.

1 https://www.python.org

2 https://scipy.org
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We calculated the turn index by dividing the sum of the COP 
trajectory length in each direction by its standard deviation 
( s sAP ML, ) in that direction; the obtained value was then divided by 
the recording time.
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The torque was calculated by multiplying the weight with vCOP, 
where FG indicates each patient’s weight.
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The area of BOS was calculated as the area between both feet in 
contact with the force plate (cm2), as shown in 
Supplementary Figure S1.

2.4.2 COP parameters using frequency domain 
analysis

We quantified COP oscillations using Fourier analysis and power 
spectral density (PSD). Previous studies have shown that 
low-frequency oscillations are evident in postural sway during upright 
standing (14, 15, 18, 32). Additionally, considering that approximately 
80% of the PSD was within 0–1 Hz range, we divided the PSD into two 
frequency ranges of interest: 0–0.5 Hz and 0.5–1.0 Hz. We calculated 
the PSD values of COP as follows: the peak PSD in AP and peak PSD 
in ML indicated the maximum PSD values of the AP and ML direction 
within 0–0.5 Hz and 0.5–1.0 Hz, and the average PSD in AP and 
average PSD in ML were calculated as the average value of PSD within 
0–0.5 Hz and 0.5–1.0 Hz. Figure 1A illustrates the analysis of the COP 
trajectory in time and frequency domains during a 30-s period of 
quiet standing.

2.5 Statistical analysis

We performed all statistical analyses using SPSS software version 
23 (SPSS, Inc., Armonk, NY, United States). We confirmed a normal 
distribution of data using the Shapiro–Wilk test (p < 0.05). We used a 
Paired t-test to compare changes in COP parameters using time and 
frequency domain analysis at pre- and post-CSFTT (p < 0.05, 
two-tailed). Furthermore, we used Pearson’s correlation to evaluate the 
relationship between COP parameters and both TUG score and FAB 
score at pre-CSFTT. We  interpreted that a statistically significant 
correlation is shown when the correlation coefficient value (r) has a 
p-value of less than 0.05, indicating statistical significance. 
Additionally, we  used Spearmen correlation to evaluate the 
relationship between COP parameters and subtests of FAB (Spearman 
correlation coefficient, rho; p-value < 0.05).
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3 Results

We recruited 72 patients with iNPH, 3 of whom failed quiet 
standing for 30 s at pre-CSFTT, and 2 patients were lost to COP 
measurements after CSFTT. Also, we excluded 11 patients who did not 
respond to CSFTT. Finally, we included 56 patients with iNPH after 
positively responding to CSFTT. Of the 56 patients, 36 were male, and 
20 were female (mean age 75.45 ± 5.46 years old). The average TUG 
score was 21.96 ± 15.39 and average FAB score was 9.78 ± 3.72 and at 
pre-CSFTT.

3.1 COP parameters using time domain 
analysis

The orange-colored sections in Figure 1 present representative 
data of the COP trajectory and displacements over time in AP and ML 
directions before (Figure 1B) and after (Figure 1C) CSFTT. During 
quiet standing at post-CSFTT, vCOP (t = 3.188, p = 0.002), rmsCOP 
(t = 2.213, p = 0.032), turn index (t = 2.483, p = 0.017), torque (t = 3.102, 
p = 0.003) and BOS (t = 2.550, p = 0.014) significantly decreased 
compared with those at pre-CSFTT (Table 1).

3.2 COP parameters using frequency 
domain analysis

The blue-colored sections in Figure 1 show representative data of 
the PSD values in AP and ML directions before (Figure 1B) and after 
(Figure 1C) CSFTT. We observed a significant decrease in the peak 
PSD value in AP direction (t = 2.037, p = 0.049), the average PSD value 

in AP direction (t = 2.262, p = 0.030), the peak PSD value in ML 
direction (t = 3.172, p = 0.003), and the average PSD value in ML 
direction (t = 2.289, p = 0.028) at 0–0.5 Hz after CSFTT during quiet 
standing (Table 1).

3.3 Relationship between TUG scores and 
COP parameters

Table 2 is shown the relationship between TUG scores and COP 
parameters at pre-CSFTT in patients with iNPH. The TUG score was 
significantly positively correlated with vCOP (r = 0.523, p < 0.001), 
rmsCOP (r = 0.433, p = 0.001), turn index (r = 0.520, p < 0.001), torque 
(r = 0.421, p = 0.001), and BOS (r = 0.428, p = 0.001). Furthermore, 
TUG score was also significantly positively correlated with the peak 
PSD value (r = 0.432, p = 0.003) and average PSD value (r = 0.318, 
p = 0.033) in AP direction at 0–0.5 Hz. Additionally, TUG score was 
also significantly positively correlated with the peak PSD value 
(r = 0.548, p < 0.001) and average PSD value (r = 0.536, p < 0.001) in ML 
direction at 0–0.5 Hz.

3.4 Relationship between FAB scores and 
COP parameters

We showed the relationship between FAB scores and COP 
parameters at pre-CSFTT in Table 2. The FAB score was significantly 
negatively correlated with vCOP (r = −0.359, p = 0.007), rmsCOP 
(r = −0.270, p = 0.046), turn index (r = −0.290, p = 0.032), and BOS 
(r = −0.302, p = 0.025). In addition, FAB score was also significantly 
negatively correlated with the peak PSD value (r = −0.464, p = 0.002) 

FIGURE 1

Analysis of center of pressure (COP) trajectories in the time and frequency domains (A) during 30-s quiet standing. The representative data of COP 
trajectory and displacements in anteroposterior (AP) and mediolateral (ML) directions pre-CSFTT (B) and post-CSFTT (C) for a 69-year-old male 
participant. The red spot indicates the center of COP displacements. The orange-colored sections represent the COP displacements over time, which 
is used for time domain analysis. The blue-colored sections represent the power spectral density (PSD) of COP derived from frequency domain 
analysis.
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and average PSD value (r = −0.424, p = 0.004) in AP direction at 
0–0.5 Hz, respectively. Figure  2 only depicts cases where the 
relationship between FAB scores and COP parameters is p < 0.01.

Furthermore, correlation between the score of subtests of FAB and 
COP parameters was shown in Supplementary Table S1. The score of 
“Similarities” was negatively correlated with vCOP (rho = −0.311, 
p = 0.021), peak (rho = −0.556, p < 0.001) and average PSD value 
(rho = −0.498, p = 0.001) in AP direction, and peak (rho = −0.361, 
p = 0.016) and average PSD value (rho = −0.355, p = 0.018) in ML 
direction at 0–0.5 Hz. The score of “Verbal fluency” was negatively 
correlated with vCOP (rho = −0.272, p = 0.044), rmsCOP 
(rho = −0.407, p = 0.002), turn index (rho = −0.381, p = 0.004), peak 
PSD value (rho = −0.346, p = 0.022) in AP direction, and peak 
(rho = −0.328, p = 0.116) and average PSD value (rho = −0.329, 
p = 0.029) in ML direction at 0–0.5 Hz. The score of “Motor series” was 
negatively correlated with vCOP (rho = −0.281, p = 0.037), torque 
(rho = −0.269, p = 0.047), and peak PSD value (rho = −0.357, p = 0.017) 
in AP direction at 0–0.5 Hz. The score of “Conflicting instructions” 
was negatively correlated with BOS (rho = −0.296, p = 0.028) and peak 
PSD value (rho = −0.325, p = 0.031) in ML direction at 0–0.5 Hz. The 
score of “Go-no-go” and “Prehension behavior” were not statistically 
significantly correlated with COP parameters.

4 Discussion

We investigated changes in COP parameters during quiet 
standing, which indicates spontaneous body sway, after CSFTT in 
patients with iNPH. The COP displacements associated with time 
domain analysis reduced after CSFTT. In addition, iNPH patients had 
low PSD values, indicating less variation in power value of COP in 
both AP and ML directions at low-frequency oscillation after 

CSFTT. Interestingly, impaired static steady-state balance was 
associated with both impaired dynamic steady-state balance and 
frontal lobe function.

To evaluate balance function in patients with iNPH, we measured 
COP during quiet standing. There have been a few studies on the 
quantitative measurement of balance disturbance in iNPH patients 
who performed shunt surgery. A previous study reported an 
improvement in the radius and sway area of COP after shunt surgery 
in 9 patients with iNPH (33). Nikaido et al. (34) demonstrated that 
patients with iNPH showed improved COP trajectories after shunt 
surgery; however, the study was limited to only 23 patients with 
iNPH. Furthermore, Blomsterwall et al. (35) described that patients 
with iNPH had a larger sway area and higher COP velocity than those 
with subcortical arteriosclerotic encephalopathy, but the inclusion of 
secondary NPH patients limited this study. To the best of our 
knowledge, this is the first study to investigate the characteristics of 
static steady-state balance function at pre-CSFTT and the changes in 
postural stability before and after CSFTT in patients with iNPH.

In our study, iNPH patients showed decreased COP parameters 
using time and frequency domain analysis after CSFTT. These changes 
could be interpreted as improving the ability to postural control after 
CSFTT. Measuring the magnitude of COP displacement over time is 
related to spontaneous joint movement, and calculating the PSD value 
helps evaluate the effect of small and rapid movements on spontaneous 
body sway (13, 14). Previous studies have reported significant COP 
displacements and higher PSD values of COP in older adults (16), 
patients with Parkinson’s disease (15, 17), multiple sclerosis (18), 
idiopathic scoliosis (36), and vestibular disorders (37) than in healthy 
individuals during quiet standing. Furthermore, the range of PSD is 
closely associated with postural control in older adults and Parkinson’s 
disease (14, 15). Especially, low-frequency oscillation below 0.5 Hz 
reflects thought to be part of the descending drive to the motor neuron 

TABLE 1 Center of pressure parameters before and after CSFTT in patients with idiopathic normal pressure hydrocephalus.

COP parameters Pre-CSFTT Post-CSFTT t p value

Time domain analysis vCOP 30.32 (12.78) 25.97 (6.95)** 3.188 0.002

rmsCOP 9.49 (4.87) 8.42 (3.64)* 2.213 0.032

Turns index 286.32 (384.07) 189.76 (150.27)* 2.483 0.017

Torque 1.60 (0.54) 1.43 (0.37)** 3.102 0.003

BOS 666.75 (141.46) 625.40 (96.67)* 2.550 0.014

Frequency domain analysis Peak PSD in AP

at 0–0.5 Hz 194.39 (301.61) 101.29 (107.74)* 2.037 0.049

at 0.5–1.0 Hz 21.56 (27.22) 14.61 (15.21) 1.716 0.095

Average PSD in AP

at 0–0.5 Hz 63.32 (84.16) 35.86 (30.38)* 2.262 0.030

at 0.5–1.0 Hz 9.10 (11.24) 5.98 (5.86) 2.026 0.050

Peak PSD in ML

at 0–0.5 Hz 472.97 (679.87) 146.06 (217.07)** 3.172 0.003

at 0.5–1.0 Hz 93.29 (427.88) 11.51 (21.79) 1.236 0.224

Average PSD in ML

at 0–0.5 Hz 179.15 (320.19) 61.12 (106.06)* 2.289 0.028

at 0.5–1.0 Hz 39.51 (179.85) 5.99 (14.79) 1.247 0.220

The value of mean (standard deviation). AP, anteroposterior; BOS, base of support; COP, center of pressure; CSFTT, cerebrospinal fluid tap test; rms, root-mean-square; ML, mediolateral;  
PSD, power spectral density; v, velocity. * represents a significant difference between pre- and post-CSFTT using paired t-test (*p < 0.05, **p < 0.01).
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pool (15, 18). The exacerbation of low-frequency oscillations probably 
indicates a loss of motor control of the descending drive to the motor 
control. This decline in motor control is likely caused by the 
deterioration of neurons in brain regions related to motor control (15). 
In this study, lower PSD values in the AP and ML direction below 
0.5 Hz suggest a less frequent oscillation of spontaneous body sway 
during quiet standing after CSFTT. This improvement in 
low-frequency oscillation may be  linked to an improvement in 
cerebral blood flow in periventricular and frontal white matter regions 
after CSFTT (38). Furthermore, it was suggested that motor function 
recovery in iNPH patients after CSF removal was related to a reversible 
suppression of frontal periventricular cortico-basal ganglia-thalamo-
cortical circuits (39). However, the mechanisms producing balance 
recovery in iNPH are still not fully understood, and future studies are 
warranted to better investigate this aspect.

Our study found a strong correlation between static and 
dynamic steady-state balance at pre-CSFTT in patients with 

iNPH. Until now, assessments of gait function, which indicate 
dynamic steady-state balance, have been used as diagnostic and 
evaluative tools for iNPH (4, 5, 40, 41). This study suggests that 
measuring COP parameters during quiet standing, which assesses 
static steady-state balance, may be  useful a potential diagnostic 
biomarker in iNPH patients who do not walk independently or who 
frequently fall. To further develop this possibility, additional studies 
are warranted. These should aim to quantify the differences in COP 
parameters between responders and non-responders of CSFTT and 
to compare quantitative data between static and dynamic steady-
state balance, such as spatiotemporal data from gait analysis in 
patients with iNPH.

The spontaneous body sway was inversely associated with FAB 
score; in other words, poor frontal lobe functions including 
similarities, verbal fluency, motor series, and prehension behavior 
were related to more frequent oscillations of body sway. Recent 
studies reported the ability to balance control was related to 

TABLE 2 Correlation between clinical scores and center of pressure (COP) parameters at pre-CSFTT.

COP parameters TUG score FAB score

r p value r p value

Time domain analysis vCOP 0.523** <0.001 −0.359** 0.007

rmsCOP 0.433** 0.001 −0.270* 0.046

Turns index 0.520** <0.001 −0.290* 0.032

Torque 0.421** 0.001 −0.248 0.068

BOS 0.428** 0.001 −0.302* 0.025

Frequency domain analysis Peak PSD in AP

at 0–0.5 Hz 0.432** 0.003 −0.464** 0.002

at 0.5–1.0 Hz 0.147 0.337 −0.171 0.266

Average PSD in AP

at 0–0.5 Hz 0.318* 0.033 −0.424** 0.004

at 0.5–1.0 Hz 0.174 0.253 −0.247 0.107

Peak PSD in ML

at 0–0.5 Hz 0.548** <0.001 −0.282 0.064

at 0.5–1.0 Hz 0.155 0.310 −0.178 0.249

Average PSD in ML

at 0–0.5 Hz 0.546** <0.001 −0.255 0.060

at 0.5–1.0 Hz 0.125 0.414 −0.196 0.201

AP, anteroposterior; BOS, base of support; COP, center of pressure; CSFTT, cerebrospinal fluid tap test; FAB, frontal assessment battery; ML, mediolateral; TUG, timed up and go test;  
PSD, power spectral density; r, Pearson correlation coefficient; rms, root-mean-square; v, velocity. * represents a significant correlation between clinical scores and COP parameters using 
Pearson Correlation (*p < 0.05, **p < 0.01).

FIGURE 2

Correlation between Frontal Assessment Battery (FAB) score and center of pressure (COP) parameters, including (A) velocity of COP (vCOP); (B) the 
peak of power spectral density (PSD) value in anteroposterior (AP) direction below 0.5  Hz; (C) the average of PSD value in AP direction below 0.5  Hz. r 
represents correlation coefficient. * indicated a statistical significance in Pearson’s correlation analysis (p  <  0.01).
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cognitive impairment in healthy older people (42), Alzheimer’s 
disease (43), and Parkinson’s disease (44). Even though healthy 
young adults, postural control was attentionally demanding, 
secondary tasks could increase their spontaneous body sway (45, 
46). Postural control is influenced by multifactorial brain areas 
related to motor control systems, including those linked to higher-
level cognitive and executive functions, particularly in the frontal 
cortical area, as well as areas responsible for sensory feedback and 
coordination, such as basal ganglia, brainstem, and spinal cord (47). 
In patients with iNPH, ventricular enlargement may interrupt the 
cortical–subcortical connections that connect the frontal cortex and 
basal ganglia (48, 49). Furthermore, impaired uptake by glymphatic 
system in patients with iNPH may affect the diminished 
intracortical inhibitory connection between the frontal and primary 
motor cortices (50–53). Based on these findings, the present study 
revealed that impaired higher-level cognitive function in the frontal 
cortex areas, potentially linked to impaired cortico-cortical and 
cortico-subcortical circuits, is closely associated with poor balance 
function in patients with iNPH. These results may provide a 
rationale for a more thorough evaluation of postural stability and 
cognitive function, especially in patients with iNPH is critical 
understanding the disease process and exploring its potential 
diagnostic possibilities. Interestingly, it was reported that each 
subtest of the FAB might be associated with specific areas of the 
frontal lobes on the basis of neuropsychological, electrophysiologic, 
and functional arguments: conceptualization with dorsolateral 
areas, word generation with medial areas, and inhibitory control 
with orbital or medial frontal areas (30). Combining quantitative 
balance and neuroimaging investigations of iNPH patients may help 
us understand those associations and potentially any underlying 
pathophysiological interrelationships. Future studies are warranted 
to better investigate this aspect.

This study has several limitations. We measured participants’ 
ability to maintain a steady position during standing. Although 
there is a positive correlation between static and dynamic steady-
state balance, it might be insufficient to explain dynamic steady-
balance parameters. Recent studies have attempted to quantitatively 
assess dynamic characteristics during gait using a triaxial 
accelerometer of the trunk in patients with iNPH (54, 55). To 
understand postural instability in patients with iNPH, further large-
scale studies are warranted to evaluate the relationship between 
static and dynamic steady-state balance function in patients with 
iNPH. Moreover, we did not compare COP parameters between 
patients with iNPH and healthy older controls. Healthy older adults 
revealed a difference in spontaneous body sway between fallers and 
non-fallers during quiet standing (56). Further study is needed to 
measure changes in COP parameters in patients with iNPH 
compared to older healthy adults.

5 Conclusion

Spontaneous body sway during quiet standing improved after 
CSFTT in patients with iNPH. Furthermore, the amount of 
spontaneous sway is associated with gait impairment and frontal 
lobe dysfunction. Our finding suggested that increased postural 
instability could be related to impaired executive functions in iNPH 
patients who suffered from impaired cortico-cortical and cortico-
subcortical circuits.
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