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Introduction: Alzheimer’s Disease (AD) typically starts in the medial temporal 
lobe, then develops into a neurodegenerative cascade which spreads to other 
brain regions. People with subjective cognitive decline (SCD) are more likely to 
develop dementia, especially in the presence of amyloid pathology. Thus, we 
were interested in the white matter microstructure of the medial temporal lobe 
in SCD, specifically the lower cingulum bundle that leads into the hippocampus. 
Diffusion tensor imaging (DTI) has been shown to differentiate SCD participants 
who will progress to mild cognitive impairment from those who will not. 
However, the biology underlying these DTI metrics is unclear, and results in the 
medial temporal lobe have been inconsistent.

Methods: To better characterize the microstructure of this region, we applied 
DTI to cognitively normal participants in the Cam-CAN database over the age of 
55 with cognitive testing and diffusion MRI available (N  =  325, 127 SCD). Diffusion 
MRI was processed to generate regional and voxel-wise diffusion tensor values 
in bilateral lower cingulum white matter, while T1-weighted MRI was processed 
to generate regional volume and cortical thickness in the medial temporal lobe 
white matter, entorhinal cortex, temporal pole, and hippocampus.

Results: SCD participants had thinner cortex in bilateral entorhinal cortex and 
right temporal pole. No between-group differences were noted for any of the 
microstructural metrics of the lower cingulum. However, correlations with 
delayed story recall were significant for all diffusion microstructure metrics 
in the right lower cingulum in SCD, but not in controls, with a significant 
interaction effect. Additionally, the SCD group showed an accelerated aging 
effect in bilateral lower cingulum with MD, AxD, and RD.

Discussion: The diffusion profiles observed in both interaction effects are 
suggestive of a mixed neuroinflammatory and neurodegenerative pathology. 
Left entorhinal cortical thinning correlated with decreased FA and increased 
RD, suggestive of demyelination. However, right entorhinal cortical thinning 
also correlated with increased AxD, suggestive of a mixed pathology. This may 
reflect combined pathologies implicated in early AD. DTI was more sensitive 
than cortical thickness to the associations between SCD, memory, and age. The 
combined effects of mixed pathology may increase the sensitivity of DTI metrics 
to variations with age and cognition.
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1 Introduction

Early detection and treatment of Alzheimer’s Disease (AD) is 
paramount in the prevention of neuronal degeneration and dementia. 
AD and related dementias were the 7th leading cause of death 
worldwide in 2019, affecting 55.2 million people (1). As of 2021, 
disability adjusted life years caused by AD are expected to more than 
triple by 2050 if current trends continue, with a particularly high 
impact forecasted in low and middle income countries (2). AD is 
characterized by a long preclinical stage noted by the deposition of 
amyloid plaques and tau tangles, followed by a destructive cascade of 
neurodegeneration leading to mild cognitive impairment and 
progression to dementia (3, 4). This cascade typically begins in the 
medial temporal lobe (5), a region important for memory (6). Early 
screening provides the patient an opportunity for future planning and 
lifestyle interventions to delay onset (3, 7–9). Therapeutic intervention 
in the preclinic stage also may interrupt the disease process before the 
onset of the neurodegeneration cascade (10). As disease modifying 
medications that disrupt this cascade such as aducanumab and 
lecanemab (11–13) become commercially available, early detection 
becomes increasingly important.

A promising avenue for early detection of AD is the study of 
subjective cognitive decline (SCD). SCD describes patients who 
complain of reduced memory performance or other cognitive decline 
but score normally on cognitive testing (14, 15). In cognitively 
unimpaired individuals above the age of 60, the prevalence of SCD is 
around 25% (16). Both multicenter studies and meta-analyses show 
increased rates of conversion to dementia in participants with SCD 
(14, 17, 18), with one meta-analysis showing SCD patients were twice 
as likely to develop dementia (14). In cognitively normal patients with 
positive amyloid and tau biomarkers, those with SCD are five times 
more likely to progress to mild cognitive impairment or dementia 
than those without cognitive complaints (19). SCD is also a better 
predictor of amyloid pathology than standard cognitive measures (20).

Despite its promise as a risk factor for dementia, SCD remains 
poorly understood. As AD is associated with atrophy of gray matter 
structures in the temporal, parietal, and cingulate cortices (21–23), 
many previous studies in SCD have focused on characterizing volume 
and cortical thickness of these regions (24–30), with inconsistent 
results (31–33). Prior research has also examined microstructural 
alterations in SCD using diffusion tensor imaging (DTI). DTI provides 
several diffusivity metrics, including fractional anisotropy (FA), axial 
(AxD), radial (RD), and mean (MD) diffusivity, which are all 
differentially affected by pathology. In a 2–3 year longitudinal study, 
DTI was shown to differentiate SCD patients who will progress to 
mild cognitive impairment from those who will not (34). Patients that 
converted to mild cognitive impairment also showed reduced cortical 
thickness and volume in the medial temporal lobe (34). However, DTI 
results in the medial temporal lobe have been inconsistent (35–37), 
potentially due, at least in part, to the relatively small samples used by 
some of the previous studies.

Therefore, the primary goal of this study was to further examine 
microstructural white matter changes in the medial temporal lobe 
using DTI, including associations with age and memory function, in 
SCD and unaffected control participants from Cambridge Center for 
Ageing and Neuroscience (Cam-CAN) (38, 39). Cam-CAN offers a 
large database of high quality anatomical, diffusion, fMRI, and 
magnetization transfer images alongside detailed behavioral, 
cognitive, and demographic measures. One other study reported on 
the incidence of SCD in Cam-CAN (40), and another showed 
increased MD and reduced FA with age across the white matter (41). 
However, to our knowledge this is the first study to study the 
relationship of SCD to diffusion imaging, cortical thickness, or 
volumes for brain structures other than hippocampus in the 
Cam-CAN dataset.

We chose to focus on the lower cingulum, or the white matter 
bundle leading to the hippocampus, as a region of interest (ROI) 
because as part of the medial temporal lobe, it is one of the most 
common starting points for neurodegeneration and tau pathology in 
AD (4). It is also an important region for memory (42). Further, the 
axons of the lower cingulum project to nearby gray matter regions that 
are vulnerable to neurodegeneration early in AD, including the 
entorhinal cortex, parahippocampal cortex, and the hippocampus (43).

A secondary goal of this work was to test whether cingulum 
microstructural variations relate to brain atrophy. Changes in brain 
structure volume and cortical thickness in SCD versus controls were 
examined for the lower cingulum and several AD signature gray 
matter regions including the hippocampus, parahippocampal cortex, 
entorhinal cortex, and temporal pole. Macrostructural metrics in areas 
associated with significant group differences were used as proxies for 
atrophy to examine the association of cingulum microstructure 
with neurodegeneration.

Using the large number of high-quality scans of older adults with 
SCD available from Cam-CAN, we  may be  able to detect 
microstructural changes not normally visible in smaller cohorts, 
lending new insights into the biology underlying SCD.

2 Materials and methods

2.1 Participant interview and cognitive 
testing

This study utilized the Cam-CAN dataset from the University of 
Cambridge, available at https://cam-can.mrc-cbu.cam.ac.uk/ (38, 39). 
Participants underwent a comprehensive cognitive battery and 
medical history examination to screen for neurological or psychiatric 
disorders. More details on data collection can be found in (39). Of the 
3,000 Cam-CAN participants (38), we focused on those over the age 
of 55 with both cognitive health and diffusion MRI data available for 
a final N of 325. Of these participants, 127 answered affirmatively to 
the question “Do you feel you have any problems with your memory?” 
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These 127 participants were labeled as having subjective cognitive 
decline (SCD). The remaining 198 were used as control participants 
without SCD. Sex was determined by self-report. The Mini-Mental 
State Exam (MMSE) (44) was given as part of the home interview. 
Participants with an MMSE score lower than 24 or who failed to 
complete the MMSE were excluded (39). One control participant was 
missing MMSE scores in the dataset but was included in the analysis 
due to normal scores on all other tests and inclusion in the imaging 
cohort. Memory performance was assessed using story recall from 
WMS-III (45) during the home interview. Participants who passed 
screening had their memory tested in the clinic with an emotional 
memory (EM) task and a visual short-term memory (VSTM) 
task (39).

2.2 Magnetic resonance imaging 
acquisition and processing

The Cam-CAN MRI data was collected on a 3 T Siemens TIM 
Trio scanner with a 32-channel head coil. Diffusion weighted images 
included b values of 1,000 and 2000 s/mm2 with 30 gradient directions 
each (39). Three images with b = 0 were also collected for each 

participant. Image noise and Gibbs ringing were attenuated using 
MRtrix version 3 (RRID:SCR_006971) tools dwidenoise (46–48) and 
mrdegibbs (49, 50). Motion correction was achieved using FSL version 
6.0.4 (RRID:SCR_002823) tool mcflirt (51). The FSL DTIFIT 
algorithm was used to fit the diffusion tensor model with standard 
linear regression to each voxel, as well as to generate FA, MD, RD, and 
AxD maps for each participant (52). All images then underwent 
nonlinear transforms to standard space using FSL’s Tract-Based Spatial 
Statistic (TBSS) pipeline (53). Rather than a skeleton mask, the lower 
right and left cingulum bundles were extracted from the ICBM-
DTI-81 white-matter labels atlas (54) and employed as regions of 
interest (ROIs). The skeleton masks output by TBSS were not used in 
this analysis. Regional white matter volume of the cingulum bundle, 
cortical volume, and thickness of several grey matter regions were 
generated with FreeSurfer version 7 (RRID:SCR_001847) tools recon-
all-clinical and synthseg (55), then visually quality controlled. Cortical 
structure ROIs analyzed were regions known to be  susceptible to 
cortical thinning early in the Alzheimer’s Disease course and included 
parahippocampal, entorhinal and temporal pole cortical thickness, as 
well as hippocampus and lower cingulum volume (21, 23). Brain 
structure volumes were divided by the intracranial volume to account 
for individual differences in head size.

TABLE 1 Demographic characteristics of the control and subjective cognitive decline (SCD) groups.

SCD (N  =  128) Control (N  =  199) Total (N  =  327) Test statistic p value

Sex χ2 = 0.238 0.625

FEMALE 64 (50.0%) 94 (47.2%) 158 (48.3%)

MALE 64 (50.0%) 105 (52.8%) 169 (51.7%)

Age t = 1.04 0.299

Mean (SD) 71.481 (8.941) 70.424 (9.011) 70.837 (8.985)

Range 55.250–87.670 55.170–88.920 55.170–88.920

Income χ2 = 1.26 0.939

Less than £18,000 29 (22.7%) 50 (25.1%) 79 (24.2%)

£18,000 to 30,999 40 (31.2%) 55 (27.6%) 95 (29.1%)

£31,000 to 51,999 29 (22.7%) 43 (21.6%) 72 (22.0%)

£52,000 to 100,000 20 (15.6%) 31 (15.6%) 51 (15.6%)

Greater than £100,000 5 (3.9%) 12 (6.0%) 17 (5.2%)

Prefer not to answer 5 (3.9%) 8 (4.0%) 13 (4.0%)

Ethnicity

White 126 (98.4%) 194 (97.5%) 320 (97.9%)

Mixed 0 (0.0%) 1 (0.5%) 1 (0.3%)

Asian or Asian British 1 (0.8%) 2 (1.0%) 3 (0.9%)

Black or Black British 0 (0.0%) 1 (0.5%) 1 (0.3%)

Chinese 0 (0.0%) 0 (0.0%) 0 (0.0%)

Other 0 (0.0%) 1 (0.5%) 1 (0.3%)

Do not know 0 (0.0%) 0 (0.0%) 0 (0.0%)

No answer 1 (0.8%) 0 (0.0%) 1 (0.3%)

Years of Education t = −0.571 0.568

Mean (SD) 19.410 (4.087) 19.697 (4.902) 19.584 (4.595)

Range 14.000–33.000 2.000–52.000 2.000–52.000

There were no between-group differences in sex, age, income, or years of education.
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2.3 Statistical analysis

Differences between the two groups in age, memory performance, 
gender distribution, brain structure volume, cortical structure 
thickness, and lower cingulum diffusion microstructure were assessed 
with t-tests and chi-squared tests in R version 4.2 (RRID:SCR_000432). 
Outliers in the diffusion metric bilateral regional averages, cortical 
thicknesses, and volumes were presumed to be the result of image 
processing or acquisition errors and were excluded using Tukey’s 
method (56). Sensitivity analyses compared models evaluated with 
and without outliers. Averages of each measure for the left and right 
lower cingulum ROIs were generated in MATLAB R2023a 
(RRID:SCR_001622). We  then fit the following linear 
regression models:

 
0 1 2
3

Metric storyRecall group
storyRecall group

= β + β ∗ + β ∗
+β ∗ ∗  (1)

0 1 2 3Metric age group age group= β + β ∗ + β ∗ + β ∗ ∗  (2)

 
0 1 2
3

Metric age storyRecall
age storyRecall

= β + β ∗ + β ∗
+β ∗ ∗  (3)

 
0 1 2
3

diffMetric atophyMetric group
atrophyMetric group

= β + β ∗ + β ∗
+β ∗ ∗  (4)

TABLE 2 Between-group comparison in memory performance.

SCD Control Total Test statistic p value Cohen’s D

MMSE t = −1.12 0.264 −0.13

N 128 198 & 326

Mean (SD) 28.547 (1.362) 28.717 (1.306) 28.650 (1.329)

Range 25–30 25–30 25–30

Immediate Story 

Recall**

t = −2.73 0.007 −0.33

N 128 199 327

Mean (SD) 12.617 (4.542) 13.894 (3.381) 13.394 (3.920)

Range 3–23 4–23 3–23

Delayed Story 

Recall**

t = −3.20 0.002 −0.38

N 128 199 327

Mean (SD) 10.461 (4.673) 12.040 (3.800) 11.422 (4.228)

Range 0–22 0–21 0–22

MMSE, Mini-Mental State Exam. **p < 0.01. & One control participant is missing MMSE scores. However, they scored normally on story recall and denied any memory problems. Thus, 
we opted to include them in the analysis.

TABLE 3 Mean cortical thickness for temporal regions of interest (in mm) for the control and subjective cognitive decline (SCD) groups.

SCD (N  =  125 &) Control (N  =  197 
&)

Test statistic p value Cohen’s D

Left entorhinal * t = −2.41 0.017 −0.27

Mean (SD) 2.947 (0.191) 3.001 (0.207)

Range 2.544–3.400 2.463–3.493

Right entorhinal ** t = −2.86 0.005 −0.32

Mean (SD) 3.060 (0.176) 3.119 (0.191)

Range 2.620–3.484 2.606–3.605

Left temporal pole t = −0.527 0.599 −0.06

Mean (SD) 3.446 (0.178) 3.456 (0.161)

Range 3.014–3.878 3.035–3.850

Right temporal pole * t = −2.23 0.026 −0.27

Mean (SD) 3.630 (0.197) 3.679 (0.174)

Range 3.191–4.161 3.213–4.126

Between-group comparisons indicate decreased cortical thickness in SCD in left and right entorhinal cortices and the right temporal pole. *p < 0.05 and **p < 0.01. & There were 327 
participants over the age of 55 with anatomical T1w images available. Two control participants and three SCD participants were excluded from the cortical thickness and brain structure 
volume analyses due to segmentation errors, for a total of 322 segmentations as detailed in this table.

https://doi.org/10.3389/fneur.2024.1360273
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Flaherty et al. 10.3389/fneur.2024.1360273

Frontiers in Neurology 05 frontiersin.org

where diffMetric is the regional average of each metric from DTI, 
atrophyMetric is the regional average cortical thickness or brain 
structure volume, Metric includes both diffusion and atrophy 
metrics, storyRecall is performance on the delayed story recall task, 
and group denotes SCD status (SCD versus control). Models 1, 2, 
and 4 included the group as a variable. Model 3 was examined 
across groups. All four models were employed for each diffusion 
metric. As we were primarily interested in the diffusion metrics’ 
associations with atrophy, only cortical thicknesses and brain 
structure volumes that were different between groups (p < 0.05 and 
Cohen’s D > 0.25) were included in Model 4. The linear regression 
models were fit in R. p-values smaller than 0.05 were considered 
statistically significant. In addition, voxel-wise analyses with 
multiple comparisons correction of the diffusion metrics within the 
extent of the lower cingulum bundles were calculated with 
threshold-free cluster enhancement (TFCE) including family-wise 
error correction (57) using FSL’s randomise (58) with the same four 
models. While the voxel-wise analysis is more sensitive and allows 
for more robust multiple comparisons correction, linear regressions 
of regional averages allow for better visualization of effect sizes, 
slope directions, and interaction effects. Age and story recall were 
mean centered across groups for use with FSL’s randomise, as 
described in the FSL documentation.

The code used for image processing and statistical analysis is 
available at: https://github.com/rf2485/camcan_scd_dMRI_paper.

3 Results

3.1 Group differences between SCD and 
controls

128 SCD participants and 199 control participants had imaging 
available, for a total of 327. There were no statistically significant 
differences between groups in age or sex distribution (Table 1). Of 
the memory tests employed in this study, only story recall was 
statistically significant between groups (Table 2). SCD participants 
performed significantly worse than control participants on both 
immediate and delayed story recall. We only used the delayed story 
recall score in the rest of our statistical analyses as it had a larger 
Cohen’s d effect size (0.37) than Immediate Story Recall (0.33) and 
MMSE (0.13). Three SCD participants and two control participants 
were excluded from the cortical thickness and brain structure 
volume analyses due to segmentation errors, leaving 322 datasets 
available for further analyses. SCD participants had thinner cortex 
in bilateral entorhinal cortex and right temporal pole (Table 3). 

TABLE 4 Regional diffusion metric mean values for the subjective cognitive decline (SCD) and control groups in the left and right lower cingulum.

SCD (N  =  127) Control (N  =  198) Test statistic p value Cohen’s D

Left FA t = 0.217 0.829 −0.03

Mean (SD) 0.296 (0.032) 0.295 (0.035)

Range 0.231–0.398 0.186–0.387

Left MD t = 1.13 0.259 0.07

Mean (SD) 0.621 (0.048) 0.625 (0.047)

Range 0.491–0.738 0.482–0.744

Left AxD t = 0.680 0.497 0.09

Mean (SD) 0.821 (0.060) 0.820 (0.059)

Range 0.646–0.945 0.648e–0.97

Left RD t = 0.974 0.331 0.06

Mean (SD) 0.521 (0.047) 0.523 (0.045)

Range 0.414–0.637 0.389–0.647

Right FA t = 1.59 0.112 0.18

Mean (SD) 0.299 (0.037) 0.306 (0.036)

Range 0.206–0.397 0.220–0.389

Right MD t = −0.647 0.518 −0.13

Mean (SD) 0.634 (0.051) 0.634 (0.046)

Range 0.500–0.787 0.478e–0.730

Right AxD t = −0.304 0.761 −0.04

Mean (SD) 0.852 (0.060) 0.849 (0.058)

Range 0.665–1.000 0.608–0.962

Right RD t = −1.28 0.201 −0.17

Mean (SD) 0.534 (0.051) 0.534 (0.046)

Range 0.409–0.678 0. 407–0.633

No significant between-group differences are noted for any of the metrics. Diffusivity values are reported with units of 10−3 mm2/s.
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There were 3 outliers for left entorhinal cortex thickness, 2 outliers 
for right entorhinal cortex, and 5 outliers for the right temporal 
pole. The results were robust to the removal of outliers. There were 
no significant group differences in any other cortical thicknesses 
or brain structure volumes analyzed (Supplementary Tables S1, S2).

127 SCD participants and 198 control participants had diffusion 
weighted images available, for a total of 325. There were no significant 
group differences in any of the diffusion metrics examined (Table 4). 
The results were robust to the removal of outliers.

3.2 Correlations between imaging and 
memory performance

For the right lower cingulum, there was a significant interaction 
effect between group and memory performance for regional mean 
MD, and RD (Model 1). Post-hoc analyses revealed that positive 
correlations with delayed story recall were significant for regional 
averages of FA, MD, AxD, and RD in SCD, but not in controls 
(Figure 1). Voxel-wise analyses with multiple comparisons correction 

confirmed this finding, with the addition of significant interaction 
effects for FA in a subset of voxels (Figure 2). There were no statistically 
significant findings between diffusion and memory in the left lower 
cingulum (Supplementary Table S3), nor were there any significant 
findings between memory and cortical thickness of grey matter 
regions studied (Supplementary Table S4). All findings were robust to 
the removal of outliers.

3.3 Correlations between imaging and age

As the risk for dementia increases with age (59), we were interested 
in the impact age had on the relationship between microstructure and 
story recall. To increase statistical power, our models only have three 
covariates each, particularly given the correlation between memory 
performance and group, as well as between memory performance and 
age. Model 2 includes age but does not include memory performance 
while Model 3 includes age but does not include group. In Model 2, 
there was a significant interaction effect between age and group in MD 
and AxD in right lower cingulum, which was robust to the removal of 

FIGURE 1

Linear regression of regional diffusion metric mean values in the whole right lower cingulum as a function of delayed story recall scores for (A) FA 
(B) MD (C) AxD and (D) RD. The p-values of the group by delayed story recall interaction are included in each chart subtitle. Interaction effects are 
significant for MD (B), and RD (D). The p-values of post-hoc within-group correlations between diffusion metrics and delayed story recall indicate a 
significant association between the diffusion metrics and memory function only in the SCD group in all diffusion metrics. Diffusivity values are reported 
with units of 10−3 mm2/s.
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outliers (Figure 3). Voxel-wise analyses with multiple comparisons 
correction confirmed this finding, with the addition of significant 
interaction effects for RD in a subset of voxels (Figure 4). A significant 
interaction effect for MD and AxD was also observed in the left lower 
cingulum after the removal of outliers. However, when outliers were 
included the p value for MD increased from 0.005 to 0.078 and the p 
value for AxD increased from 0.003 to 0.025. All other findings were 
robust to the removal of outliers (Supplementary Table S5). In contrast, 
Model 3 did not show any significant interaction effects, indicating 
memory performance alone was not sensitive to the same group 
differences as SCD status despite the strong correlations between them 
(Supplementary Tables S6–S8). There were no significant interaction 
effects for cortical thickness in any of the regions studied 
(Supplementary Tables S8, S9). All findings were robust to the removal 
of outliers.

In post-hoc analyses, compared to controls, the SCD group 
showed a stronger correlation with age in MD, AxD, and RD, as well 
as a steeper slope, indicating an accelerated aging effect (Figure 3). 

There was a significant main effect with age in all imaging metrics 
studied. Across both groups, FA decreased with age (ß = −0.00216, 
p < 0.001), MD increased with age (ß = 2.51*10−4, p < 0.001), AxD 
increased with age (ß = 1.64*10−6, p < 0.001), and RD increased with 
age (ß = 3.06*10−6, p < 0.001). Left entorhinal (ß = −0.00654, p < 0.001), 
right entorhinal (ß = 8.00*10−3, p < 0.001), and right temporal pole 
(ß = −0.00504, p < 0.001) cortical thickness all decreased with age. All 
findings were robust to the removal of outliers.

3.4 Correlations between microstructure 
and cortical thickness

To further characterize the relationship between lower cingulum 
microstructure and atrophy, we  modeled group differences in the 
relationship between each diffusion metric and cortical thickness of 
bilateral entorhinal cortex and right temporal pole using Model 4. The 
model was applied independently for the two hemispheres. There were 

FIGURE 2

Interaction effects of cohort and delayed story recall score were confirmed by voxel-wise analysis with multiple comparisons correction of the whole 
right lower cingulum. Significant interactions (p  <  0.05, corrected for multiple comparisons using threshold-free cluster enhancement) are highlighted, 
with blue indicating a more positive slope in SCD and red indicating a more negative slope in SCD. The region of interest (lower cingulum) is in green. 
Associations between increased memory scores and increased FA (A) as well as associations between decreased memory scores and increased (B) MD, 
(C) AD, and (D) RD were larger in SCD than controls.

https://doi.org/10.3389/fneur.2024.1360273
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Flaherty et al. 10.3389/fneur.2024.1360273

Frontiers in Neurology 08 frontiersin.org

FIGURE 3

Linear regression of regional diffusion metric mean values in the whole right lower cingulum as a function of age for (A) FA (B) MD (C) AxD and (D) RD. 
The p-values of the group by age interaction are included in each chart subtitle. The interaction effects are significant for MD (B) and AxD (C) The 
adjusted R2 of post-hoc within-group correlations between diffusion metrics and age indicate a stronger association between the diffusion metrics 
and age in the SCD group in MD (B), AxD (C), and RD (D). Diffusivity values are reported with units of 10−3 mm2/s.

no significant interaction effects between cortical thickness and group 
in any of the tests of Model 4 (Supplementary Tables S10–S12). 
However, there were significant main effects for diffusion microstructure 
across groups. Post-hoc analyses of diffusion microstructure by cortical 
thickness across groups revealed reduced cortical thicknesses in the left 
entorhinal, right entorhinal, and right temporal pole were all associated 
with decreased FA, increased MD, and increased RD (Figures 5–7). 
Additionally, reduced cortical thickness in right entorhinal cortex was 
associated with increased AxD (Figure 6). After adjusting for age, the 
associations between diffusion microstructure and cortical thickness 
were no longer significant (Supplementary Tables S13–S15).

4 Discussion

None of the cortical thickness measures showed any interaction 
between SCD status and age, SCD status and memory performance, or 
age and memory performance. Only diffusion metrics showed interaction 
effects between SCD status, memory, age, and neurobiological changes.

There was significant correlation between memory and all the 
diffusion markers examined (FA, MD, RD, and AxD) only in the SCD 
group. We found that decreased FA, increased MD, and increased RD 
had a stronger correlation with poor memory performance in 
SCD. This diffusion profile is typically associated with demyelination 
(60) or axonal loss (61, 62). However, both demyelination and axonal 
loss are associated with reduced AxD (63, 64). Here we see increased 
AxD, which has previously been observed in vasogenic edema 
associated with stroke (65), Monte Carlo simulations and tissue 
phantom models of vasogenic edema (66), and increased 
immunoreactivity associated with encephalitis (67, 68). Therefore, the 
diffusion profile noted here in SCD may indicate a mixed pathology 
of neurodegeneration and neuroinflammation. Our finding that 
cortical thickness and volume did not show any interaction between 
SCD status and memory performance further indicates that this 
diffusion profile is not explained by neurodegeneration alone. The 
effect sizes (adjusted R2) of the associations between memory and 
diffusion metrics are small, but SCD and controls show different 
biological correlates with memory performance.
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When including age in our statistical modeling, participants with 
SCD present with an accelerated aging effect in diffusion 
microstructure, showing steeper variations with age. Similar to our 
findings in memory performance, this accelerated aging effect was 
noted for increased MD, RD, and AxD. As noted above, an increase in 
both RD and AxD is more suggestive of a mixed neurodegeneration 
and neuroinflammation pathology, rather than neurodegeneration 
alone (69–71). Cortical thickness did not capture this accelerated 
aging effect, further supporting that neurodegeneration alone was 
insufficient to explain these diffusion findings. The interaction 
between memory performance and age was not significant for any 
diffusion, cortical thickness, or cortical volume measures. Thus, SCD 
status was more sensitive than memory performance to differences in 
diffusion microstructure associated with aging.

Previous research investigating DTI in SCD has largely only 
included FA and MD in their analyses. Of these studies, some have 
reported no statistically significant findings in the lower cingulum (37, 
72, 73). These mixed findings may reflect, in part, the presence of field 
inhomogeneities reducing the signal-to-noise ratio of the diffusion 

images in the lower cingulum (74), as many studies do report reduced 
FA and increased MD in SCD in bilateral cingulum (26, 29, 42) or 
increased MD in SCD in the left lower cingulum (75). These later data 
are comparable to our findings of increased MD and reduced FA in 
right lower cingulum with age and memory performance in SCD.

Studies that do include AxD and RD in their analyses also have 
mixed results, with some studies finding no changes in the lower 
cingulum (35, 36, 76). However, other studies found increased RD in 
bilateral lower cingulum (34, 77) and in left lower cingulum (78). 
While other studies have found increased AxD in SCD (79, 80), none 
of these have localized to the lower cingulum. In our results, we find 
increased RD and AxD in the right lower cingulum related to age and 
poor memory performance in SCD, with few significant results in the 
left. This contrasts with past studies that found increased RD and no 
changes in AxD in the left lower cingulum.

In mild cognitive impairment, increased RD and MD, but not 
AxD, were found to be associated with low cognitive performance (81, 
82), representing a diffusion profile more suggestive of demyelination 
(83) and neurodegeneration (84). Prior research has shown a 

FIGURE 4

Interaction effects between cohort and age were confirmed by voxel-wise analysis with multiple comparisons correction of the whole right lower 
cingulum. Significant interactions (p  <  0.05, corrected for multiple comparisons using threshold-free cluster enhancement) were found for areas of the 
right cingulum and are highlighted in blue shades. The region of interest (lower cingulum) is in green. Associations between increased age and 
increased (A) MD, (B) AxD, and (C) RD were stronger in SCD than in controls. FA is not pictured because no voxels showed a significant interaction 
effect.
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FIGURE 5

Correlation between diffusion metrics in the whole left lower cingulum and thickness of the left entorhinal cortex for (A) FA (B) MD (C) AxD and (D) RD. 
The correlation is significant for FA (A), MD (B), and RD (D). Diffusivity values are reported with units of 10−3 mm2/s.

nonmonotonic trajectory of diffusion metrics in early AD, suggestive 
of an early inflammatory process followed by a neurodegenerative 
process (69–71). This includes an increase in free water, MD, and 
neurite density during the “inflammatory” stage followed by a 
decrease during the “degeneration” stage (71). Thus, our findings in 
SCD may be capturing an earlier, more inflammatory timepoint in the 
AD course occurring in parallel with neurodegeneration and the 
deposition of protein aggregates.

While we found group differences in cortical thickness in bilateral 
entorhinal cortex and right temporal pole, the correlations between 
cortical thickness and diffusion microstructural metrics did not differ 
between groups. Both AD and aging-related neurodegeneration are 
typically greater on the left than on the right (85), but here we found 
group differences in cortical thinning in more regions on the right than 
on the left. Cortical thinning in our study was associated with decreased 
FA, increased RD, and increased MD in the left lower cingulum and 
right temporal pole, a profile suggestive of demyelination (83) and 
suggestive of diffusion microstructural changes related to aging (86). In 
the right hemisphere, we found that cortical thinning was associated 
with increased AxD in addition to decreased FA, increased MD, and 
increased RD, suggesting a more mixed pathology, albeit with a small 
effect size.

In summary, DTI appeared to be more sensitive than cortical 
thickness to the associations between SCD, memory, and age. DTI 
metrics are aggregate measures of water diffusivity across 
microstructural compartments (87) and may reflect combinations of 
pathologies implicated in early AD, including demyelination, 
neurodegeneration, protein aggregation, neurovascular abnormalities, 
disrupted connectivity, and inflammation (88, 89). Thus, the combined 
effects of mixed pathology may increase the sensitivity of the DTI 
metrics to microstructural variations with age and cognition.

Strengths of this study include the large number of subjective 
cognitive decline participants scanned on the same MRI machine, at 
the same location, with the same protocol. This allowed us to achieve 
better sensitivity in the diffusion metric analysis. The participants have 
a diversity of years of education and income brackets. They are also 
evenly distributed between genders. No statistically significant 
differences in demographics were observed between cohorts.

Limitations of this study include a lack of ethnic diversity in the 
cohort. There also is no longitudinal data, Alzheimer’s biomarkers, or 
genetic data available from this dataset. Due to the lack of biomarker 
and longitudinal data in this study, it is difficult to interpret what 
pathologies underlie the changes observed in diffusion metrics here. 
Future work will apply similar analyses to a smaller dataset with 
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better biomarker data and longitudinal follow up. Magnetization 
transfer imaging data available from Cam-CAN may further clarify 
the MRI microstructure variations in this particular cohort.
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