AUTHOR=Seifallahi Mahmoud , Galvin James E. , Ghoraani Behnaz TITLE=Detection of mild cognitive impairment using various types of gait tests and machine learning JOURNAL=Frontiers in Neurology VOLUME=15 YEAR=2024 URL=https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2024.1354092 DOI=10.3389/fneur.2024.1354092 ISSN=1664-2295 ABSTRACT=Introduction

Alzheimer's disease and related disorders (ADRD) progressively impair cognitive function, prompting the need for early detection to mitigate its impact. Mild Cognitive Impairment (MCI) may signal an early cognitive decline due to ADRD. Thus, developing an accessible, non-invasive method for detecting MCI is vital for initiating early interventions to prevent severe cognitive deterioration.

Methods

This study explores the utility of analyzing gait patterns, a fundamental aspect of human motor behavior, on straight and oval paths for diagnosing MCI. Using a Kinect v.2 camera, we recorded the movements of 25 body joints from 25 individuals with MCI and 30 healthy older adults (HC). Signal processing, descriptive statistical analysis, and machine learning techniques were employed to analyze the skeletal gait data in both walking conditions.

Results and discussion

The study demonstrated that both straight and oval walking patterns provide valuable insights for MCI detection, with a notable increase in identifiable gait features in the more complex oval walking test. The Random Forest model excelled among various algorithms, achieving an 85.50% accuracy and an 83.9% F-score in detecting MCI during oval walking tests. This research introduces a cost-effective, Kinect-based method that integrates gait analysis—a key behavioral pattern—with machine learning, offering a practical tool for MCI screening in both clinical and home environments.