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Stroke is a cerebrovascular illness that brings about the demise of brain tissue. 
It is the third most prevalent cause of mortality worldwide and a significant 
contributor to physical impairment. Generally, stroke is triggered by blood clots 
obstructing the brain’s blood vessels, or when these vessels rupture. And, the 
cognitive impairment’s evaluation and detection after stroke is crucial research 
issue and significant project. Thus, the objective of this work is to explore 
an potential neuroimage tool and find their EEG biomarkers to evaluate and 
detect four cognitive impairment levels after stroke. In this study, power density 
spectrum (PSD), functional connectivity map, and one-way ANOVA methods 
were proposed to analyze the EEG biomarker differences, and the number of 
patient participants were thirty-two human including eight healthy control, 
mild, moderate, severe cognitive impairment levels, respectively. Finally, healthy 
control has significant PSD differences compared to mid, moderate and server 
cognitive impairment groups. And, the theta and alpha bands of severe cognitive 
impairment groups have presented consistent superior PSD power at the right 
frontal cortex, and the theta and beta bands of mild, moderated cognitive 
impairment (MoCI) groups have shown significant similar superior PSD power 
tendency at the parietal cortex. The significant gamma PSD power difference 
has presented at the left-frontal cortex in the mild cognitive impairment (MCI) 
groups, and severe cognitive impairment (SeCI) group has shown the significant 
PSD power at the gamma band of parietal cortex. At the point of functional 
connectivity map, the SeCI group appears to have stronger functional 
connectivity compared to the other groups. In conclusion, EEG biomarkers can 
be applied to classify different cognitive impairment groups after stroke. These 
findings provide a new approach for early detection and diagnosis of cognitive 
impairment after stroke and also for the development of new treatment options.
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1 Introduction

Although the mortality rate of stroke has declined dramatically with the development 
of stroke research and advances in therapeutic techniques (1–4), disability from stroke 
continues to plague those who recover from stroke, with studies suggesting that as many 
as 30% of stroke patients have disability after recovery (5). This disability includes both 
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post-stroke physical disability and post-stroke cognitive 
impairment (PSCI). PSCI is defined as any severity of cognitive 
impairment, regardless of cause, noted after an overt stroke (6, 7). 
This cognitive impairment involves multiple cognitive domains, 
with executive dysfunction being the primary and core symptom 
of PSCI (8–10). Depending on the severity of the cognitive 
impairment, PSCI can be  categorized as mild, moderate, and 
severe. Mild PSCI consists of mild cognitive impairment that does 
not yet meet the diagnostic criteria for dementia. This may 
be manifested as memory loss, inattention, etc.; Moderate PSCI 
stage has more severe cognitive impairment, which may involve 
multiple cognitive domains, such as memory, language, and 
judgment. At this stage, the patient’s daily life may be significantly 
affected. Cognitive function is severely impaired when reaching 
severe PSCI, and the diagnostic criteria for dementia have been 
met. Patients may experience severe memory loss, language 
impairment, and behavioral abnormalities (11–14). Multiple 
studies have consistently demonstrated that individuals diagnosed 
with PSCI exhibit poorer rehabilitation outcomes related to 
physical function. Furthermore, they have a reduced likelihood of 
resuming a normal social life and exhibit a significantly higher 
mortality rate compared to those who do not have PSCI (15–18). 
Therefore, timely and accurate assessment of PSCI is extremely 
important, as it will help in the prevention and intervention 
of PSCI.

Currently there are two main types of assessments of the 
PSCI. One is questionnaire-based neuropsychological assessment, 
such as the Mini-mental State Examination (MMSE) and scales 
such as the Montreal Cognitive Assessment Scale (MoCA). 
However, this type of assessment is highly subjective, and the 
accuracy and reliability of the assessment results are more 
questionable. In contrast, biomarker-based assessment may 
be more objective, accurate and reliable. Specifically, EEG uses 
low-resistance electrodes placed on the human scalp to record 
oscillations generated by potential changes in the brain (19). EEG 
is a widely used non-invasive method for cognitive neurological 
research due to its high temporal resolution, ease of use, and low 
cost. A study that developed quantitative EEG (QEEG) to 
characterize EEG waves in post-stroke patients at risk of 
developing vascular dementia found that compared to normal 
subjects, patients with post-stroke with mild cognitive impairment 
had higher delta relative power, while alpha and beta relative 
power was lower in patients with post-stroke with mild cognitive 
impairment compared to normal subjects (20, 21). The study also 
examined the relationship between brain regions. The study also 
examined coherence between brain regions, with patients with 
post-stroke with mild cognitive impairment exhibiting lower 
interhemispheric and intrahemispheric coherences. Furthermore, 
event-related potentials (ERPs) were found to be lower in patients 
with mild cognitive impairment, while the relative power of alpha 
and beta was higher (20). ERPs derived from EEG have also been 
used to assess cognitive function in stroke patients. The P300 is 
sensitive in detecting subtle PSCI and can be used as an important 
marker for assessing PSCI, while P3 latency is an important 
marker of recovery from cognitive dysfunction after stroke (22, 
23). From the perspective of the fNIRS, the PSCI group had lower 
intra-right and interhemispheric functional connectivity (FC) 
than healthy controls (HC). In the PSCI group, specific brain 

areas, such as the somatosensory cortex and prefrontal cortex, had 
considerably lower FC (24). Interestingly, neither acute ischemic 
stroke (AIS) patients nor the HC group showed prefrontal cortex 
(PFC) activation throughout the test in another study by 
researchers. (25). Arenth et  al. found substantial changes in 
deoxy-Hb levels between aphasic and non-aphasic groups, but no 
differences between HC and non-aphasic stroke patients (26, 27). 
fMRI is another non-invasive neuromonitoring technique for 
monitoring blood oxygenation. fNIRS and fMRI are closely 
related, and studies have shown a significant correlation between 
the hemodynamic response measured by fNIRS and the blood 
oxygen level-dependent (BOLD) response obtained by fMRI (28). 
One resting-state fMRI study demonstrated that stroke affected 
both the lesioned and contralesional hemispheres through 
functional connectivity analysis of fMRI findings (29). While 
another study found that although both static and dynamic 
functional network connectivity varied in patients with PSCI, only 
the mean dwell time (MDT) metric in dynamic functional network 
analysis correlated with patients’ MMSE scores.

Despite the variety of biomarker-based monitoring methods, 
EEG is becoming increasingly popular in the research community 
and clinical practice by virtue of its low cost, high usability, and 
ease of setup (30–32). Due to these advantages, EEG may have 
higher generalizability compared to fNIRS and fMRI, and has great 
potential for the universal identification of PSCI. Considering that 
there is currently no unfied criteria for classifying the stages of 
PSCI, this research attempts to divide PSCI into four stages from 
NC to server cognitive impairment, and tries to find the differences 
in EEG biomarker on these four levels of impairment, which on 
one hand, improves the framework of dividing the symptomatic 
stages of PSCI, and on the other hand, helps clinical workers to 
assess the stage of impairment of patients with PSCI, and facilitates 
individualized interventions and preventions for them.

2 Materials and methods

2.1 Participants information

This work recruited a diverse pool of participants, including 
both healthy controls and stroke patients exhibiting varying 
degrees of cognitive impairment. Specifically, a total of 32 
participants were involved in the study, including 8 healthy control 
(Mean = 59, SD = 2.56), and 24 patients composing of 8 post-stroke 
patients with mild (Mean = 62, SD = 3.24), moderate (Mean = 61, 
SD = 3.57) and severe cognitive impairment individual (Mean = 65, 
SD = 1.85), respectively. This categorization enabled we to conduct 
a comprehensive analysis of the impact of stroke on cognitive 
abilities across varying degrees of severity. The research protocol 
strictly adhered to the ethical principles outlined in the 
Declaration of Helsinki, safeguarding the safety, rights, and 
dignity of all participants. The Institutional Review Board of the 
Research Center of Brain-Computer Interface at Chongqing Brain 
Cloud Sense Technology Co., LTD granted approval for the study, 
confirming its adherence to ethical standards and scientific 
validity. Prior to the commencement of the study, the experimenter 
provided detailed information to all participants regarding the 
objectives, procedures, and potential risks associated with the 
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study. Ensuring informed consent, all participants signed a 
consent form, expressing their willingness to participate in 
the study.

2.2 Criteria for patient inclusion and clinical 
evaluation

The post-stroke group corresponding with the age range 
(50–80 years) was chosen for inclusion into the subject being 
evaluated. The individual exhibits moderate to severe paralysis, as 
assessed by a Brunnstrom score of IV or lower. Additionally, there 
are no other conditions that significantly affect the lower limbs. 
Finally, the individual does not suffer from any neurological or 
psychiatric disorders, and their medical condition is stable. 
Inclusion criteria for patients require them to be fully conscious, 
exhibiting symptoms or signs suggestive of cognitive impairment. 
Additionally, patients must have an NIHSS score ranging from 3 
to 18 and a Montreal Cognitive Assessment (MoCA) score of ≤25, 
adjusted according to their level of education. At the time of 
randomised assignment, the patient must possess the ability to 
complete the Alzheimer’s Disease Assessment Scale (ADAS), 
cognitive subscale, extended version (ADAS-cog+) and the MoCA 
scale. Furthermore, all patients must provide written informed 
consent for their participation. Otherwise, the participants also 
fellow the standardized evaluated procedure in this work, and 
collected related results. This clinical evaluation process was 
conducted to determine the level of cognitive impairment among 
stroke patients in this work. The evaluation encompassed the 
following steps: (1) Collection of medical history: including stroke 
type, severity, location, prior neurological conditions, psychiatric 
illnesses, or trauma, as well as drug history, particularly the use of 
anticoagulants or antiplatelets; (2) Physical examination: focusing 
on a comprehensive neurological assessment to evaluate cognitive, 
motor, sensory, and coordination functions, and to identify any 
neurological localization signs, such as hemiplegia, aphasia, or 
hemianopia; (3) Cognitive screening using tools like the Simple 
Mental State Examination (MMSE) or Montreal Cognitive 
Assessment (MoCA) to detect cognitive impairment; (4) 
Neuroimaging: specifically cranial CT, to assess stroke severity and 
location, and rule out other potential causes of cognitive 
impairment; and (5) Diagnosis, where clinicians determined the 
severity of post-stroke cognitive impairment based on the findings 
from the medical history, physical examination, cognitive 
screening, and neuroimaging.

2.3 EEG data collection and preprocessing

In this study, closed-eye resting EEG data were collected from 
participants using a 44-channel electrode cap (NicoletOne EEG 
System, Natus Medical) with a sampling rate of 2 k Hz. The data 
were acquired according to the 10–20 International System, a 
standardized electrode placement method in EEG recording. 
Initially, the original 19 POL electrodes and 3 Cardinal electrodes 
were excluded due to missing specific locations, leaving 19 scalp 
electrodes for subsequent analysis. For data processing and 
analysis, MATLAB (R2021b, Mathworks, Natick, MA, 

United States) was used along with the EEGLAB toolbox (version 
2023.1, Swartz Center for Computational Neuroscience, San 
Diego, CA, United States). The EEGLAB toolbox is a widely used 
and robust toolbox for EEG processing and analysis, providing a 
comprehensive set of tools for offline preprocessing of EEG data. 
Extensions for EEG data preprocessing, such as those developed 
by Delorme and Makeig (33), were also employed in this study. 
Data importation was facilitated by Biosig v3.8.1 (34), a software 
package that facilitates the importation and preprocessing of 
physiological signals. After importing the data, the localization of 
the channels was performed, and FCz was inserted as the reference 
electrode. Subsequently, the reference was re-set to A1 and A2 
electrodes for better signal quality. Since the original sampling rate 
of the EEG data was 250 Hz, no resampling was necessary. 
However, to ensure accurate signal processing, a basic finite 
impulse response (FIR) filter was employed in this study. This filter 
is widely used in signal processing applications, as it offers good 
performance and stability.

Following the filtering step, the EEG data were low-pass filtered 
to remove line noise. The lower edge of the frequency pass band 
was set to 0.1 Hz to remove any unnecessary low-frequency 
components, while the higher edge was set to 120 Hz to dampen 
the low-frequency noise. This filtering step is crucial in EEG 
analysis, as it helps in removing artifacts and enhancing the signal-
to-noise ratio. Next, the EEG data were decomposed using 
independent component analysis (ICA). ICA is a powerful 
statistical technique that allows the separation of independent 
sources in a multivariate dataset. In this study, the default Binica 
method in the EEGLAB toolbox was used for ICA decomposition. 
This method is known for its effectiveness in isolating and 
removing artifacts, such as eye movements or muscle activity, from 
the EEG signal. Finally, bad channels and bad EEG segments were 
removed using the EEGLAB raw program. This step is crucial to 
ensure data quality and reliability. By removing bad channels and 
segments, we  can reduce the impact of artifacts and noise on 
subsequent analysis and interpretation of the EEG data. The 
rejected data were cleaned using the Clean Rawdata and ASR 
functions in EEGLAB, ensuring that only high-quality data were 
included in the final analysis.

2.4 Feature extraction in power spectral 
density

In this work, due to the small number of channels involved in the 
data, there is a lack of representativeness in demonstrating the 
individual brain functional areas. So, this work decided to use 
frequency domain analysis to extract the EEG features. PSD in stroke 
patients is an important feature for EG frequency domain analysis 
(35). In this study, using Fast Fourier Transform (FFT), each EEG 
signal was decomposed into five different frequency ranges: delta 
(0–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and 
gamma (30–100 Hz). PSDs were computed using the Python toolbox 
(mne), and power averages were calculated for specific frequency 
ranges using the plot_psd_topomap function in the toolbox. In this 
way, features were constructed and topomap was plotted in each 
frequency band. Six contour lines were plotted in each brain topomap 
for comparative analysis.
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2.5 Function connection map

We used python (version 3.8) to continue analyzing the data after 
preprocessing in EEGLAB. MNE-Connectivity (Larson et al. (2023). 
MNE-Python (v1.6.0). Zenodo)1 is an open-source Python package 
for connectivity. MNE-Connectivity is designed to be flexible and 
computationally efficient (36). This experiment uses the plot_
connectivity_circle function in mne_connectivity.viz. for all-to-all 
connectivity estimation in the source space. The evaluation metric of 
connectivity in this experiment is the Phase-Lag Index (PLI), a 
measure that discards the phase distribution centered at 0 mod π to 
enhance robustness to the presence of a common source (37). The PLI 
is computed as Equation (1):

 
( )( ) ( )( )

1

1ϕ ϕ
=

= 〈 ∆ 〉 = ∆∑
N

rel rel n
n

PLI sign t sign t
N

 
(1)

Where N  denotes the time point, ( )rel∆ϕ t denotes the phase 
difference between the two signals at time tn, sign is a sign function 
whose output is 1 when the independent variable is positive, and −1 
when the independent variable is negative. The PLI can take the value 
in the range of [0, 1], and the larger the value is, the stronger the phase 
synchronization between the two signals. The main advantage of PLI 
is its insensitivity to the volume conduction effect, but it seems to 
be more sensitive to noise.

2.6 Statistics processing

First, through analysis of averaged EEG data and brain topography 
maps in EEGLAB, we  found that the MILD group experienced 
significant eye movement interference during data collection due to 
environmental factors. This led to inaccuracies in the biomarkers for 
the MILD group. To ensure the quality of subsequent comparative 
analyses, we  have decided to exclude the MILD group from 
further analysis.

Then, we calculate the average power for each raw object in 
datalist as Formula (2). The formula for calculating power is shown 
below. Where x n( ) is the signal of the brain wave on the frequency n.

 
P x x n

n
( ) = ( )∑ 2

  
(2)

Next, the subjects in each group were averaged to obtain the 
average value of 19 channels in each group, respectively. For a better 
understanding of the biomarkers of stroke, the EEG signal waves were 
divided into five bands. The standard is the same as when the PSD is 
decomposed. We  set different thresholds to filter and group the 
previously obtained average signal values. The final output excel data 
contains four groups (nc, mci, mod., sev), each containing 19 channels 
and five different frequency bands. To further analyze the PSD 
differences in varies of cognitive impairment after stroke, one-way 
ANOVA and post-hoc permutation test with Bonferroni statistical 

1 https://doi.org/10.5281/zenodo.10161630

methods were utilized to analyze the PSD values. In this study, the 
significance level is set to 0.001. And, the reported p-values were based 
on non-parametric permutation method.

3 Results

3.1 PSD results in different cognitive 
impairment groups

Figure 1 shows the PSD of 19 EEG channels in five bands for four 
groups composing of normal control, MCI, moderated and severe 
groups. To make this more concise, we use something like PSDnc to 
present power spectral density in certain band of normal control 
group. We elaborate on our observation results by frequency band. 
Specifically, in the delta band, all groups in the frontal area are 
significantly superior PSD value compared to the other frequency 
bands. Despite PSDsevere, the other groups showed relatively strong 
PSD values in the frontal pole area. Interestingly, PSDnc and PSDmci 
both show high value in central zero area, but the priority disappears 
in PSDsevere. And, PSDsevere fluctuated in [0.63, 0.90], which has a 
higher value of lower boundary than other groups. PSDmci shows a 
lower upper bounds of 0.05 than other groups in the theta band. And, 
we can notice that both PSDmci and PSDmod show high value in 
bilateral central-parietal area, while PSDnc and PSDsevere not. 
PSDsevere shows relative high value in right oppicital/right frontal 
pole. In the alpha band, the condition is similar to the theta band, but 
we can find that the overall PSD value have decreased. PSDmod and 
PSDsevere decrease most obviously with the range of [0.01, 0.08] and 
[0.01, 0.04], respectively. What is noteworthy is that high value in 
bilateral central-parietal area disappears of PSDmod. In the beta band, 
high value in bilateral central-parietal area has a tendency to expand 
in PSDmci group. And, PSDmod in bilateral central-temporal area has 
reappeared with relatively high values. More noticable is that 
PSDsevere’s boundary value increases significantly, which is ranged in 
[0.01, 0.09], and only the frontocentral area of the whole brain showed 
a strong PSD value. PSD in gamma band shows an significant 
difference. The different group’s range gap increases, upper boundary 
is apparently higher than theta, alpha and beta band, just below the 
delta band. By comparing the boundary values, we  find that the 
strength of PSDsevere is significantly low, which fluctuated in [0.02, 
0.16]. And, the PSDsevere was more dispersed at the frontal center 
area compared with the other groups.

For further quantification of the PSD results, one-way ANOVA 
and post hoc methods were used to analyze the PSD of different groups 
and present the visualization results in the Figure 2. One-way ANOVA 
was chosen due to its applicability in comparing means across multiple 
groups simultaneously. Post hoc tests help identify specific group 
differences while controlling for Type I errors that may arise from 
multiple comparisons. And, the Figure 2 showed the PSD differences 
of various of cognitive impairment at different brain brand frequency, 
which is composing of delta, theta, alpha, beta and gamma frequency. 
Figure  2A showed the PSD difference of normal control, mild, 
moderated and severe cognitive impairment groups at delta brain 
band, and the cerebral PSD was significant difference between severe 
cognitive impairment group and normal control, mild, moderate 
groups (F = 60.713, p < 0.001); Similarity, Figures 2B–D showed the 
PSD difference of normal control, mild, moderated and severe 
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cognitive impairment groups at theta, alpha, beta and gamma brain 
bands, respectively. Specifically, all statistical visualized results show 
the cerebral PSD significant difference between severe cognitive 
impairment group and normal control (F = 60.713, p < 0.001), mild 

(F = 60.713, p < 0.001), moderate groups (F = 60.713, p < 0.001). 
Detailed statistical results were shown in the Table 1, and the gamma 
frequency of severe cognitive impairment group (Mean = 1.335e-6, 
SE = 6.53e-7) was most significant difference compared to the mild 

FIGURE 1

Power spectral density of different brain bands in various of patient groups: (A) Normal control. (B) Mild cognitive impairment. (C) Moderated cognitive 
impairment. (D) Severe cognitive impairment.

FIGURE 2

PSD statistical difference of different frequency in different cognitive impairment groups: (A) Delta. (B) Theta. (C) Alpha. (D) Beta. (E) Gamma frequency 
bands.
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cognitive impairment group (Mean = 4.01e-8, SE = 4.02e-8), and 
superior significant difference was shown between servere cognitive 
impairment groups and normal control (Mean = 1.293e-7, SE = 2.416e-
7), moderate cognitive impairment group (Mean = 6.42e-8, 
SE = 1.342e-7) at the gamma frequency bands.

3.2 Functional connection map for 
different cognitive impairment

The functional connectivity of each group is shown in Figure 3. 
Intuitively, the severe group appears to have stronger functional 
connectivity compared to the other groups, and the moderate 
group has overall weaker relative connectivity. The strength of the 
PLI that showed stronger connectivity was mainly related to left–
right interhemispheric connections, anterior temporal (e.g., F7, 
F8), occipital (e.g., O1, O2) and mid-temporal (e.g., T3, T4) 
connections, central (e.g., C3, C4), and details can be  seen in 
Figure  3A. Observing Figure  3B compared to functional 
connection of normal control (FCnc), FC_mci interhemispheric 
temporal (e.g., T3, T4, T5, T6) connections were significantly 
weakened. Bilateral frontocentral-parietal connections (e.g., C3, 
C4, PZ, P3, P4) connections are largely maintained. And, 
connections in frontocentral-central (e.g., Fz, Cz, C3, C4, C6) 
areas exhibit stronger PLI values. Interestingly, connections in 
frontocentral-central (e.g., Fz, Cz, C3, C4, C6) areas exhibit 
stronger PLI values. The overall PLI strength of FCmod (see 
Figure 3C) is weaker than that of FCmci, which is evident mainly 

in the middle line channels (e.g., FCz, Cz, Pz) and right-temporal 
(e.g., T4, T6) areas. Bilateral frontocentral-parietal (e.g., F3, F7, 
C3, P3; F4, F8, C4, P4) connections are weakened. In addition to 
the high PLI value in the region with high strength of FCsevere 
connection, it shows higher PLI strength between middle line 
channels (e.g., FCz, Cz, Pz), which is shown in Figure 3D. And the 
middle line channels also show stronger connections with the 
occipital, temporal, and parietal. At the same time, the connection 
between the left and right hemispheres is also significantly 
enhanced (e.g., O1, O2, T3, T4, T5, T6, F3, F4). These results 
suggest that different cognitive state groups have distinct 
connectivity preferences that correspond to unique patterns of 
functional connectivity. And, the overall core structure or 
underlying framework of connectivity remained relatively stable 
despite pathological states or other changes. The central (e.g., C3, 
C4,Cz) area has remained strongly connected. The internal 
connectivity of the oppicital and parietal area has been less 
affected, and has maintained a certain PLI value. For FCnc, 
FCmod and FCmci, their connectivity are weakened to different 
degrees, mainly in frontal and temporal area, but the main frame 
is preserved. On the other hand, FC severe shows the enhancement 
of the overall connectivity on the basis, especially the middle 
line channels.

4 Discussion

The findings of the study indicated the existence of notably 
elevated brain activity within the Delta frequency range, indicating 
the Delta frequency range’s crucial involvement in certain brain 
functions. Additionally, among the cohort of patients experiencing 
severe cognitive impairment, the Delta frequency range exhibited 
augmented neural activity confusion and uneven cortical power 
distribution. This observation implies that neural activity within the 
Delta frequency range may undergo alterations in the brains of 
patients with severe cognitive impairment, leading to an unbalanced 
power distribution (38). The processing capacity exhibits a distinct 
pattern, possibly indicating significant dysfunction within specific 
brain regions. Patients diagnosed with mild cognitive impairment 
(MCI) displayed a notably elevated cortical power concentration in 
the left prefrontal region. This augmented neural activity might 
elevate the risk of concussion, thereby influencing cognitive 
performance (39). Such concussion could be indicative of cognitive 
shifts, potentially signaling a more severe cognitive decline, akin to 
Alzheimer’s disease (40). Among those with severe cognitive 
impairment, there was an observed elevation in neural activity and 
cortical power in the right prefrontal region, particularly within the 
theta and alpha bands. Similarly, patients with MCI demonstrated 
comparable patterns of cortical activity, concussion trends, and 
perturbations across the theta, alpha, and beta bands. These 
observations could suggest an early stage of brain function 
deterioration (41). However, at this stage, brain activity remained 
relatively stable. Together, these findings offer unique insights into 
the brain activity patterns of individuals with cognitive impairment, 
providing valuable clues for further research and informing the 
development of novel therapeutic strategies. Furthermore, patients 
with moderate cognitive impairment exhibited notable alterations in 
the cortical power signal. Specifically, there was a significant increase 

TABLE 1 Detailed statistical results of different cognitive impairment 
groups.

Brain 
band

Group 
name

Mean Std. E F p

Delta

MCI 2.30e-9 2.30e-9

60.713 0.000***
Mod 3.70e-9 7.70e-9

NC 7.40e-9 1.39e-8

Sev 7.68e-8 3.76e-8

Theta

MCI 2.80e-9 2.80e-9

60.713 0.000***
Mod 4.50e-9 9.30e-9

NC 9.00e-9 1.68e-8

Sev 9.30e-8 4.55e-8

Alpha

MCI 3.00e-9 3.00e-9

60.713 0.000***
Mod 4.80e-9 1.01e-8

NC 9.70e-9 1.82e-8

Sev 1.005e-7 4.92e-8

Beta

MCI 1.08e-8 1.08e-8

60.713 0.000***
Mod 1.73e-8 3.62e-8

NC 3.48e-8 6.51e-8

Sev 3.598e-7 1.76e-7

Gamma

MCI 4.01e-8 4.02e-8

60.713 0.000***
Mod 6.42e-8 1.342e-7

NC 1.293e-7 2.416e-7

Sev 1.335e-6 6.53e-7
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in activity intensity within the theta and beta frequency bands in the 
occipital and parietal regions. These changes suggest a more 
disordered neural activity in these brain regions, potentially affecting 
information processing and cognitive functions. A comprehensive 
understanding of cognitive impairment disparities post-stroke is 
essential. To this end, the present study conducts a thorough 
examination and meticulous analysis of functional connectivity 
among various brain regions across distinct patient cohorts. Notably, 
individuals experiencing severe cognitive impairment exhibit a high 
degree of connectivity within neural pathways across different brain 
regions, maintaining remarkable consistency in connection strength. 
This observation suggests that the coordinated interaction among 
brain regions in the context of severe cognitive impairment may 
underlie compensatory neural activity, consistent with research 
postulates by researchers (42). Conversely, among patients who 
maintain normal cognitive function after stroke, the functional 
connectivity within the brain area exhibits a leftward bias, with 
higher connectivity strength in the left hemisphere.

The potential association between the functional reorganization 
of the brain post-stroke and the subsequent reduction in the 

functionality of the right brain region, coupled with a relative 
augmentation in the left brain region, has been explored by Grefkes 
and Fink (43). Notably, this lateralization pattern was not observed 
among patients with mild to moderate cognitive impairment, 
suggesting that the functional connectivity within brain regions 
remains relatively intact in cases of less severe cognitive 
impairment following stroke. These observations hold significant 
value in enhancing our understanding of the neural mechanisms 
underlying cognitive dysfunction after stroke and offer novel 
insights and strategies for clinical interventions in the future. 
Furthermore, this study identified distinct variations in functional 
connectivity among different patient cohorts. This suggests that the 
severity of cognitive impairment after stroke is not random or 
accidental, but is closely related to the functional connectivity 
status of the brain. Specifically, the following crucial correlation are 
declared in the previous researches: (1) Reduced functional 
connectivity in affected bran regions: Impaired memory was linked 
to reduced connectivity within the hippocampus and other medial 
temporal lobe structures (44, 45); (2) Impaired inter-hemispheric 
connectivity: Stroke often affects one side of the brain, leading to 

FIGURE 3

Functional connective circle map of different patient groups: (A) Normal control. (B) Mild cognitive impairment. (C) Moderate cognitive impairment. 
(D) Severe cognitive impairment.
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disruption of inter-hemispheric connectivity between the affected 
and unaffected hemispheres. This impaired connectivity can 
contribute to cognitive deficits, as many cognitive processes require 
the coordinated activity of both hemispheres (29, 46); (3) Network-
level alterations: disrupted connectivity within the default mode 
network (DMN) has been linked to impaired self-referential 
processing and memory retrieval (29); (4) Correlation with 
cognitive performance: a significant correlation between the 
severity of cognitive impairment and the degree of functional 
connectivity disruption in specific brain networks. For example, 
reduced connectivity within the frontoparietal network has been 
associated with impaired executive function, while decreased 
connectivity in the language network has been linked to language 
deficits (29, 44); (5) Predictive value: Changes in functional 
connectivity can predict cognitive outcomes after stroke. For 
example, stroke survivors with greater improvement in functional 
connectivity over time have been found to experience better 
cognitive recovery (45, 46).

Certainly, it is crucial to acknowledge the inherent constraints 
within this research. Firstly, the scale of the sample used was 
relatively limited, potentially limiting its applicability to a wider 
population. A smaller sample size may have introduced biases or 
led to inconclusive results, thus posing challenges in drawing 
definitive conclusions regarding the mechanisms of cognitive 
impairment post-stroke. Secondly, the study’s design was 
retrospective, meaning the data were collected and analyzed 
retrospectively. While this approach is useful in identifying patterns 
or trends, it cannot provide causal evidence or predictive insights 
into future outcomes. To gain a thorough understanding of the 
longitudinal impact of stroke on cognitive function, a prospective 
long-term follow-up study is imperative. Such a study would enable 
researchers to observe participants over time, capturing the natural 
progression of cognitive impairment and its relationship to EEG 
biomarkers. However, despite its limitations, this study explores 
novel approaches to investigate the mechanisms of post-stroke 
cognitive impairment using EEG techniques, laying a foundation 
for further intensive research. This study presents a novel approach 
to examining the neural mechanisms of cognitive impairment 
following stroke. While some limitations exist, this study offers a 
valuable tool for the early detection and diagnosis of cognitive 
impairment, serving as a reference for interventions aimed at 
improving cognitive function.

5 Conclusion

This research has identified that EEG biomarkers effectively 
discriminate different degrees of cognitive decline among stroke 
sufferers. Our findings establish a strong link between the extent of 
cognitive impairment post-stroke and the functional connectivity of 
the brain. These revelations offer a fresh perspective for the early 
detection and diagnosis of cognitive decline after stroke, paving the 
way for the development of innovative therapeutic strategies. 
Furthermore, these revelations deepen our understanding of the 
intricate relationship between the brain’s functional connectivity and 
cognitive impairment. By thoroughly examining this relationship, 
we can gain further insights into the development of novel treatment 
options. This may encompass mitigating cognitive impairment 

symptoms by optimizing the brain’s functional connectivity or 
enhancing cognitive function through modulation of neural activity. 
In conclusion, this study presents novel ideas and approaches for the 
diagnosis and treatment of cognitive impairment in stroke patients. 
By leveraging EEG biomarkers and information regarding the brain’s 
functional connectivity, we can enhance the precision of cognitive 
impairment diagnosis and treatment, thereby enhancing the overall 
quality of life for stroke patients.
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