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Introduction: T2 mapping can characterize peripheral neuropathy and muscle

denervation due to axonal damage. Three-dimensional double echo steady-

state (DESS) can simultaneously provide 3D qualitative information and T2 maps

with equivalent spatial resolution. However, insu�cient signal-to-noise ratiomay

bias DESS-T2 values. Deep learning reconstruction (DLR) techniques can reduce

noise, and hence may improve quantitation of high-resolution DESS-T2. This

study aims to (i) evaluate the e�ect of DLR methods on DESS-T2 values, and

(ii) to evaluate the feasibility of using DESS-T2 maps to di�erentiate abnormal

from normal nerves and muscles in the upper extremities, with abnormality as

determined by electromyography.

Methods and results: Analysis of images from 25 subjects found that DLR

decreased DESS-T2 values in abnormal muscles (DLR = 37.71 ± 9.11 msec,

standard reconstruction = 38.56 ± 9.44 msec, p = 0.005) and normal muscles

(DLR: 27.18± 6.34msec, standard reconstruction: 27.58± 6.34msec, p< 0.001)

consistent with a noise reduction bias. Mean DESS-T2, both with and without

DLR, was higher in abnormal nerves (abnormal = 75.99 ± 38.21 msec, normal =

35.10 ± 9.78 msec, p < 0.001) and muscles (abnormal = 37.71 ± 9.11 msec,

normal = 27.18 ± 6.34 msec, p < 0.001). A higher DESS-T2 in muscle was

associated with electromyography motor unit recruitment (p < 0.001).

Discussion: These results suggest that quantitative DESS-T2 is improved by DLR

and can di�erentiate the nerves and muscles involved in peripheral neuropathies

from those uninvolved.
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Introduction

Peripheral neuropathies are caused by nerve compression, inflammation, or trauma

and may lead to muscle denervation if axonal injury ensues (1, 2). Magnetic resonance

neurography (MRN) techniques employ T2-weighted, fat-suppressed sequences with flow

suppression to depict nerve morphology and to highlight pathologically increased signal of

both nerves and muscles (3). Conventional T2 mapping provides quantitative information

with potentially less bias than qualitative evaluation of T2-weighted signal intensity (4). T2

mapping can quantify neuropathy-related changes in nerve (5, 6) and has demonstrated

correlation with electrodiagnostic results in muscles including those of the upper extremity

(4, 7).
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While T2 values may be obtained using a number of different

methods, including fast spin-echo (FSE)/turbo spin-echo (TSE)

at multiple echo times (5) and T2-prepared TSE (8), the most

commonly-used method for T2-mapping is the conventional

multi-echo spin-echo (MESE) method. While T2 mapping using

MESE has been readily applied inmuscle (7, 9), it is limited in nerve

imaging because (i) as a 2D acquisition, MESE typically has poor

slice-resolution (3–6mm) and may not be readily reformatted in

different planes for nerve evaluation, and (ii) MESE has poor scan

efficiency, requiring multiple echoes (8–16) and often long scan

times (>8min) for acquiring high in-plane resolution (0.3mm)

(10). Nevertheless, promising findings of correlation between nerve

MESE T2 and electrodiagnostic results have been observed (4, 11),

which motivate improving the spatial resolution of T2 mapping in

peripheral nerve assessment.

Double echo steady-state (DESS) can provide high-resolution,

T2-weighted images for morphologic nerve assessment (12, 13).

DESS can also simultaneously generate T2 maps at identical spatial

resolutions (12, 14), eliminating the need for image registration (10)

and reducing the overall exam time if T2 maps are also desired.

However, as high spatial resolutions are typically acquired in MRN

(∼0.3mm in-plane, ∼1.6mm through-plane), and signal-to-noise

ratio (SNR) decreases with resolution, insufficient SNR may still

potentially bias DESS-T2 values.

Deep learning reconstruction (DLR) techniques have

demonstrated the ability to improve image quality (15–18). In

2D imaging, DLR reduces noise, blurring, and Gibbs ringing

(19–22), which in MRN, improves peripheral nerve conspicuity

and qualitative assessment (23). 3D-DLR has been applied in spine

MRI and brachial plexus MRN, demonstrating improved image

quality compared to standard reconstruction (24–28), but has not

been demonstrated in DESS-T2 mapping.

This study aims to (i) evaluate the effect of 3D-DLR on DESS-

T2 values, and (ii) to evaluate the feasibility of using DESS-T2

maps to differentiate pathologic from normal nerves and muscles

in the upper extremities. We hypothesized that DLR would reduce

mean T2 due to a reduction in Rician noise bias (29). We

also hypothesized that mean T2 would be higher in abnormal

nerves and muscles, and that DESS-T2 would be associated with

electromyography (EMG) results.

Materials and methods

Study subjects and power analysis

This study was approved by the institutional review board

and written informed consent waived due to its retrospective

nature. Electronic medical records were searched for patients who

underwent standard, clinicalMRNwith DESS to evaluate suspected

neuropathy localized to the elbow or forearm region, between July

2022 and April 2023.

Patients met inclusion criteria if they underwent an EMG that

showed abnormal results in at least one of the median, radial,

or ulnar nerve distributions (Figure 1). Abnormality was defined

as the presence of denervation potentials or abnormal motor

unit recruitment (MUR) on EMG. EMGs performed outside of

a 6-month interval from MRN were excluded, similar to a prior

study (7).

Based on a previous study involving T2 mapping in

forearm nerve compression (5), it was calculated that the

current study would require a sample size of 16 to achieve

a power of 80% and a level of significance of 5% (two-

sided) for detecting a mean T2 difference of 5.5 msec between

pairs, assuming the standard deviation of the differences was

6.9 msec.

Clinical EMG

EMGs were assessed for (i) MUR, in increasing severity from

“full” to “reduced,” “discrete,” and “none,” and (ii) denervation

potentials in the form of fibrillation potentials (FPs) or positive

sharp waves (PSWs) (30). As both FPs and PSWs are measures

of abnormal spontaneous activity with increasing severity from

“0” (no denervation) to “1+”, “2+”, “3+” and “4+”, for each

muscle only the more severe of FPs and PSWs was used for

analysis (31).

Image acquisition

All MRN was performed at 3 Tesla (Premier, GE Healthcare,

Waukesha, WI). The imaging protocol (Supplementary Table 1)

included an axial, 3D-DESS sequence [also known as Multi-

Echo iN Steady-State Acquisition (MENSA), resolution = 0.3

× 0.3 × 1.6mm, scan time = 4–6min]. If conventional

T2 mapping results were also available, acquired as part of

other muscle edema studies (2D axial MESE, 0.6 × 0.7 ×

4.0mm, 5min), these were included for comparison against

DESS-T2 maps.

Image reconstruction

3D-DESS images were reconstructed with standard image

reconstruction and with 3D-DLR as part of an offline pipeline (25).

For both reconstructions, the two DESS echoes were separated

to generate DESS-T2 maps. A vendor-provided prototype DLR

software (AirTM Recon DL, GE Healthcare, Waukesha, WI, USA)

was utilized to reduce noise and improve sharpness by processing

3D data for de-ringing, denoising, and interpolation in all three

directions (21, 25). The algorithm uses a convolutional neural

network of 4.4 million parameters in approximately 10,000 kernels

trained with a supervised learning approach using pairs of

conventional and ‘near perfect’ (high resolution, low noise, and

minimal ringing) images. The software, which operates on raw,

complex-valued datasets, allows for the selection of the extent of

DLR—either “low” (25%,), “medium” (50%) or “high” (75%); DLR

“high” was utilized and implemented on a separate workstation

(Ubuntu 20.04, Intel Xeon W-2265 CPU, Nvidia RTX A5000 GPU,

reconstruction time: 2min) (21, 25).
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FIGURE 1

Flow diagram of subject inclusion, reasons for exclusion, and subjects analyzed.

FIGURE 2

DESS pulse sequence diagram and equation used for T2 calculation (A). The first echo, S+, utilizes free induction decay signal and has mixed T1 and

T2 contrast, while the second echo, S-, is more heavily T2-weighted, due to contributions from previous excitations. Representative axial images

from a 39-year-old man with Parsonage-Turner Syndrome of S+ (B) and S- (C) echoes acquired within the proximal forearm reveal di�use

hyperintensity, compatible with active denervation, of the pronator teres muscle (*), best seen on the S- image, and also of the median nerve (MN,

arrow). Corresponding DESS-T2 map (D) demonstrates increased T2 in the pronator teres and median nerve.

T2 mapping

DESS is a steady-state free precession sequence with its two

echoes separated by a spoiler gradient (Figure 2). The first echo,

S+, utilizes free induction decay signal and has mixed T1 and

T2 contrast. The second echo, S−, is more heavily T2-weighted

than the first echo, due to contributions from previous excitations.

Equations describing the signal of both echoes based on the T1, T2,

TR, and TE (32, 33) show that DESS-T2 is relatively invariant to T1

(14), and from these the T2may be approximated using Equation 1:

S−

S+
= e−2 (TR−TE)

T2 (1)

As these approximated T2 values can slightly underestimate the

actual T2 values from DESS equations (33), these approximated

T2 values were then mapped to the actual T2 values, using

a dictionary of T2 values from 3ms to 300ms in steps of

0.1ms, assuming nerve T1 = 1,600ms, and muscle T1 =

1,400ms. The DESS-T2 maps were obtained separately for

standard reconstruction and DLR images using in-house code

(https://github.com/hssmri/mensa.git, MATLAB, MathWorks Inc.,

Natick, MA).

Conventional T2-mapping was also processed using in-house

code developed on MATLAB for muscle analysis, using single-

exponential fitting with B1+ correction (34).
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FIGURE 3

Comparison of DESS S− images with standard reconstruction (A) and with DLR (B) from a 44-year-old man with ulnar neuropathy. Insets show

reduced noise and superior conspicuity with DLR of fascicular bundles in the normal median nerve (MN) (C, E) and abnormal ulnar nerve (UN) (D, F).

The e�ect of DLR is also seen in T2 map insets (G–J) corresponding to (C–F).

FIGURE 4

Oblique coronal multiplanar reformat (MPR) of 3D DESS acquired at the elbow joint (A) shows enlargement and hyperintensity (bracket) and a focal

constriction (arrows) of the median nerve in a 48-year-old man, compatible with Parsonage-Turner syndrome. Axial DESS S- image (B) through the

distal forearm shows muscle ROI selection of the pronator quadratus (PQ) (∧) and flexor carpi ulnaris (FCU) (*). T2 map (C) through the distal forearm

shows increased T2 in the denervated PQ compared to the normal FCU.
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Quantitative image analysis

For each subject, one abnormal nerve and muscle, and

one normal nerve and muscle were identified, based on EMG

evaluation. Regions of interest (ROIs) were manually segmented on

DESS images and checked for alignment with MESE images (where

available) using ITK-Snap (35) by two raters—a research assistant

(GC/Rater 1 with 1 year of image segmentation experience)

and a second-year medical student (SQ/Rater 2 with 4 years’

experience). The abnormal nerve ROI was selected on three non-

consecutive S− axial image slices corresponding to the area of

nerve abnormality. The normal nerve ROI was then selected on

the same slices (Figure 3). Abnormal and normal muscles were

similarly segmented on three non-consecutive image slices, with

denervatedmuscles typically distal to the involved nerve (Figure 4).

Image ROIs were checked by a radiologist (YL, with seven years’

experience) to confirm that placement of ROIs agreed with reports

of either abnormality or normality on EMG. The mean T2 and its

standard deviation normalized to the mean were obtained for each

nerve or muscle ROI.

Statistical analysis

Pearson’s correlation (r) was used to evaluate inter-rater

agreement for all measurements. One-way repeated measures

ANOVA was used to compare the mean DESS-T2 and T2

standard deviation of four groups of a within-subjects variable

(normal nerve/muscle with standard reconstruction, abnormal

nerve/muscle with standard reconstruction, normal nerve/muscle

with DLR, abnormal nerve/muscle with DLR). Multiple pairwise

paired t-tests were next performed to examine the differences

in mean T2 and T2 standard deviation between different

permutations of pairs between the four groups. The p-values

were adjusted using the Bonferroni multiple testing correction

method. Kendell’s Rank Correlation and generalized linear models

were used to evaluate associations between mean T2 and either

FPs/PSWs or MUR. All statistical analyses were performed using

R (version 4.0.3). A p< 0.05 was considered statistically significant.

Magic angle dependency

The magic angle behavior of nerve DESS-T2 with DLR was also

evaluated. The nerve orientation with respect to B0 was determined

by Rater 1 using Volume Viewer (GE Healthcare, Waukesha, WI,

USA), which allowed vector lines to be drawn tangent to the

nerve, from which the solid angle from B0 could be obtained

via the cosine rule (Supplementary Figure 1). Linear regressions

between this calculated angle and DESS-T2 were performed. This

was conducted separately for abnormal and normal nerves.

Results

Of the 51 patients initially identified who had undergone MRN

with DESS, 20 were excluded because they did not have EMG

results indicating denervation, and six more were excluded as the

TABLE 1 Patient demographics.

Demographics N

Mean age, years (range) 52 (22–80)

Sex (%) Female 10 (40)

Male 15 (60)

Upper extremity (%) Left 8 (32)

Right 17 (68)

Days from EMG to MRI

[mean (SD)]

18.2 (25.78)

Abnormal nerve (%) Median nerve 15 (60)

Radial nerve 7 (28)

Ulnar nerve 3 (12)

Abnormal muscle (%) Pronator teres 6 (24)

Extensor digitorum 6 (24)

Flexor digitorum profundus 5 (20)

Flexor pollicis longus 3 (12)

Pronator quadratus 2 (8)

Flexor digitorum superficialis 2 (8)

Flexor carpi ulnaris 1 (4)

EMG, Electromyography; SD, standard deviation.

EMG was performed beyond the requisite 6-month interval from

MRI (Figure 1). Demographic characteristics for all 25 patients

who met inclusion criteria (52 ± 15 years, 15 men) are listed in

Table 1. Among these, 16 were diagnosed with Parsonage-Turner

syndrome, three with non-specific radial neuropathy, three with

cubital tunnel syndrome (ulnar nerve), one with inflammatory

neuropathy involving the radial and median nerves, one with

pronator teres syndrome (median nerve), and one with idiopathic

wrist drop (radial nerve). EMGs were performed by one of nine

providers; a single provider with >30 years’ electrodiagnostic

experience performed 13 evaluations. In 16 of the 25 subjects,

an additional MESE sequence was acquired as part of a different

prospective study in Parsonage-Turner syndrome, where theMESE

was acquired for muscle analysis rather than for the nerves.

Hence, only 13 of 16 MESE data sets could be analyzed for nerve

involvement, due to the limited slice coverage obtained.

Inter-rater agreement for quantitative T2

The Pearson r correlation coefficients of mean T2 and

T2 standard deviation measurements between the two raters

ranged from 0.864 to 0.998 (Table 2). Due to this high degree

of correlation, the mean value of both readers was used for

subsequent comparisons.

DLR vs. standard reconstruction

Abnormal nerves analyzed were the median (16), radial

(5), and ulnar nerves (4) (Figure 5). Table 3 shows that the
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TABLE 2 Inter-rater agreement of quantitative measurements.

Variable Correlation coe�cient, r p-value

Mean T2

Abnormal Nerve DESS-T2 with Standard Reconstruction 0.991 <0.001

Normal Nerve DESS-T2 with Standard Reconstruction 0.948 <0.001

Abnormal Nerve DESS-T2 with DLR 0.993 <0.001

Normal Nerve DESS-T2 with DLR 0.966 <0.001

Abnormal Muscle DESS-T2 with Standard Reconstruction 0.992 <0.001

Normal Muscle DESS-T2 with Standard Reconstruction 0.998 <0.001

Abnormal Muscle DESS-T2 with DLR 0.989 <0.001

Normal Muscle DESS-T2 with DLR 0.998 <0.001

Normalized T2 Standard Deviation

Abnormal Nerve DESS-T2 with Standard Reconstruction 0.979 <0.001

Normal Nerve DESS-T2 with Standard Reconstruction 0.864 <0.001

Abnormal Nerve DESS-T2 with DLR 0.977 <0.001

Normal Nerve DESS-T2 with DLR 0.945 <0.001

Abnormal Muscle DESS-T2 with Standard Reconstruction 0.897 <0.001

Normal Muscle DESS-T2 with Standard Reconstruction 0.913 <0.001

Abnormal Muscle DESS-T2 with DLR 0.869 <0.001

Normal Muscle DESS-T2 with DLR 0.916 <0.001

DLR, Deep learning reconstruction; DESS, double echo steady state. Statistically significant results (p < 0.05) are in bold font.

FIGURE 5

Oblique sagittal (A) and coronal (B) multiplanar reformat (MPR) of the 3D DESS S- echo, acquired at the elbow joint in a 51-year-old man with cubital

tunnel syndrome, show the median (MN) and ulnar nerves (UN). A 3D rendering (C) generated using 3D DESS for nerves and a zero time-to-echo

sequence for bones allows for visualization of the MN, UN, and radial nerve (RN).

mean T2 was significantly lower with DLR than with standard

reconstruction for abnormal muscles (DLR: 37.71 ± 9.11 msec,

standard reconstruction: 38.56 ± 9.44 msec, p = 0.005) and

normal muscles (DLR: 27.18± 6.34 msec, standard reconstruction:

27.58 ± 6.34 msec, p<0.001). Differences in abnormal and

normal nerves between standard reconstruction and DLR were
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TABLE 3 Comparison of mean T2 between standard reconstruction and DLR and between abnormal nerves/muscles and normal nerves/muscles.

Variable N Mean
(ms)

SD Multiple comparisons (paired t-test with adjusted p-values)

Group 1 Group 2 p-value

Nerve

Abnormal (DLR) 25 75.99 38.21 Abnormal (DLR) Abnormal (standard recon.) 1

Abnormal (standard recon.) 25 74.32 37.66 Abnormal (DLR) Normal (DLR) <0.001

Normal (DLR) 25 35.10 9.78 Abnormal (DLR) Normal (standard recon.) <0.001

Normal (standard recon.) 25 34.49 7.93 Abnormal (standard recon.) Normal (DLR) <0.001

ANOVA p-value: 0.008 Abnormal (standard recon.) Normal (standard recon.) < 0.001

Normal (DLR) Normal (standard recon.) 1

Muscle

Abnormal (DLR) 25 37.71 9.11 Abnormal (DLR) Abnormal (standard recon.) 0.005

Abnormal (standard recon.) 25 38.56 9.44 Abnormal (DLR) Normal (DLR) <0.001

Normal (DLR) 25 27.18 6.34 Abnormal (DLR) Normal (standard recon.) <0.001

Normal (standard recon.) 25 27.58 6.34 Abnormal (standard recon.) Normal (DLR) <0.001

ANOVA p-value: <0.001 Abnormal (standard recon.) Normal (standard recon.) < 0.001

Normal (DLR) Normal (standard recon.) <0.001

DLR, Deep learning reconstruction; recon., reconstruction. Statistically significant results (p < 0.05) are in bold font.

TABLE 4 Comparison of mean normalized T2 standard deviation between standard reconstruction and DLR and between abnormal nerves/muscles and

normal nerves/muscles.

Variable N Mean
(NU)

SD Multiple comparisons (paired t-test with adjusted p-values)

Group 1 Group 2 p-value

Nerve

Abnormal (DLR) 25 0.404 0.209 Abnormal (DLR) Abnormal (standard recon.) 1

Abnormal (standard recon.) 25 0.401 0.214 Abnormal (DLR) Normal (DLR) 0.058

Normal (DLR) 25 0.272 0.181 Abnormal (DLR) Normal (standard recon.) 0.034

Normal (standard recon.) 25 0.266 0.156 Abnormal (standard recon.) Normal (DLR) 0.124

ANOVA p-value: <0.001 Abnormal (standard recon.) Normal (standard recon.) 0.058

Normal (DLR) Normal (standard recon.) 1

Muscle

Abnormal (DLR) 25 0.372 0.166 Abnormal (DLR) Abnormal (standard recon.) 0.732

Abnormal (standard recon.) 25 0.391 0.175 Abnormal (DLR) Normal (DLR) 0.002

Normal (DLR) 25 0.24 0.168 Abnormal (DLR) Normal (standard recon.) 0.016

Normal (standard recon.) 25 0.257 0.179 Abnormal (standard recon.) Normal (DLR) <0.001

ANOVA p-value: <0.001 Abnormal (standard recon.) Normal (standard recon.) 0.003

Normal (DLR) Normal (standard recon.) 1

DLR, Deep learning reconstruction; SD, standard deviation; NU, no units; recon., reconstruction. Statistically significant results (p < 0.05) are in bold font.

not significant (p = 1 for both). The T2 mean-normalized

standard deviation (no units) was not significantly different with

DLR compared to standard reconstruction for muscles or nerves

(Table 4).

Normal vs. abnormal

Table 3 shows that mean DESS-T2 was higher for abnormal

nerves than normal nerves with standard reconstruction
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(abnormal: 74.32 ± 37.66 msec, normal: 34.49 ± 7.93 msec,

p<0.001) and with DLR (abnormal: 75.99 ± 38.21 msec, normal:

35.10 ± 9.78 msec, p < 0.001). Mean DESS-T2 was also higher

in abnormal muscles than normal muscles with both standard

reconstruction (abnormal: 38.56± 9.44 msec, normal: 27.58± 6.34

msec, p<0.001) and DLR (abnormal: 37.71 ± 9.11 msec, normal:

27.18± 6.34 msec, p < 0.001).

MESE vs. DESS

Linear regression found significant associations between MESE

and DESS (both with DLR and with standard reconstruction) for

abnormal muscles (standard reconstruction: slope = 1.044, r =

0.801; DLR: slope= 1.007, r = 0.794) and normal nerves (standard

reconstruction: slope = 0.426, r = 0.471; DLR: slope = 0.405, r =

0.436). Associations for normal muscles (standard reconstruction:

r = 0.260, DLR: r = 0.276) and abnormal nerves (standard

reconstruction: r = 0.067, DLR: r = 0.059) were not significant.

Associations with EMG

The generalized linear model showed a significant association

between increased MUR severity and higher DESS-T2 in muscle,

both with DLR and standard reconstruction (DLR: 9.10 msec per

MUR grade, p < 0.001; standard reconstruction: 9.13 msec per

MUR grade, p < 0.001). In nerve, a higher T2 per MUR grade was

also observed (DLR: 19.86 msec/grade, standard reconstruction:

16.59 msec/grade), but the association was not significant (DLR:

p = 0.09, standard reconstruction: p = 0.16) (Figure 6). No

significant association was found between DESS-T2 and FPs/PSWs

(DLR: p = 0.62 for nerve, p = 0.12 for muscle; standard

reconstruction: p= 0.55 for nerve, p= 0.19 for muscle).

Magic angle dependency

A weakly positive correlation was found between the angle of

normal nerves and mean DESS-T2 (slope = 0.19 msec/
◦

, r = 0.18,

p= 0.39) (Supplementary Figure 2). This association was negligible

for abnormal nerves (p= 0.81).

Discussion

The 3D-DESS MRN sequence facilitates T2 mapping for

quantitative nerve and muscle assessment within a single 3D

acquisition with high in-plane and through-plane spatial resolution

in the elbow and forearm regions. Spatial registration between the

anatomical DESS images and DESS-T2 maps was not required for

analysis, as both DESS images and DESS-T2 maps derive from

the same acquisition. The application of DLR decreased mean

T2 of both normal and abnormal muscles, which is consistent

with reduced Rician bias. These observations were, however,

not significant in nerves, which might be due to their smaller

cross-sectional areas leading to higher T2 variation, as compared

to muscles.

DESS-T2 values for abnormal muscles and nerves were

higher than those for normal muscles and nerves with both

DLR and with standard reconstruction. These preliminary results

suggest that DESS-T2 mapping might be useful for quantitative

evaluation in peripheral neuropathies and could complement

qualitative MRN evaluation. The increased T2 in muscles and

nerves was also associated with MUR severity from EMG,

which suggests that DESS-T2 mapping might indicate the

degree of neuropathy. These associations parallel those found

with conventional MESE T2 mapping of muscles in brachial

plexopathies (7). However, similar associations were not found

between T2 and measures of active denervation, which may

relate to the range in days from symptom onset to EMG,

as the onset and severity of denervation potentials vary with

time (31).

Though nerves at the elbow are approximately parallel to B0
in both prone and supine positions, a range of angles between

B0 and the analyzed nerves were observed in this study, from

6.14◦ to 46.10◦ (mean = 24.28◦ ± 9.89◦). Therefore, it was

reasonable to investigate the magic angle effect in this work; a

correlation between the angle from B0 of the normal nerve and T2

was observed. Though this correlation was not significant, it was

comparable to that observed previously with two-echo T2-mapping

(36, 37). This weak correlation could be due to between-subject

variation of nerve T2, even for normal nerves. The correlation

was negligible for abnormal nerves, which may be due to variation

in T2 due to the type and severity of neuropathy. The magic

angle’s impact on T2 measurements used for analysis will require

further investigation in future studies that more comprehensively

evaluate nerve trajectories. Importantly, such studies could

be enabled by the high-resolution, 3D sequences used in

this work.

DESS-T2was overall lower than that derived from conventional

MESE T2, except for abnormal nerves, and the correlations between

DESS andMESE were significant for abnormal muscles and normal

nerves. This suggests that DESS-T2 values could be compared to

conventional T2 evaluation of nerves and muscles. The reasons for

the underestimation of DESS-T2 include the use of fat suppression

in DESS as compared to no fat suppression in MESE in this work,

and few (only two) echoes in DESS available for T2 calculation.

Moreover, DESS was acquired at a higher spatial resolution than

MESE, which might be an additional source of T2 variation.

Furthermore, DESS-T2 has been shown to be less B1-sensitive than

MESE (33, 38), which might also explain differences in the T2

values obtained.

3D DESS-T2 with DLR provides a feasible way for high quality

T2 mapping in nerve imaging, but other promising approaches

for accelerating MESE acquisition that utilize T2 decay have been

recently proposed (39, 40). As the current DLR approach does not

use relaxation models, future incorporation of T2 decay with DLR

may further improve results of 3D DESS-T2 maps.

Limitations

While the sample size in this work was not high (n = 25),

the study was adequately powered to observe differences between
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FIGURE 6

Associations between mean T2 with DLR (A–D) or with standard reconstruction (E–H) and EMG metrics of denervation potentials [fibrillation

potentials (FPs)/positive sharp waves (PSWs)] and motor unit recruitment (MUR). A significant, positive association was shown between abnormal

nerves and MUR (A, E) and abnormal muscles and MUR (C, G). Associations between abnormal nerves and FPs/PSWs (B, F) and between abnormal

muscles and FPs/PSWs (D, H) were not significant.
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normal and abnormal nerves and muscles. This work was also

performed at a single institution and at a single field strength.

Furthermore, this work tested the DLR implementation from

one vendor, and hence the generalizability of our work may

not extend to other DLR implementations. As this work did

not include longitudinal analysis, associations between T2 and

the number of days from symptom onset were not analyzed.

Additionally, as this was a retrospective study, there was a

wide interval from EMG to MRI (range = −12 to +95 days,

mean = 18.2 ± 25.78 days); all MRI were performed following

EMG, except in one subject. Future prospective studies could

target shorter intervals between EMG and MRI to ensure

similar disease status. Associations between T2 and EMG metrics

may also be confounded by inter-observer variability between

EMG operators. This work did not correlate MR results with

muscle strength testing to further establish the clinical relevance

of these findings, as muscle strength results are sometimes

unavailable and are frequently subjective. Future work could

include a prospective study that includes same-day EMG and

quantitative muscle dynamometry comparisons (for muscle

strength) to MRI.

Conclusion

3D-DESS generated T2 maps are improved with DLR, and

3D DESS-T2 can be used to quantitatively determine differences

in T2 values of nerves and muscles involved in upper extremity

peripheral neuropathies.
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