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Introduction: In acute stroke, identifying early changes (parenchymal 
hypodensity) on non-contrast CT (NCCT) can be  challenging. We  aimed to 
identify whether the accuracy of clinicians in detecting acute hypodensity in 
ischaemic stroke patients on a non-contrast CT is improved with the use of 
an Artificial Intelligence (AI) based, automated hypodensity detection algorithm 
(HDT) using MRI-DWI as the gold standard.

Methods: The study employed a case-crossover within-clinician design, where 
32 clinicians were tasked with identifying hypodensity lesions on NCCT scans 
for five a priori selected patient cases, before and after viewing the AI-based 
HDT. The DICE similarity coefficient (DICE score) was the primary measure of 
accuracy. Statistical analysis compared DICE scores with and without AI-based 
HDT using mixed-effects linear regression, with individual NCCT scans and 
clinicians as nested random effects.

Results: The AI-based HDT had a mean DICE score of 0.62 for detecting 
hypodensity across all NCCT scans. Clinicians’ overall mean DICE score was 
0.33 (SD 0.31) before AI-based HDT implementation and 0.40 (SD 0.27) after 
implementation. AI-based HDT use was associated with an increase of 0.07 
(95% CI: 0.02–0.11, p  =  0.003) in DICE score accounting for individual scan 
and clinician effects. For scans with small lesions, clinicians achieved a mean 
increase in DICE score of 0.08 (95% CI: 0.02, 0.13, p  =  0.004) following AI-based 
HDT use. In a subgroup of 15 trainees, DICE score improved with AI-based HDT 
implementation [mean difference in DICE 0.09 (95% CI: 0.03, 0.14, p  =  0.004)].

Discussion: AI-based automated hypodensity detection has potential to 
enhance clinician accuracy of detecting hypodensity in acute stroke diagnosis, 
especially for smaller lesions, and notably for less experienced clinicians.
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Introduction

The mainstay of acute stroke imaging has been computed 
tomography (CT). It is relatively accessible in most hospitals 
throughout the world, is inexpensive compared with magnetic 
resonance imaging (MRI), efficient, fast and has few 
contraindications (1). However, in the first few hours after stroke 
onset, identification of the early signs of ischaemic stroke 
(parenchymal hypodensity and focal swelling) on non-contrast CT 
(NCCT) (1–3) can be challenging for even the most experienced 
clinicians (4). Image interpretation can delay therapeutic decisions 
and is often the rate limiting step, particularly if the radiologist is 
offsite, which often is the case in rural and remote Australia for 
example (5, 6). For the onsite clinicians, fatigue and inexperience 
can affect image interpretation and delay treatment decisions (1). 
However, identification of these subtle changes (particularly 
parenchymal hypodensity) is necessary as they likely represent 
irreversible ischaemia and this is an important consideration in the 
decision to offer reperfusion therapy (6).

As reperfusion treatment is time critical, decision support tools 
such as artificial intelligence (AI) based automated hypodensity 
detection have the potential to improve detection of early ischemic 
change and reduce delays in diagnosis and reperfusion treatment (1).

Current literature describes several approaches for hypodensity 
detection for NCCT images in stroke. For example, image filtering 
(windowing) to enhance the visibility of ischaemic changes (7, 8), 
spatial normalisation between a template of healthy controls and the 
examined brain (9, 10), topographic scoring using the territories of 
the middle cerebral artery (MCA) (11, 12), classification of the image 
texture features (13) and imaging biomarkers (14). A recent meta-
analysis demonstrated that AI-driven tools had performed either 
comparable to or surpassed that of physicians in the assessment of 
early changes after stroke (15). This indicates that AI-based 
hypodensity detection tools have the potential to improve clinician 
performance, however this has not been assessed previously.

One AI-based automated NCCT hypodensity detection tool 
(HDT, MIstar, Apollo Medical Imaging, Melbourne, Australia) uses 
histogram-based left-right brain comparisons to detect regions-of-
interest that show unilateral hypodense areas. It uses iterative level-set 
optimization to identify areas of hypodensity within a non-contrast 
CT scan. This AI-based HDT showed strong positive correlation with 
the gold standard, magnetic resonance imaging diffusion-weighted 
imaging (MRI-DWI) (correlation coefficient >0.5, unpublished data).

Thus, the aim of this study was to investigate whether the accuracy 
of clinicians in detecting acute hypodensity in ischaemic stroke 
patients on non-contrast CT is improved with the use of an AI-based 
automated HDT algorithm.

We hypothesized that the accuracy of clinicians in detecting acute 
hypodensity in ischaemic stroke patients on non-contrast CT will 
be improved with the use of an AI-based automated HDT algorithm.

Methods

Study design

This was a case-cross over within-clinician study where 
clinicians were asked to identify hypodensity lesions first before, 

and then after, the help of the AI-based HDT output on a set a 
priori purposively sampled patient cases that represent the broad 
population of acute stroke patients. While both individual 
clinicians and case scans can be  considered as sources of 
variability in this design, the objective of investigating clinicians 
accuracy dictates the need to treat clinicians as units of analysis. 
Individual scans were purposively selected to represent variant 
lesion size and hemisphere, representative of acute stroke, of the 
anterior circulation. Among the 5 NCCT scans, 2 had large 
lesions with hypodensity involving more than 2/3 the MCA 
territory, and 3 scans had small lesions. All scans had a 
corresponding MRI-DWI during admission. The summary of 
selected case characteristics is presented in Figure 1 and Table 1.

Clinicians were instructed to manually segment a single slice 
of five different patients’ NCCT scans before having access to the 
AI-based HDT output (Figure 2). Once they had segmented the 
single slice and sent their segmentation back to the study 
coordinator (MV), they were given the AI-based HDT output 
that had identified the hypodensity on the same single slice. The 
clinicians were asked to compare the AI-based HDT output and 
their initial drawing. They were asked to draw a new lesion if they 
felt the AI-based HDT helped identify the hypodensity. They 
then sent their completed segmentations back to the study 
coordinator for analysis.

Power analysis

As the primary objective of this study was to investigate 
clinicians’ accuracy, power was calculated on the need to treat 
clinicians as units of analysis. Recruiting 32 clinicians provided 
0.8 power to detect the medium effect size (Cohen’s d = 0.5) for 
the difference in means of DICE score (dependent samples/
matched pairs without and with the use of AI-based HDT) under 
the settings of two-sided type I error of 0.05. The clinicians were 
either neurology trainees with less than 5 years experience 
reading NCCT in acute stroke patients or consultant neurologists 
with more than 5 years experience.

Study scans

Automated NCCT AI-based hypodensity 
detection tool

The NCCT scans in this study were obtained from the 
Toshiba Aquilion One from two INternational Stroke Perfusion 
Imaging REgistry (INSPIRE) sites (Canon, Tokyo, Japan). The 
NCCT lesion was segmented automatically with the AI-based 
HDT algorithm on MIStar software as illustrated in Figure  1 
(Apollo Medical Imaging, Melbourne, Australia). It consisted of 
the following steps: (1) assessing the symmetry of the density 
histograms of the left and right hemisphere (after registration to 
a template), (2) definition of potential seeds, and (3) iterative 
optimization of level-set thresholds.

Manual segmentation of NCCT
The clinicians were instructed to manually segment on axial views, 

a slice of each of the five NCCT scans. Clinicians were provided the 
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whole brain NCCT for review only. The segmentation was completed 
using the paintbrush mode in the ITK-SNAP software application.1

Manual segmentation of MRI
MRI-DWI images were manually segmented by trained personnel 

using ITK-SNAP to extract infarct lesions as reference. MRI-DWI 
lesions were registered to the NCCT images using Advanced 
Normalization Tools (ANTS) (16).

Statistical analysis

The primary outcome of this study was assessed with the DICE 
similarity coefficient (DICE score). The DICE score measures the 
similarity of the lesion segmentations. It ranges from 0 to 1, when 0 
represents no overlap and 1 represents perfect overlap. The DICE 
score is calculated by the following equation:

1 http://www.itksnap.org

 
DICE

Area of overlap between NCCT 

lesion and MRI DWI lesion
=

∗2

TTotal area of NCCT and MRI DWI

In this study, the DICE scores were calculated for the following 
comparisons: (1) the AI-based HDT output and the registered MRI-DWI 
lesion, (2) the clinicians’ segmentation before viewing the AI-based HDT 
and the registered MRI-DWI lesion, and (3) the clinicians’ segmentation 
after viewing the AI-based HDT and the registered MRI-DWI lesion.

The DICE scores were summarized using mean and standard 
deviation (SD). To compare the difference of the DICE score for clinicians 
before and after AI-based HDT implementation, a three-level mixed-
effects linear regression was performed with DICE score as the outcome, 
AI-based HDT implementation before versus after as the independent 
variable, and NCCT scans and clinicians as nested random effects.

Subgroup analyses were conducted on NCCT slices with large and 
small lesions, as well as NCCT slices segmented by consultants 
versus trainees.

All statistical analyses were performed with STATA 13.0 (Stata 
Corp, College Station, Texas, United States). p-values less than 0.05 
were considered as indicative of statistical significance. Confidence 
intervals (CI) were set at 95%.

Ethics

This study used data from the INSPIRE registry, a prospectively 
collected acute stroke clinical and imaging database. INSPIRE had 
central ethics approval by the Hunter New England Human Research 
Ethics Committee (HNEHREC 11/08/17/14.01), written informed 
consent was obtained for each patient for their data to be used as part 
of the INSPIRE registry. The INSPIRE registry and all associated 

FIGURE 1

Case selection top left: Image ID 1, middle left: Image ID 2, bottom left: Image ID 3, top right: Image ID 4, middle right: Image ID 5.

TABLE 1 Case selection description.

Cases Infarct description
Stroke onset 
time to CT in 

hours

1 Small right basal ganglia infarct 4.1

2 Small right frontal infarct 1.2

3 Large right fronto-temporal parietal infarct 5.7

4 Large left fronto-temporal infarct 10.1

5 Small left frontal infarct 7.9
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TABLE 2 Median DICE score across the 6 NCCT for clinicians and HDT.

Image ID N
Clinician DICE before HDT 
implementation, mean (SD)

Clinician DICE after HDT 
implementation, mean (SD)

DICE of HDT

1 26 0.08 (0.18) 0.17 (0.22) 0.54

2 27 0.30 (0.32) 0.41 (0.28) 0.63

3 26 0.58 (0.21) 0.55 (0.20) 0.62

4 27 0.27 (0.32) 0.35 (0.30) 0.66

5 26 0.42 (0.24) 0.53 (0.17) 0.65

Overall 132 0.33 (0.31) 0.40 (0.27) 0.62

TABLE 3 Estimates of DICE change in mixed-effects linear regression.

Image ID N
DICE changes, 

coefficient (95% CI)a p-value

1 26 0.09 (0.02, 0.16) 0.017

2 27 0.12 (0.04, 0.19) 0.002

3 26 −0.03 (−0.07, 0.01) 0.162

4 27 0.08 (0.01, 0.16) 0.043

5 26 0.12 (0.05, 0.18) 0.01

Overall 132 0.07 (0.02, 0.11) 0.003
aCoefficient estimates the difference of DICE score before and after HDT implementation 
adjusting for the random effect of clinicians in mixed effects liner regression model.

analyses are conducted in accordance with the declaration 
of Helsinki.

Results

Data selection

A total of 32 clinicians participated in the study. Five clinicians 
were excluded as their drawings were incorrectly saved and unable to 
be  read. For the remaining 27 clinicians, 26 clinicians had the 5 
NCCT scan assessments completed before and after the AI-based 
HDT was provided, whereas 1 clinician had 2 NCCT scans reviewed 
and assessed. Thus, a total of 132 matched pairs of segmentations 
before/after AI-based HDT from 27 clinicians were included in 
this study.

AI-based HDT performance against 
MRI-DWI gold standard

When compared to the true lesion reference on MRI-DWI, the 
AI-based HDT resulted in a mean DICE score of 0.62 (SD 0.05) in 
detecting the hypodensity region on NCCT slices. The AI-based HDT 
performance was consistent across the 5 NCCT slices, with DICE 
scores ranging from 0.54 to 0.66 (Table 2).

Clinician performance against MRI-DWI 
gold standard

The overall mean DICE score for clinician interpretation of the 
NCCT slice before the AI-based HDT was applied was 0.33 (SD 0.31). 
The mean DICE score was 0.40 (SD 0.27) after clinicians viewed the 
AI-based HDT output (Table 2).

AI-based HDT use was associated with an increase of 0.07 (95% 
CI: 0.02–0.11, p = 0.003) in mean DICE score on mixed-effects linear 

regression, accounting for individual scans and clinicians as nested 
random effects.

For each NCCT, the performance of clinicians with and without 
the AI-based HDT in delineating NCCT lesion is summarized in 
Tables 2, 3 and Figure 3. The mixed-effects linear regression showed 
that DICE score was significantly increased in 4 NCCT scans after 
the AI-based HDT was reviewed, with the mean increase in DICE 
score of 0.09 (95% CI of 0.02 to 0.16) for Image ID 1, 0.12 (95% CI 
of 0.04 to 0.19) for Image ID 2, 0.08 (95% CI of 0.01 to 0.16) for 
Image ID 3, 0.07 (95% CI of 0.02 to 0.11) for Image ID 5. No such 
evidence of an increase was observed for Image ID 4, with the 
magnitude of −0.03 (95% CI of −0.07 to 0.01).

Performance of clinicians when assessing 
large versus small lesions

For the slices with large lesions (53 paired segmentations), the 
mean DICE score was 0.44 (SD 0.31) and 0.48 (SD 0.25) for clinicians 
before and after the AI-based HDT implementation, respectively. This 
improvement after AI-based HDT for the large lesion cases was not 
significant, with the mean increase in DICE score of 0.05 (95% CI: 
−0.02, 0.11, p = 0.192). For the slices with small lesions (79 paired 
segmentations), the mean DICE score was 0.25 (SD 0.29) and 0.35 (SD 
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FIGURE 2

Schematic diagram of methods.
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0.28) for clinicians before, and after, the AI-based HDT 
implementation. The mean increase in DICE scores following 
AI-based HDT use was significant, 0.08 (95% CI: 0.02, 0.13, p = 0.004).

Performance of consultant versus trainee

Among the 27 clinicians, 12 were consultant neurologists and 15 
were trainee neurologists. For the subgroup of 12 consultants the mean 
DICE score was 0.40 (SD 0.33) and 0.45 (SD of 0.29) before and after the 
AI-based HDT implementation, respectively. This was not a significant 
improvement in DICE score for the consultants after AI-based HDT 
(mean difference in DICE = 0.04, 95% CI: −0.02, 0.107, p = 0.189). In 
contrast, the subgroup of 15 trainees produced a mean DICE score of 
0.26 (SD of 0.28) before and 0.37 (SD of 0.26) after AI-based HDT, 
respectively, (Figure  3), demonstrating a significant AI-based HDT 
effect in improving DICE scores. The mean difference in DICE was 0.09 
(95% CI: 0.03, 0.14, p = 0.004). The performance of consultants versus 
trainees for each scan is further illustrated in Figure 4.

Success rate of HDT implementation

On review of the data, the clinicians decided not to change their 
original segmentations after reviewing the AI-based HDT output 
exactly half (50, 95% CI: 42, 58%) of the time. When we analysed 
only the segmentations that were changed after reviewing the 
AI-based HDT output, we  noted the following changes to the 
original segmentation. For the consultants, mean DICE score was 
0.42 (SD 0.31) and 0.51 (SD 0.19) respectively, and mean difference 
of DICE was 0.09 (95%CI: −0.01, 0.19) for the consultants. For the 

trainees, mean DICE was 0.31 (SD 0.29) and 0.51 (SD 0.16) 
respectively, and difference of mean DICE was 0.20 (0.12, 0.28).

Discussion

We proved our primary hypothesis that the artificial intelligence 
(AI) based hypodensity detection tool (HDT) improved clinician 
detection of acute hypodensity on NCCT. Indeed, the AI-based HDT 
had relatively good performance in the detection of acute hypodensity 
on NCCT, and, it proved to be superior to all clinicians. Some might 
interpret our results as “AI should replace clinicians.” This is the first 
time the automated hypodensity detection algorithm has been used in 
clinical practise. The study was not designed to show superiority of the 
algorithm, it was designed to determine if it helped doctors’ identity 
hypodensity. A further study could be completed to show definite 
superiority of the algorithm.

Notably the AI-based HDT was most useful for neurology 
trainees, and when assessing small hypodense lesions. This is evident 
when looking at individual cases, given Image ID 3 had the best DICE 
score before AI-based HDT was applied. If all neurology trainees had 
changed their segmentation after reviewing the AI-based HDT, then 
the results may have been even more impressive.

These results suggest that clinicians applying AI-based HDT to 
acute stroke CT would have the greatest impact in regional, rural, and 
remote health care settings, where expert neurology consultants are not 
immediately available to assess acute stroke imaging for patients who 
need reperfusion therapy. Whilst any AI-based automated imaging tool 
does not replace the need for clinical judgment, AI-based HDT could 
provide support and guidance, and/or notify onsite doctors without 
expertise in NCCT assessment that the patient being assessed may have 

FIGURE 3

Forrest plot of DICE score changes before and after the HDT implementation.
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hypodensity on their NCCT, which can then help to influence 
treatment decisions. A further, larger validation study would also 
include radiology trainees, radiologist and neuroradiologists.

One of the most interesting findings of this study was the 
“resistance” of the doctors to change their assessment of the NCCT, 
even after reviewing the AI-based HDT output. Despite the clinicians 
knowing they were receiving an AI-based automated hypodensity 
detection output (which may be considered a source of bias), 50% of 
the participants did not change their original drawing. This assumes, 
50% of the doctors were not willing to trust the AI-based hypodensity 
detection tool. This either speaks to the doctor’s (over)confidence in 
their ability to assess NCCT, or their wariness of relying on AI-based 
HDT to make an imaging decision (which has flow on effects on 
treatment decisions).

The main limitation of this study was the number of clinicians 
recruited and the resultant total of paired segmentations. The 
variability of results comes from the clinicians, with the scans used to 
test the clinician’s ability. The scans were selected to reflect different 
characteristics of lesions (size, location) to ensure the representative 
sample of scans, making them generalisable in acute stroke and a 
strength of this study.

In summary, these findings show the potential of AI-based HDT 
to significantly enhance clinician diagnostic precision and holds 
promise for its valuable application in clinical practice, particularly in 
neurology training and challenging diagnostic scenarios involving 
smaller hypodense lesions.
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