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Background: Telomere length is closely linked to the aging phenotype, where 
cellular aging results in the production of a cascade of cell factors and the 
senescence-associated secretory phenotype (SASP), leading to an inflammatory 
response. The presence of inflammation plays a crucial role in the formation 
of intracranial aneurysms. Nevertheless, the relationship between telomere 
length and intracranial aneurysms remains unclear. This study aims to explore 
the causal connection between telomere length and intracranial aneurysms 
through the utilization of Mendelian randomization (MR) analysis.

Methods: Data on telomere length were obtained from the genome-wide 
association studies conducted on the UK Biobank, comprising a total of 472,174 
participants. Data on intracranial aneurysms were obtained from the summary 
dataset of the Global Genome-wide Association Study (GWAS) conducted by the 
International Stroke Genetics Consortium. The dataset consisted of 7,495 cases 
and 71,934 controls, all of European descent. Initially, the linkage disequilibrium 
score was used to investigate the connection between telomere length and 
intracranial aneurysms. Subsequently, a bidirectional MR was conducted using 
two-sample analysis to assess whether there is a causal connection between 
telomere length and intracranial aneurysm risk. The results were analyzed 
utilizing five MR methods, with the inverse variance weighted method serving 
as the main methodology. In addition, we did various analyses to evaluate the 
presence of heterogeneity, pleiotropy, and sensitivity in the study results. A 
reverse MR analysis was conducted to investigate potential reverse causal links.

Results: In the forward MR analysis, it was observed that both the inverse 
variance-weighted and weighted median analyses implied a potential causal 
relationship between longer telomere length and a decreased incidence of 
intracranial aneurysms (IVW: OR  =  0.66, 95% CI: 0.47–0.92, p  =  1.49  ×  10−2). 
There was no heterogeneity or horizontal pleiotropy. The findings were verified 
to be robust through the utilization of leave-one-out analysis. The use of reverse 
MR analysis did not establish a potential causal link between the occurrence of 
intracranial aneurysms and telomere length.

Conclusion: There may exist a potential correlation between longer telomere 
length and a decreased likelihood of intracranial aneurysms within the European 
population. The present study offers novel insights into the correlation between 
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telomere length and intracranial aneurysms. Additional research is required 
to clarify the underlying mechanisms and validate our discoveries in diverse 
populations.

KEYWORDS

telomere length, intracranial aneurysm, Mendelian randomization, causality, single 
nucleotide polymorphism

Introduction

Intracranial aneurysms refer to an atypical localized expansion of 
blood vessels within the brain, typically manifesting as a rupture that 
results in subarachnoid haemorrhage. This condition is associated with 
a significant frequency and fatality rate. Currently, the cause of cerebral 
aneurysms remains uncertain. According to Chalouhi et  al. (1), 
inflammation is suggested to have an essential role in the development 
of cerebral aneurysms. The initiation of the inflammatory process is 
triggered by hemodynamic pressures, which subsequently induce 
extracellular matrix degradation through the action of matrix 
metalloproteinases (MMPs) and smooth muscle cell death. This 
progressive weakening of the artery wall ultimately leads to its dilatation 
and the subsequent development of an aneurysm. The findings of a 
conducted experimental investigation employing a rat model of arterial 
aneurysm indicate a potential correlation between increased levels of 
telomere-binding protein and the development of intracranial 
aneurysms. This protein inhibits telomerase activity, leading to 
accelerated telomere shortening (2). Based on current epidemiological 
research findings, intracranial aneurysms may be directly associated 
with aortic aneurysms, particularly abdominal aortic aneurysms and 
thoracic aortic aneurysms. There may be shared genetic and pathological 
factors between them (3). Recent research findings suggest a potential 
causal association between the length of telomeres and the occurrence 
of aortic aneurysms (4). These findings offer promising prospects for 
the development of tailored treatment strategies. However, the potential 
existence of a causal association between telomere length and cerebral 
aneurysms has yet to be established.

Telomere length pertains to the measurement of the repeating 
heterochromatic area located at the termini of eukaryotic 
chromosomes. These regions are distinguished by a cap-like structure 
composed of the nucleotide sequence TTAGGG. Telomere length is a 
crucial element that influences the process of biological ageing (5). 
The process of telomere shortening is a natural occurrence that 
accompanies the ageing process. However, many factors such as 
inflammation, oxidative stress, and exposure to toxic stimuli can 
expedite the attrition of telomeres, hence influencing and accelerating 
the ageing process. When the length of telomeres decreases beyond a 
specific threshold, cells lose their ability to undergo division and 
replication, leading to a state known as cellular senescence and 
apoptosis (6). Cellular senescence is a stress response that can result 

in a persistent cell cycle stop, notwithstanding the metabolic activity 
of senescent cells. SASPs, including pro-inflammatory cytokines, 
growth factors, chemokines, and MMPs, are closely associated with a 
variety of physiological processes and senescence-related diseases (7). 
The maintenance of telomere length is contingent upon the 
collaborative interplay between telomerase and telomere-binding 
proteins. Telomerase is a ribonucleoprotein complex that plays a 
crucial role in the extension of telomere sequences. Several meta-
analyses (8–10) have indicated a negative association between 
telomere length and the occurrence of various cardiovascular or 
cerebrovascular events, including stroke. Moreover, when risk factors 
such as smoking, obesity, and atherosclerosis are present, the initiation 
and advancement of intracranial aneurysms correspond to the pattern 
observed in telomere length. Nevertheless, the connection between 
intracranial aneurysms and telomere length remains uncertain.

The analysis of MR utilizes genetic variants to evaluate if the 
observed correlation between an exposure factor and an outcome is 
in line with a causal relationship. Observational cohorts adhering to 
traditional methodologies are vulnerable to the influences of 
confounding variables and the potential for reverse causality effects. 
In contrast, MR is predicated on the notion of random allocation of 
genetic variations during meiosis, resulting in a stochastic dispersion 
of genetic variants among populations. Because these genetic 
variations are typically unrelated to confounding factors, the 
differences between carriers and non-carriers can be attributed to 
differences in the exposure factor (11). This methodology offers 
substantial empirical support for establishing causal relationships 
between particular exposures and their corresponding outcomes. The 
present investigation utilized MR analysis as a methodological 
approach to elucidate the causal relationship between telomere length 
and intracranial aneurysms.

Materials and methods

Data sources

This study employed MR analysis using GWAS data. All data were 
sourced from the IEU Open GWAS project or original studies, and all 
studies obtained ethical approvals and informed participants 
accordingly. The data pertaining to exposure variables for genetic 
variants linked with telomere length were acquired from a GWAS 
meta-analysis with a sample size of 472,174 individuals of European 
descent (12) (ieu-b-4879). The outcome dataset used in this study 
consisted of 7,495 cases of intracranial aneurysm and 71,934 controls 
(Table  1), all of European ancestry (maximum 2% overlap with 
telomere length GWAS), as shown in Supplementary Table S5. These 

Abbreviations: SASP, Senescence-associated secretory phenotype; MR, Mendelian 

randomization; GWAS, Genome-Wide Association Study; MMPs, Matrix 

metalloproteinases; LDSC, LD score regression; IVW, Inverse variance weighted; 

SNPs, Single nucleotide polymorphisms.
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data were obtained from the International Stroke Genetics Consortium 
and were derived from a GWAS that focused on intracranial 
aneurysm (13). The inclusion of individuals of European ancestry was 
done to reduce the potential influence of ethnic bias. Furthermore, in 
order to explore the potential existence of reverse causality between 
telomere length and intracranial aneurysms, a reverse MR study was 
performed. This research utilized intracranial aneurysms as the 
exposure variable and telomere length as the outcome variable.

The genetic variations associated with 
telomere length

First, an extraction of summary data pertaining to single 
nucleotide polymorphisms associated with telomere length was 
conducted, utilizing publicly accessible Genome-Wide Association 
Studies. We picked single nucleotide polymorphisms that showed a 
significant association with the exposure factor, with a p-value less 
than 5 × 10–8. SNP independence was rigorously assessed (r2 = 0.001, 
kb = 10,000). Secondly, in accordance with the three fundamental 
assumptions of MR and employing the PhenoScanner V2 database 
(14, 15), any single nucleotide polymorphism that exhibits correlation 
with established confounding factors, including systolic blood 
pressure, diastolic blood pressure, hypertension, or medications 
associated with hypertension, is deliberately omitted from the analysis. 
Instances where instrumental single nucleotide polymorphisms for 
the exposure variable were absent in the outcome data were omitted 
from the analysis. Finally, alleles of SNPs across studies were 
harmonized, palindrome SNPs with unclear allele frequencies were 
removed, and SNPs located in the MHC region were also excluded.

LD score regression

The utilization of LD score regression has proven to be a dependable 
and efficient approach in the identification of the shared genomic 
architecture that underlies complex characteristics (16). It is primarily 
based on estimating the heritability of a disease and testing its genetic 
correlation using complete GWAS data. In the analysis, complete GWAS 
data for telomere length and intracranial aneurysms were utilized to 
assess genetic correlation, with a threshold set at p < 0.05.

Mendelian randomization study

In this study, for the horizontal pleiotropy and outliers in MR, an 
initial detection was conducted using MR-PRESSO. In the event that 
horizontal pleiotropy was detected, single nucleotide polymorphisms 
that exhibited a statistical significance level of p < 0.05 in relation to this 
phenomenon were eliminated from the analysis. Furthermore, the 
MR-Egger regression method was employed to examine the presence 
of horizontal pleiotropy. When the p-value of the MR-Egger intercept 
is less than 0.05, it suggests the existence of horizontal pleiotropy. After 
removing outliers and confirming horizontal pleiotropy, MR-PRESSO 
was applied again. Subsequently, an assessment of the heterogeneity 
among single nucleotide polymorphisms (SNPs) was conducted 
utilizing the inverse variance-weighted (IVW) approach and the 
MR-Egger method. Only SNPs that remained significant after adjusting 

for horizontal pleiotropy were maintained for further analysis. The 
Cochran’s Q test was utilized to evaluate the presence of heterogeneity 
in the IVW approach, while the MR-Egger method employed Rucker’s 
Q test for the same purpose. If heterogeneity was statistically significant 
(Q < 0.05) and horizontal pleiotropy was absent, SNPs with 
MR-PRESSO results p < 1.00 were removed, followed by another 
MR-PRESSO analysis. In the event that MR-PRESSO did not uncover 
any statistically significant single nucleotide polymorphisms (SNPs), 
or if the global test in MR-PRESSO had a p-value less than 0.05, the 
radial IVW and Egger procedures were utilized in a sequential manner 
to identify and eliminate outliers with a p-value less than 0.05 (17). This 
iterative process was repeated until no outliers were detected.

Statistical analysis

The statistical studies were conducted utilizing various packages 
in RStudio (version 4.3.1), including “Two Sample MR,” 
“MR-PRESSO,” “Phenosanner,” and “RadialMR.” In this study, an 
instrumental variable with an F-value >10 was considered a strongly 
correlated instrumental variable capable of reducing bias (18). The 
formula for calculating the F-value is as follows:

 
F N K R k R= − −( )



 −( )
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/

R2 is the fraction of variance that can be accounted for by genetic 
variation. N signifies the sample size, while k denotes the number of 
single nucleotide polymorphisms that have been incorporated.
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EAF denotes the influence of the minor allele frequency, while β 
is utilized to signify the estimated effect on telomere length (19). The 
primary method employed for MR analysis was inverse variance-
weighted regression, under the assumption of no instrumental 
variable invalidity. The Q-test was performed in order to evaluate the 
presence of heterogeneity among various genetic variants. In the 
context of heterogeneity, we  utilized the MR-PRESSO method to 
identify and eliminate outliers in order to address the issue of 
horizontal pleiotropy. The study employed MR-Egger regression 
analysis to evaluate the presence of directional pleiotropy in the 
instrumental variables and to examine potential violations of the MR 
assumption. Furthermore, a leave-one-out sensitivity analysis was 
performed in order to evaluate the robustness of the results obtained 
from the MR analysis (20). Statistical significance was deemed to 
be present when the p-value was less than 0.05.

Results

The genetic correlation between telomere 
length and intracranial aneurysms

The genetic association between telomere length and intracranial 
aneurysms was evaluated using LD score regression, as presented in 
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Table 2. There was an observed inverse relationship between telomere 
length and the occurrence of cerebral aneurysms (Rg = −0.13, 
p = 0.001).

The results of forward Mendelian 
randomization analysis

This study was undertaken employing MR analysis to examine the 
causal association between telomere length and intracranial 
aneurysms. The findings of the study are shown in the Table 3. The 
IVW analysis revealed a statistically significant association between 
telomere length and intracranial aneurysms. The IVW estimate 
(OR = 0.66, 95% CI: 0.47–0.92, p = 1.49 × 10−2) implied that greater 
telomere length was linked to a decreased chance of developing 
intracranial aneurysms.

In order to conduct a more comprehensive investigation of the 
correlation between telomere length and intracranial aneurysms, 
we conducted studies to assess heterogeneity, sensitivity, and multiple 
effects. The findings of the study indicate that there was no statistically 

significant evidence of horizontal pleiotropy in the relationship 
between telomere length and intracranial aneurysms (Egger 
intercept = −0.002, p = 0.852). Additionally, no significant 
heterogeneity was observed in the impact of telomere length on 
intracranial aneurysms across different instrumental variables 
(Cochran Q = 40.287, p = 0.672) (Table 4). In a similar vein, the funnel 
plots of the IVW and MR Egger methods in Figure 1 did not exhibit 
any noteworthy heterogeneity among instrumental variables. The 
findings of sensitivity analysis conducted using the leave-one-out 
strategy indicated that the exclusion of any individual single 
nucleotide polymorphism out of the 47 SNPs related with intracranial 
aneurysms did not yield statistically significant changes in the 
outcomes. This implies the dependability of the results obtained from 
the MR analysis.

The results of reverse Mendelian 
randomization analysis

Reverse MR analysis implies that there is no causal relationship 
between intracranial aneurysm (IVW: OR = 1.008, 95% CI: 0.998–
1.018, p = 0.11) and telomere length, as shown in Table 5 and the 
Supplementary Figure S2. The forest plot illustrates the causal effects 
of each SNP related to intracranial aneurysm on telomere length, as 
shown in the Supplementary Figure S2. The results of the reverse MR 
analysis imply that there is insufficient evidence to establish a causal 
association between intracranial aneurysm and telomere length. This 
conclusion is supported by the IVW method (IVW: OR = 1.008, 95% 
CI: 0.998–1.018, p = 0.11), as presented in Table  5 and the 
Supplementary Figure S2. The forest plot presented in the 
Supplementary Figure S2 depicts the causal effects of each SNP 
associated with intracranial aneurysm on telomere length.

Discussion

The present work utilized European GWAS data to conduct a 
two-sample bidirectional MR analysis. The primary objective was to 

TABLE 3 Mendelian randomization analysis of the association between risk of IA and TL.

Exposure Outcome Methods NSNPs Beta SE p-value OR (95% CI)

TL IA MR Egger 47 −0.352 0.409 0.394 0.703 (0.316–1.566)

TL IA Weighted median 47 −0.508 0.258 0.049 0.602 (0.363–0.998)

TL IA Inverse variance weighted 47 −0.421 0.173 0.015 0.656 (0.467–0.921)

TL IA Simple mode 47 −0.666 0.473 0.166 0.514 (0.203–1.300)

TL IA Weighted mode 47 −0.558 0.319 0.088 0.573 (0.306–1.071)

NSNPs, number of single-nucleotide polymorphisms; OR, odds ratio; CI, confidence interval.

TABLE 4 Heterogeneity and horizontal pleiotropy of the associations between TL and the risk of IA.

Exposure Outcome Pleiotropy test Heterogeneity test

MR-Egger MR-Egger Inverse-variance weighted

Intercept SE p-value Q Q_df Q_pval Q Q_df Q_pval

TL IA −0.002 0.008 0.852 40.287 45 0.672 40.322 46 0.708

SE, standard error.

TABLE 2 Genetic correlation estimates from LDSC regression between TL 
and IA.

Exposure Outcome Rg Rg_SE p-value

TL IA −0.13 0.041 0.001

LDSC, linkage disequilibrium score; Rg, genetic correlation; Rg_SE, the standard error of Rg.

TABLE 1 Characteristics of genome-wide association study (GWAS) data.

Type Traits Source GWAS 
ID

Ancestry Sample 
size

Exposure TL UK 

Biobank

ieu-b-4879 European 472,174

Outcome IA Bakker 

et al.

NA European 7,495 

cases/71,934 

controls

TL, telomere length; IA, intracranial aneurysm; NA, not applicable.
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examine the causal association between telomere length and the 
occurrence of intracranial aneurysms. The methodologies indicated 
above were used in this study’s forward MR analysis, which led to the 
selection of 49 SNPs, as shown in Supplementary Table S2. The results 
of leave-one-out sensitivity testing are shown in 

Supplementary Figure S1, where two outliers are found. After deleting 
these two outliers, the analysis was carried out once more using the 
identical procedures as earlier. The study employed genetic variations 
as surrogates for telomere length, and the results of the MR analysis 
implied a positive correlation between reduced telomere length and 

FIGURE 1

The causal impact of telomere length on intracranial aneurysms (A) Scatterplot illustrating the association between telomere length and intracranial 
aneurysms. (B) Funnel plot assessing the presence of heterogeneity. (C) Forest plot of SNPs related to both telomere length and intracranial aneurysms. 
(D) Leave-one-out sensitivity analysis evaluating the influence of each SNP in the causal relationship.
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TABLE 5 Mendelian randomization analysis of the association between TL and the risk of IA.

Exposure Outcome Methods NSNPs Beta SE p-value OR (95% CI)

IA TL MR Egger 7 0.018 0.025 0.505 1.018 (0.970–1.069)

IA TL Weighted median 7 0.007 0.006 0.226 1.007 (0.996–1.019)

IA TL Inverse variance weighted 7 0.008 0.005 0.11 1.008 (0.998–1.018)

IA TL Simple mode 7 0.007 0.009 0.477 1.007 (0.989–1.025)

IA TL Weighted mode 7 0.008 0.008 0.4 1.008 (0.991–1.024)

NSNPs, number of single-nucleotide polymorphisms; OR, odds ratio; CI, confidence interval.

heightened susceptibility to intracranial aneurysms. The findings of 
the reverse MR analysis implied that there is no significant association 
between intracranial aneurysms and telomere length.

At present, investigations pertaining to the correlation between 
telomere length and intracranial aneurysms predominantly rely on 
animal experimentation. Fu et al. (2) utilized an animal model of 
intracranial aneurysms to demonstrate that the formation of 
intracranial aneurysms may be  linked to increased expression of 
telomere-binding proteins, inhibition of telomerase enzyme activity, 
and telomere shortening. There exists a potential association between 
intracranial aneurysms and other artery aneurysms, as evidenced by 
instances of concurrent manifestation. This observation implies the 
plausibility of shared genetic and pathological factors contributing to 
the formation of these aneurysms (21). In their study, Shin et al. (3) 
performed a retrospective investigation on a cohort of patients 
presenting with both cerebral and arterial aneurysms. The authors 
observed common pathogenic mechanisms that were shared between 
these two types of aneurysms. The occurrence of aneurysms in the 
anterior circulation arteries after the bifurcation of the internal carotid 
artery, as well as ascending aortic aneurysms, may be influenced to a 
greater extent by genetic factors. The MR study conducted by Zhang 
et al. (4) provides additional evidence in support of a causal association 
between telomere length and arterial aneurysms. Specifically, the 
study found that individuals with longer telomere length had a 
decreased chance of developing arterial aneurysms. The findings of 
our study align with the results obtained from animal models of 
cerebral aneurysms and MR studies investigating the relationship 
between telomere length and arterial aneurysms.

The precise elucidation of the involvement of telomeres in the 
pathogenesis of aneurysms remains uncertain. Telomeres undergo a 
progressive shortening process during cellular division, and at 
reaching a critically short length, they induce cells to enter a state of 
senescence. The process of cellular senescence has the ability to induce 
harm to vascular tissues, resulting in the release of various 
inflammatory agents and the manifestation of the SASP (6). Numerous 
studies have provided evidence suggesting that inflammation has a 
substantial role in the initiation and progression of intracranial 
aneurysms (22–24). One viewpoint posits that the initiation of 
hemodynamic injury serves as a catalyst for a multifaceted 
inflammatory cascade that encompasses MMPs, vascular smooth 
muscle cells, macrophages, and oxidative stress. The genesis of 
intracranial aneurysms is believed to commence with endothelial 
dysfunction, which is triggered by oxidative stress. Following this, 
macrophages, mast cells, and many other inflammatory cells 
collaborate to initiate an inflammatory response. Macrophages play a 
crucial role in this process by producing and releasing MMPs, which 
are responsible for breaking down the extracellular matrix and 

collagen present in the artery wall. This mechanism amplifies the 
recruitment of inflammatory cells, increases the production of other 
proteases, and induces arterial wall remodeling and weakening, 
ultimately leading to the development and expansion of aneurysms. 
In addition, persistent inflammation can have a significant impact on 
the artery wall, resulting in the rupture of an aneurysm and the 
occurrence of subarachnoid haemorrhage (1, 25). Studies by Ali and 
colleagues have shown that tumor necrosis factor is involved in 
regulating the phenotypic switch of VSMCs towards a 
pro-inflammatory and matrix-remodeling phenotype (26). Research 
by Guo and colleagues has demonstrated a significant reduction in 
VSMC density in the medial layer of intracranial aneurysms compared 
to the normal arterial wall (27). These studies collectively suggest that 
inflammation is one of the primary factors contributing to the 
development of intracranial aneurysms. Therefore, the process of 
telomere shortening, which results in cellular senescence and the 
subsequent release of the SASP, has the potential to trigger an 
inflammatory reaction within the vascular wall. This mechanism 
could potentially contribute to the development of 
intracranial aneurysms.

Our present study possesses some notable strengths. The study 
employs publicly accessible large-scale GWAS data, consisting of 
472,174 individuals, along with the aneurysm dataset from the 
International Stroke Genetics Consortium, which includes 7,495 cases 
and 71,934 controls. Furthermore, the employment of two-sample MR 
and diverse MR analysis techniques serves to alleviate the influence of 
confounding variables and address the issue of reverse causation. In 
conclusion, the present study evaluates the durability of the results by 
employing heterogeneity tests, sensitivity analysis, and various 
other methodologies.

Our research is subject to many constraints. Firstly, it is crucial 
to acknowledge that the sample consists exclusively of individuals of 
European ancestry. Therefore, the application of the study findings to 
non-European populations is uncertain, and additional confirmation 
is necessary for other groups of individuals. Then, it is significant that 
Mendelian randomization analysis does not include samples that 
overlap. The study has a maximum overlap rate of only 2% between 
the exposure and outcome datasets. To minimize potential bias, 
strong instrumental variables with high F-values are used. 
Furthermore, the use of disease-associated SNPs is a fundamental 
aspect of MR analysis. However, it is imperative to conduct further 
validation through the incorporation of other genetic association 
studies. Finally, our research implies a potential causal connection 
between telomere length and intracranial aneurysms. Nevertheless, 
the precise mechanisms that explain this connection are not yet 
understood, thus requiring additional investigation to explore its 
biological processes.
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Conclusion

In summary, this study used bidirectional two-sample Mendelian 
randomization analysis to imply a potential negative correlation 
between telomere length and intracranial aneurysms in the European 
population. It is necessary to validate these results in cohorts of 
different ethnicities and also to further investigate the 
underlying mechanisms.
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