A growing body of evidence underscores a significant association between neurological disorders, particularly migraines, and the gut microbiota. However, a research gap persists in understanding the cause-and-effect dynamics between these elements. Therefore, we employed robust methodologies aimed at thoroughly exploring the causal relationship between the gut microbiome and migraines.
Employing bidirectional Two Sample Mendelian Randomization (TSMR) analysis, we investigated the causal association between the composition of the gut microbiota and migraines. Data summarizing the relationship between gut microbiota and migraines were extracted from one or more genome-wide association studies. The TSMR analysis employed five methods to assess the correlation between the gut microbiota and migraines, with the inverse variance-weighted method serving as the primary approach for analyzing causal links. Sensitivity analyses were applied to address horizontal pleiotropy and heterogeneity. Simultaneously, a meta-analysis was performed to strengthen the robustness of the findings. Additionally, a reverse TSMR was carried out to explore potential occurrences of reverse causal relationships.
The ongoing TSMR analysis identified a collection of 14 bacterial taxa connected to migraines. Among these, 8 taxa exhibited a protective effect, while 5 taxa had a detrimental impact, and 1 taxon maintained a neutral relationship. The reverse Mendelian randomization analysis highlighted stable outcomes for only one bacterial taxonomic group.
The study confirms a causal relationship between the gut microbiota and migraines, offering a new perspective for migraine research. Strategically targeting specific bacterial taxa with dysregulation may be effective in both preventing and treating migraines, thus opening new avenues for therapeutic strategies.